TSTP Solution File: KLE143+2 by Otter---3.3

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Otter---3.3
% Problem  : KLE143+2 : TPTP v8.1.0. Released v4.0.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : otter-tptp-script %s

% Computer : n016.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Wed Jul 27 13:00:50 EDT 2022

% Result   : Theorem 3.44s 3.66s
% Output   : Refutation 3.44s
% Verified : 
% SZS Type : Refutation
%            Derivation depth      :    9
%            Number of leaves      :   17
% Syntax   : Number of clauses     :   40 (  34 unt;   0 nHn;   8 RR)
%            Number of literals    :   46 (  29 equ;   8 neg)
%            Maximal clause size   :    2 (   1 avg)
%            Maximal term depth    :    4 (   2 avg)
%            Number of predicates  :    3 (   1 usr;   1 prp; 0-2 aty)
%            Number of functors    :    7 (   7 usr;   3 con; 0-2 aty)
%            Number of variables   :   63 (   3 sgn)

% Comments : 
%------------------------------------------------------------------------------
cnf(1,axiom,
    ( ~ le_q(addition(multiplication(A,B),C),B)
    | le_q(multiplication(star(A),C),B) ),
    file('KLE143+2.p',unknown),
    [] ).

cnf(4,axiom,
    ( ~ le_q(A,B)
    | addition(A,B) = B ),
    file('KLE143+2.p',unknown),
    [] ).

cnf(5,axiom,
    ( le_q(A,B)
    | addition(A,B) != B ),
    file('KLE143+2.p',unknown),
    [] ).

cnf(6,axiom,
    ( ~ le_q(multiplication(strong_iteration(dollar_c1),strong_iteration(dollar_c1)),strong_iteration(dollar_c1))
    | ~ le_q(strong_iteration(dollar_c1),multiplication(strong_iteration(dollar_c1),strong_iteration(dollar_c1))) ),
    file('KLE143+2.p',unknown),
    [] ).

cnf(8,axiom,
    addition(A,B) = addition(B,A),
    file('KLE143+2.p',unknown),
    [] ).

cnf(9,axiom,
    addition(A,addition(B,C)) = addition(addition(A,B),C),
    file('KLE143+2.p',unknown),
    [] ).

cnf(10,plain,
    addition(addition(A,B),C) = addition(A,addition(B,C)),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[9])]),
    [iquote('copy,9,flip.1')] ).

cnf(12,axiom,
    addition(A,zero) = A,
    file('KLE143+2.p',unknown),
    [] ).

cnf(14,axiom,
    addition(A,A) = A,
    file('KLE143+2.p',unknown),
    [] ).

cnf(16,axiom,
    multiplication(A,multiplication(B,C)) = multiplication(multiplication(A,B),C),
    file('KLE143+2.p',unknown),
    [] ).

cnf(18,plain,
    multiplication(multiplication(A,B),C) = multiplication(A,multiplication(B,C)),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[16])]),
    [iquote('copy,16,flip.1')] ).

cnf(19,axiom,
    multiplication(A,one) = A,
    file('KLE143+2.p',unknown),
    [] ).

cnf(22,axiom,
    multiplication(one,A) = A,
    file('KLE143+2.p',unknown),
    [] ).

cnf(23,axiom,
    multiplication(A,addition(B,C)) = addition(multiplication(A,B),multiplication(A,C)),
    file('KLE143+2.p',unknown),
    [] ).

cnf(25,axiom,
    multiplication(addition(A,B),C) = addition(multiplication(A,C),multiplication(B,C)),
    file('KLE143+2.p',unknown),
    [] ).

cnf(28,axiom,
    multiplication(zero,A) = zero,
    file('KLE143+2.p',unknown),
    [] ).

cnf(31,axiom,
    addition(one,multiplication(star(A),A)) = star(A),
    file('KLE143+2.p',unknown),
    [] ).

cnf(33,axiom,
    strong_iteration(A) = addition(multiplication(A,strong_iteration(A)),one),
    file('KLE143+2.p',unknown),
    [] ).

cnf(34,plain,
    addition(multiplication(A,strong_iteration(A)),one) = strong_iteration(A),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[33])]),
    [iquote('copy,33,flip.1')] ).

