TSTP Solution File: KLE122-10 by EQP---0.9e

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : EQP---0.9e
% Problem  : KLE122-10 : TPTP v8.1.0. Released v7.3.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : tptp2X_and_run_eqp %s

% Computer : n022.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 600s
% DateTime : Sun Jul 17 01:52:21 EDT 2022

% Result   : Unknown 11.15s 11.50s
% Output   : None 
% Verified : 
% SZS Type : -

% Comments : 
%------------------------------------------------------------------------------
%----No solution output by system
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.12/0.12  % Problem  : KLE122-10 : TPTP v8.1.0. Released v7.3.0.
% 0.12/0.13  % Command  : tptp2X_and_run_eqp %s
% 0.12/0.34  % Computer : n022.cluster.edu
% 0.12/0.34  % Model    : x86_64 x86_64
% 0.12/0.34  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.12/0.34  % Memory   : 8042.1875MB
% 0.12/0.34  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.12/0.34  % CPULimit : 300
% 0.12/0.34  % WCLimit  : 600
% 0.12/0.34  % DateTime : Thu Jun 16 08:18:17 EDT 2022
% 0.12/0.34  % CPUTime  : 
% 0.72/1.08  ----- EQP 0.9e, May 2009 -----
% 0.72/1.08  The job began on n022.cluster.edu, Thu Jun 16 08:18:18 2022
% 0.72/1.08  The command was "./eqp09e".
% 0.72/1.08  
% 0.72/1.08  set(prolog_style_variables).
% 0.72/1.08  set(lrpo).
% 0.72/1.08  set(basic_paramod).
% 0.72/1.08  set(functional_subsume).
% 0.72/1.08  set(ordered_paramod).
% 0.72/1.08  set(prime_paramod).
% 0.72/1.08  set(para_pairs).
% 0.72/1.08  assign(pick_given_ratio,4).
% 0.72/1.08  clear(print_kept).
% 0.72/1.08  clear(print_new_demod).
% 0.72/1.08  clear(print_back_demod).
% 0.72/1.08  clear(print_given).
% 0.72/1.08  assign(max_mem,64000).
% 0.72/1.08  end_of_commands.
% 0.72/1.08  
% 0.72/1.08  Usable:
% 0.72/1.08  end_of_list.
% 0.72/1.08  
% 0.72/1.08  Sos:
% 0.72/1.08  0 (wt=-1) [] ifeq2(A,A,B,C) = B.
% 0.72/1.08  0 (wt=-1) [] ifeq(A,A,B,C) = B.
% 0.72/1.08  0 (wt=-1) [] addition(A,B) = addition(B,A).
% 0.72/1.08  0 (wt=-1) [] addition(A,addition(B,C)) = addition(addition(A,B),C).
% 0.72/1.08  0 (wt=-1) [] addition(A,zero) = A.
% 0.72/1.08  0 (wt=-1) [] addition(A,A) = A.
% 0.72/1.08  0 (wt=-1) [] multiplication(A,multiplication(B,C)) = multiplication(multiplication(A,B),C).
% 0.72/1.08  0 (wt=-1) [] multiplication(A,one) = A.
% 0.72/1.08  0 (wt=-1) [] multiplication(one,A) = A.
% 0.72/1.08  0 (wt=-1) [] multiplication(A,addition(B,C)) = addition(multiplication(A,B),multiplication(A,C)).
% 0.72/1.08  0 (wt=-1) [] multiplication(addition(A,B),C) = addition(multiplication(A,C),multiplication(B,C)).
% 0.72/1.08  0 (wt=-1) [] multiplication(A,zero) = zero.
% 0.72/1.08  0 (wt=-1) [] multiplication(zero,A) = zero.
% 0.72/1.08  0 (wt=-1) [] ifeq(leq(A,B),true,addition(A,B),B) = B.
% 0.72/1.08  0 (wt=-1) [] ifeq2(addition(A,B),B,leq(A,B),true) = true.
% 0.72/1.08  0 (wt=-1) [] multiplication(antidomain(A),A) = zero.
% 0.72/1.08  0 (wt=-1) [] addition(antidomain(multiplication(A,B)),antidomain(multiplication(A,antidomain(antidomain(B))))) = antidomain(multiplication(A,antidomain(antidomain(B)))).
% 0.72/1.08  0 (wt=-1) [] addition(antidomain(antidomain(A)),antidomain(A)) = one.
% 0.72/1.08  0 (wt=-1) [] domain(A) = antidomain(antidomain(A)).
% 0.72/1.08  0 (wt=-1) [] multiplication(A,coantidomain(A)) = zero.
% 0.72/1.08  0 (wt=-1) [] addition(coantidomain(multiplication(A,B)),coantidomain(multiplication(coantidomain(coantidomain(A)),B))) = coantidomain(multiplication(coantidomain(coantidomain(A)),B)).
% 0.72/1.08  0 (wt=-1) [] addition(coantidomain(coantidomain(A)),coantidomain(A)) = one.