cnf(36,axiom,
    strong_iteration(A) = addition(star(A),multiplication(strong_iteration(A),zero)),
    file('KLE143+2.p',unknown),
    [] ).

cnf(37,plain,
    addition(star(A),multiplication(strong_iteration(A),zero)) = strong_iteration(A),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[36])]),
    [iquote('copy,36,flip.1')] ).

cnf(46,plain,
    le_q(A,A),
    inference(hyper,[status(thm)],[14,5]),
    [iquote('hyper,14,5')] ).

cnf(49,plain,
    ( ~ le_q(multiplication(A,B),B)
    | le_q(multiplication(star(A),multiplication(A,B)),B) ),
    inference(para_from,[status(thm),theory(equality)],[14,1]),
    [iquote('para_from,14.1.1,1.1.1')] ).

cnf(50,plain,
    addition(zero,A) = A,
    inference(flip,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[8,12])]),
    [iquote('para_into,8.1.1,12.1.1,flip.1')] ).

cnf(52,plain,
    ( addition(A,B) = A
    | ~ le_q(B,A) ),
    inference(flip,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[8,4])]),
    [iquote('para_into,8.1.1,4.2.1,flip.1')] ).

cnf(70,plain,
    addition(A,addition(A,B)) = addition(A,B),
    inference(flip,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[10,14])]),
    [iquote('para_into,10.1.1.1,14.1.1,flip.1')] ).

cnf(132,plain,
    addition(multiplication(A,zero),multiplication(A,B)) = multiplication(A,B),
    inference(flip,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[23,50])]),
    [iquote('para_into,23.1.1.2,50.1.1,flip.1')] ).

cnf(225,plain,
    addition(A,multiplication(star(B),multiplication(B,A))) = multiplication(star(B),A),
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[31,25]),22,18])]),
    [iquote('para_from,31.1.1,25.1.1.1,demod,22,18,flip.1')] ).

cnf(308,plain,
    multiplication(strong_iteration(A),B) = addition(multiplication(star(A),B),multiplication(strong_iteration(A),zero)),
    inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[37,25]),18,28]),
    [iquote('para_from,37.1.1,25.1.1.1,demod,18,28')] ).

cnf(312,plain,
    addition(multiplication(star(A),B),multiplication(strong_iteration(A),zero)) = multiplication(strong_iteration(A),B),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[308])]),
    [iquote('copy,308,flip.1')] ).

cnf(535,plain,
    le_q(A,addition(A,B)),
    inference(hyper,[status(thm)],[70,5]),
    [iquote('hyper,70,5')] ).

cnf(558,plain,
    le_q(multiplication(A,strong_iteration(A)),strong_iteration(A)),
    inference(para_into,[status(thm),theory(equality)],[535,34]),
    [iquote('para_into,535.1.2,34.1.1')] ).

cnf(639,plain,
    le_q(multiplication(star(A),multiplication(A,strong_iteration(A))),strong_iteration(A)),
    inference(hyper,[status(thm)],[558,49]),
    [iquote('hyper,558,49')] ).

cnf(2672,plain,
    le_q(multiplication(A,zero),multiplication(A,B)),
    inference(hyper,[status(thm)],[132,5]),
    [iquote('hyper,132,5')] ).

cnf(2679,plain,
    le_q(multiplication(A,zero),A),
    inference(para_into,[status(thm),theory(equality)],[2672,19]),
    [iquote('para_into,2672.1.2,19.1.1')] ).

cnf(2684,plain,
    addition(A,multiplication(A,zero)) = A,
    inference(hyper,[status(thm)],[2679,52]),
    [iquote('hyper,2679,52')] ).

cnf(3463,plain,
    multiplication(star(A),strong_iteration(A)) = strong_iteration(A),
    inference(demod,[status(thm),theory(equality)],[inference(hyper,[status(thm)],[639,52]),225]),
    [iquote('hyper,639,52,demod,225')] ).

cnf(3466,plain,
    multiplication(strong_iteration(A),strong_iteration(A)) = strong_iteration(A),
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[3463,312]),2684])]),
    [iquote('para_from,3463.1.1,312.1.1.1,demod,2684,flip.1')] ).

cnf(3468,plain,
    ~ le_q(strong_iteration(dollar_c1),strong_iteration(dollar_c1)),
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[6]),3466,3466]),
    [iquote('back_demod,6,demod,3466,3466')] ).

cnf(3469,plain,
    $false,
    inference(binary,[status(thm)],[3468,46]),
    [iquote('binary,3468.1,46.1')] ).

%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.03/0.12  % Problem  : KLE143+2 : TPTP v8.1.0. Released v4.0.0.
% 0.03/0.12  % Command  : otter-tptp-script %s
% 0.13/0.33  % Computer : n016.cluster.edu
% 0.13/0.33  % Model    : x86_64 x86_64
% 0.13/0.33  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.13/0.33  % Memory   : 8042.1875MB
% 0.13/0.33  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.13/0.33  % CPULimit : 300
% 0.13/0.33  % WCLimit  : 300
% 0.13/0.33  % DateTime : Wed Jul 27 06:47:22 EDT 2022
% 0.13/0.33  % CPUTime  : 
% 1.73/1.93  ----- Otter 3.3f, August 2004 -----
% 1.73/1.93  The process was started by sandbox2 on n016.cluster.edu,
% 1.73/1.93  Wed Jul 27 06:47:22 2022
% 1.73/1.93  The command was "./otter".  The process ID is 5401.
% 1.73/1.93  
% 1.73/1.93  set(prolog_style_variables).
% 1.73/1.93  set(auto).
% 1.73/1.93     dependent: set(auto1).
% 1.73/1.93     dependent: set(process_input).
% 1.73/1.93     dependent: clear(print_kept).
% 1.73/1.93     dependent: clear(print_new_demod).
% 1.73/1.93     dependent: clear(print_back_demod).
% 1.73/1.93     dependent: clear(print_back_sub).
% 1.73/1.93     dependent: set(control_memory).
% 1.73/1.93     dependent: assign(max_mem, 12000).
% 1.73/1.93     dependent: assign(pick_given_ratio, 4).
% 1.73/1.93     dependent: assign(stats_level, 1).
% 1.73/1.93     dependent: assign(max_seconds, 10800).
% 1.73/1.93  clear(print_given).
% 1.73/1.93  
% 1.73/1.93  formula_list(usable).
% 1.73/1.93  all A (A=A).
% 1.73/1.93  all A B (addition(A,B)=addition(B,A)).
% 1.73/1.93  all C B A (addition(A,addition(B,C))=addition(addition(A,B),C)).
% 1.73/1.93  all A (addition(A,zero)=A).
% 1.73/1.93  all A (addition(A,A)=A).
% 1.73/1.93  all A B C (multiplication(A,multiplication(B,C))=multiplication(multiplication(A,B),C)).
% 1.73/1.93  all A (multiplication(A,one)=A).
% 1.73/1.93  all A (multiplication(one,A)=A).
% 1.73/1.93  all A B C (multiplication(A,addition(B,C))=addition(multiplication(A,B),multiplication(A,C))).
% 1.73/1.93  all A B C (multiplication(addition(A,B),C)=addition(multiplication(A,C),multiplication(B,C))).
% 1.73/1.93  all A (multiplication(zero,A)=zero).
% 1.73/1.93  all A (addition(one,multiplication(A,star(A)))=star(A)).
% 1.73/1.93  all A (addition(one,multiplication(star(A),A))=star(A)).
% 1.73/1.93  all A B C (le_q(addition(multiplication(A,C),B),C)->le_q(multiplication(star(A),B),C)).
% 1.73/1.93  all A B C (le_q(addition(multiplication(C,A),B),C)->le_q(multiplication(B,star(A)),C)).
% 1.73/1.93  all A (strong_iteration(A)=addition(multiplication(A,strong_iteration(A)),one)).
% 1.73/1.93  all A B C (le_q(C,addition(multiplication(A,C),B))->le_q(C,multiplication(strong_iteration(A),B))).
% 1.73/1.93  all A (strong_iteration(A)=addition(star(A),multiplication(strong_iteration(A),zero))).
% 1.73/1.93  all A B (le_q(A,B)<->addition(A,B)=B).
% 1.73/1.93  -(all X0 (le_q(multiplication(strong_iteration(X0),strong_iteration(X0)),strong_iteration(X0))&le_q(strong_iteration(X0),multiplication(strong_iteration(X0),strong_iteration(X0))))).
% 1.73/1.93  end_of_list.
% 1.73/1.93  
% 1.73/1.93  -------> usable clausifies to:
% 1.73/1.93  
% 1.73/1.93  list(usable).
% 1.73/1.93  0 [] A=A.
% 1.73/1.93  0 [] addition(A,B)=addition(B,A).
% 1.73/1.93  0 [] addition(A,addition(B,C))=addition(addition(A,B),C).
% 1.73/1.93  0 [] addition(A,zero)=A.
% 1.73/1.93  0 [] addition(A,A)=A.
% 1.73/1.93  0 [] multiplication(A,multiplication(B,C))=multiplication(multiplication(A,B),C).
% 1.73/1.93  0 [] multiplication(A,one)=A.
% 1.73/1.93  0 [] multiplication(one,A)=A.
% 1.73/1.93  0 [] multiplication(A,addition(B,C))=addition(multiplication(A,B),multiplication(A,C)).
% 1.73/1.93  0 [] multiplication(addition(A,B),C)=addition(multiplication(A,C),multiplication(B,C)).
% 1.73/1.93  0 [] multiplication(zero,A)=zero.
% 1.73/1.93  0 [] addition(one,multiplication(A,star(A)))=star(A).
% 1.73/1.93  0 [] addition(one,multiplication(star(A),A))=star(A).
% 1.73/1.93  0 [] -le_q(addition(multiplication(A,C),B),C)|le_q(multiplication(star(A),B),C).
% 1.73/1.93  0 [] -le_q(addition(multiplication(C,A),B),C)|le_q(multiplication(B,star(A)),C).
% 1.73/1.93  0 [] strong_iteration(A)=addition(multiplication(A,strong_iteration(A)),one).
% 1.73/1.93  0 [] -le_q(C,addition(multiplication(A,C),B))|le_q(C,multiplication(strong_iteration(A),B)).
% 1.73/1.93  0 [] strong_iteration(A)=addition(star(A),multiplication(strong_iteration(A),zero)).
% 1.73/1.93  0 [] -le_q(A,B)|addition(A,B)=B.
% 1.73/1.93  0 [] le_q(A,B)|addition(A,B)!=B.
% 1.73/1.93  0 [] -le_q(multiplication(strong_iteration($c1),strong_iteration($c1)),strong_iteration($c1))| -le_q(strong_iteration($c1),multiplication(strong_iteration($c1),strong_iteration($c1))).
% 1.73/1.93  end_of_list.
% 1.73/1.93  
% 1.73/1.93  SCAN INPUT: prop=0, horn=1, equality=1, symmetry=0, max_lits=2.
% 1.73/1.93  
% 1.73/1.93  This is a Horn set with equality.  The strategy will be
% 1.73/1.93  Knuth-Bendix and hyper_res, with positive clauses in
% 1.73/1.93  sos and nonpositive clauses in usable.
% 1.73/1.93  
% 1.73/1.93     dependent: set(knuth_bendix).
% 1.73/1.93     dependent: set(anl_eq).
% 1.73/1.93     dependent: set(para_from).
% 1.73/1.93     dependent: set(para_into).
% 1.73/1.93     dependent: clear(para_from_right).
% 1.73/1.93     dependent: clear(para_into_right).
% 1.73/1.93     dependent: set(para_from_vars).
% 1.73/1.93     dependent: set(eq_units_both_ways).
% 1.73/1.93     dependent: set(dynamic_demod_all).
% 1.73/1.93     dependent: set(dynamic_demod).
% 1.73/1.93     dependent: set(order_eq).
% 1.73/1.93     dependent: set(back_demod).
% 1.73/1.93     dependent: set(lrpo).
% 1.73/1.93     dependent: set(hyper_res).
% 1.73/1.93     dependent: clear(order_hyper).
% 1.73/1.93  
% 1.73/1.93  ------------> process usable:
% 1.73/1.93  ** KEPT (pick-wt=13): 1 [] -le_q(addition(multiplication(A,B),C),B)|le_q(multiplication(star(A),C),B).
% 3.44/3.66  ** KEPT (pick-wt=13): 2 [] -le_q(addition(multiplication(A,B),C),A)|le_q(multiplication(C,star(B)),A).
% 3.44/3.66  ** KEPT (pick-wt=13): 3 [] -le_q(A,addition(multiplication(B,A),C))|le_q(A,multiplication(strong_iteration(B),C)).
% 3.44/3.66  ** KEPT (pick-wt=8): 4 [] -le_q(A,B)|addition(A,B)=B.
% 3.44/3.66  ** KEPT (pick-wt=8): 5 [] le_q(A,B)|addition(A,B)!=B.
% 3.44/3.66  ** KEPT (pick-wt=16): 6 [] -le_q(multiplication(strong_iteration($c1),strong_iteration($c1)),strong_iteration($c1))| -le_q(strong_iteration($c1),multiplication(strong_iteration($c1),strong_iteration($c1))).
% 3.44/3.66  
% 3.44/3.66  ------------> process sos:
% 3.44/3.66  ** KEPT (pick-wt=3): 7 [] A=A.
% 3.44/3.66  ** KEPT (pick-wt=7): 8 [] addition(A,B)=addition(B,A).
% 3.44/3.66  ** KEPT (pick-wt=11): 10 [copy,9,flip.1] addition(addition(A,B),C)=addition(A,addition(B,C)).
% 3.44/3.66  ---> New Demodulator: 11 [new_demod,10] addition(addition(A,B),C)=addition(A,addition(B,C)).
% 3.44/3.66  ** KEPT (pick-wt=5): 12 [] addition(A,zero)=A.
% 3.44/3.66  ---> New Demodulator: 13 [new_demod,12] addition(A,zero)=A.
% 3.44/3.66  ** KEPT (pick-wt=5): 14 [] addition(A,A)=A.
% 3.44/3.66  ---> New Demodulator: 15 [new_demod,14] addition(A,A)=A.
% 3.44/3.66  ** KEPT (pick-wt=11): 17 [copy,16,flip.1] multiplication(multiplication(A,B),C)=multiplication(A,multiplication(B,C)).
% 3.44/3.66  ---> New Demodulator: 18 [new_demod,17] multiplication(multiplication(A,B),C)=multiplication(A,multiplication(B,C)).
% 3.44/3.66  ** KEPT (pick-wt=5): 19 [] multiplication(A,one)=A.
% 3.44/3.66  ---> New Demodulator: 20 [new_demod,19] multiplication(A,one)=A.
% 3.44/3.66  ** KEPT (pick-wt=5): 21 [] multiplication(one,A)=A.
% 3.44/3.66  ---> New Demodulator: 22 [new_demod,21] multiplication(one,A)=A.
% 3.44/3.66  ** KEPT (pick-wt=13): 23 [] multiplication(A,addition(B,C))=addition(multiplication(A,B),multiplication(A,C)).
% 3.44/3.66  ---> New Demodulator: 24 [new_demod,23] multiplication(A,addition(B,C))=addition(multiplication(A,B),multiplication(A,C)).
% 3.44/3.66  ** KEPT (pick-wt=13): 25 [] multiplication(addition(A,B),C)=addition(multiplication(A,C),multiplication(B,C)).
% 3.44/3.66  ---> New Demodulator: 26 [new_demod,25] multiplication(addition(A,B),C)=addition(multiplication(A,C),multiplication(B,C)).
% 3.44/3.66  ** KEPT (pick-wt=5): 27 [] multiplication(zero,A)=zero.
% 3.44/3.66  ---> New Demodulator: 28 [new_demod,27] multiplication(zero,A)=zero.
% 3.44/3.66  ** KEPT (pick-wt=9): 29 [] addition(one,multiplication(A,star(A)))=star(A).
% 3.44/3.66  ---> New Demodulator: 30 [new_demod,29] addition(one,multiplication(A,star(A)))=star(A).
% 3.44/3.66  ** KEPT (pick-wt=9): 31 [] addition(one,multiplication(star(A),A))=star(A).
% 3.44/3.66  ---> New Demodulator: 32 [new_demod,31] addition(one,multiplication(star(A),A))=star(A).
% 3.44/3.66  ** KEPT (pick-wt=9): 34 [copy,33,flip.1] addition(multiplication(A,strong_iteration(A)),one)=strong_iteration(A).
% 3.44/3.66  ---> New Demodulator: 35 [new_demod,34] addition(multiplication(A,strong_iteration(A)),one)=strong_iteration(A).
% 3.44/3.66  ** KEPT (pick-wt=10): 37 [copy,36,flip.1] addition(star(A),multiplication(strong_iteration(A),zero))=strong_iteration(A).
% 3.44/3.66  ---> New Demodulator: 38 [new_demod,37] addition(star(A),multiplication(strong_iteration(A),zero))=strong_iteration(A).
% 3.44/3.66    Following clause subsumed by 7 during input processing: 0 [copy,7,flip.1] A=A.
% 3.44/3.66    Following clause subsumed by 8 during input processing: 0 [copy,8,flip.1] addition(A,B)=addition(B,A).
% 3.44/3.66  >>>> Starting back demodulation with 11.
% 3.44/3.66  >>>> Starting back demodulation with 13.
% 3.44/3.66  >>>> Starting back demodulation with 15.
% 3.44/3.66  >>>> Starting back demodulation with 18.
% 3.44/3.66  >>>> Starting back demodulation with 20.
% 3.44/3.66  >>>> Starting back demodulation with 22.
% 3.44/3.66  >>>> Starting back demodulation with 24.
% 3.44/3.66  >>>> Starting back demodulation with 26.
% 3.44/3.66  >>>> Starting back demodulation with 28.
% 3.44/3.66  >>>> Starting back demodulation with 30.
% 3.44/3.66  >>>> Starting back demodulation with 32.
% 3.44/3.66  >>>> Starting back demodulation with 35.
% 3.44/3.66  >>>> Starting back demodulation with 38.
% 3.44/3.66  
% 3.44/3.66  ======= end of input processing =======
% 3.44/3.66  
% 3.44/3.66  =========== start of search ===========
% 3.44/3.66  
% 3.44/3.66  
% 3.44/3.66  Resetting weight limit to 9.
% 3.44/3.66  
% 3.44/3.66  
% 3.44/3.66  Resetting weight limit to 9.
% 3.44/3.66  
% 3.44/3.66  sos_size=1743
% 3.44/3.66  
% 3.44/3.66  
% 3.44/3.66  Resetting weight limit to 8.
% 3.44/3.66  
% 3.44/3.66  
% 3.44/3.66  Resetting weight limit to 8.
% 3.44/3.66  
% 3.44/3.66  sos_size=1890
% 3.44/3.66  
% 3.44/3.66  -------- PROOF -------- 
% 3.44/3.66  
% 3.44/3.66  ----> UNIT CONFLICT at   1.73 sec ----> 3469 [binary,3468.1,46.1] $F.
% 3.44/3.66  
% 3.44/3.66  Length of proof is 22.  Level of proof is 8.
% 3.44/3.66  
% 3.44/3.66  ---------------- PROOF ----------------
% 3.44/3.66  % SZS status Theorem
% 3.44/3.66  % SZS output start Refutation
% See solution above
% 3.44/3.66  ------------ end of proof -------------
% 3.44/3.66  
% 3.44/3.66  
% 3.44/3.66  Search stopped by max_proofs option.
% 3.44/3.66  
% 3.44/3.66  
% 3.44/3.66  Search stopped by max_proofs option.
% 3.44/3.66  
% 3.44/3.66  ============ end of search ============
% 3.44/3.66  
% 3.44/3.66  -------------- statistics -------------
% 3.44/3.66  clauses given               1083
% 3.44/3.66  clauses generated         332862
% 3.44/3.66  clauses kept                3249
% 3.44/3.66  clauses forward subsumed   83120
% 3.44/3.66  clauses back subsumed        680
% 3.44/3.66  Kbytes malloced             7812
% 3.44/3.66  
% 3.44/3.66  ----------- times (seconds) -----------
% 3.44/3.66  user CPU time          1.73          (0 hr, 0 min, 1 sec)
% 3.44/3.66  system CPU time        0.00          (0 hr, 0 min, 0 sec)
% 3.44/3.66  wall-clock time        3             (0 hr, 0 min, 3 sec)
% 3.44/3.66  
% 3.44/3.66  That finishes the proof of the theorem.
% 3.44/3.66  
% 3.44/3.66  Process 5401 finished Wed Jul 27 06:47:25 2022
% 3.44/3.66  Otter interrupted
% 3.44/3.66  PROOF FOUND
%------------------------------------------------------------------------------