% 0.72/1.08  0 (wt=-1) [] codomain(A) = coantidomain(coantidomain(A)).
% 0.72/1.08  0 (wt=-1) [] c(A) = antidomain(domain(A)).
% 0.72/1.08  0 (wt=-1) [] domain_difference(A,B) = multiplication(domain(A),antidomain(B)).
% 0.72/1.08  0 (wt=-1) [] forward_diamond(A,B) = domain(multiplication(A,domain(B))).
% 0.72/1.08  0 (wt=-1) [] backward_diamond(A,B) = codomain(multiplication(codomain(B),A)).
% 0.72/1.08  0 (wt=-1) [] forward_box(A,B) = c(forward_diamond(A,c(B))).
% 0.72/1.08  0 (wt=-1) [] backward_box(A,B) = c(backward_diamond(A,c(B))).
% 0.72/1.08  0 (wt=-1) [] if_then_else(A,B,C) = addition(multiplication(domain(A),B),multiplication(antidomain(A),C)).
% 0.72/1.08  0 (wt=-1) [] addition(backward_diamond(sK5_goals_X1,multiplication(antidomain(sK4_goals_X2),domain(sK3_goals_X3))),domain(sK2_goals_X4)) = domain(sK2_goals_X4).
% 0.72/1.08  0 (wt=-1) [] addition(backward_diamond(sK1_goals_X0,multiplication(domain(sK4_goals_X2),domain(sK3_goals_X3))),domain(sK2_goals_X4)) = domain(sK2_goals_X4).
% 0.72/1.08  0 (wt=-1) [] -(addition(backward_diamond(if_then_else(sK4_goals_X2,sK1_goals_X0,sK5_goals_X1),domain(sK3_goals_X3)),domain(sK2_goals_X4)) = domain(sK2_goals_X4)).
% 0.72/1.08  end_of_list.
% 0.72/1.08  
% 0.72/1.08  Demodulators:
% 0.72/1.08  end_of_list.
% 0.72/1.08  
% 0.72/1.08  Passive:
% 0.72/1.08  end_of_list.
% 0.72/1.08  
% 0.72/1.08  Starting to process input.
% 0.72/1.08  
% 0.72/1.08  ** KEPT: 1 (wt=7) [] ifeq2(A,A,B,C) = B.
% 0.72/1.08  1 is a new demodulator.
% 0.72/1.08  
% 0.72/1.08  ** KEPT: 2 (wt=7) [] ifeq(A,A,B,C) = B.
% 0.72/1.08  2 is a new demodulator.
% 0.72/1.08  
% 0.72/1.08  ** KEPT: 3 (wt=7) [] addition(A,B) = addition(B,A).
% 0.72/1.08  clause forward subsumed: 0 (wt=7) [flip(3)] addition(B,A) = addition(A,B).
% 0.72/1.08  
% 0.72/1.08  ** KEPT: 4 (wt=11) [flip(1)] addition(addition(A,B),C) = addition(A,addition(B,C)).
% 0.72/1.08  4 is a new demodulator.
% 0.72/1.08  
% 0.72/1.08  ** KEPT: 5 (wt=5) [] addition(A,zero) = A.
% 0.72/1.08  5 is a new demodulator.
% 0.72/1.08  
% 0.72/1.08  ** KEPT: 6 (wt=5) [] addition(A,A) = A.
% 0.72/1.08  6 is a new demodulator.
% 0.72/1.08  
% 0.72/1.08  ** KEPT: 7 (wt=11) [flip(1)] multiplication(multiplication(A,B),C) = multiplication(A,multiplication(B,C)).
% 0.72/1.08  7 is a new demodulator.
% 0.72/1.08  
% 0.72/1.08  ** KEPT: 8 (wt=5) [] multiplication(A,one) = A.
% 0.72/1.08  8 is a new demodulator.
% 0.72/1.08  
% 0.72/1.08  ** KEPT: 9 (wt=5) [] multiplication(one,A) = A.
% 0.72/1.08  9 is a new demodulator.
% 0.72/1.08  
% 0.72/1.08  ** KEPT: 10 (wt=13) [] multiplication(A,addition(B,C)) = addition(multiplication(A,B),multiplication(A,C)).
% 0.72/1.08  10 is a new demodulator.
% 0.72/1.08  
% 0.72/1.08  ** KEPT: 11 (wt=13) [] multiplication(addition(A,B),C) = addition(multiplication(A,C),multiplication(B,C)).
% 0.72/1.08  11 is a new demodulator.
% 0.72/1.08  
% 0.72/1.08  ** KEPT: 12 (wt=5) [] multiplication(A,zero) = zero.
% 0.72/1.08  12 is a new demodulator.
% 0.72/1.08  
% 0.72/1.08  ** KEPT: 13 (wt=5) [] multiplication(zero,A) = zero.
% 0.72/1.08  13 is a new demodulator.
% 0.72/1.08  
% 0.72/1.08  ** KEPT: 14 (wt=11) [] ifeq(leq(A,B),true,addition(A,B),B) = B.
% 0.72/1.08  14 is a new demodulator.
% 0.72/1.08  
% 0.72/1.08  ** KEPT: 15 (wt=11) [] ifeq2(addition(A,B),B,leq(A,B),true) = true.
% 0.72/1.08  15 is a new demodulator.
% 0.72/1.08  
% 0.72/1.08  ** KEPT: 16 (wt=6) [] multiplication(antidomain(A),A) = zero.
% 0.72/1.08  16 is a new demodulator.
% 0.72/1.08  
% 0.72/1.08  ** KEPT: 17 (wt=18) [] addition(antidomain(multiplication(A,B)),antidomain(multiplication(A,antidomain(antidomain(B))))) = antidomain(multiplication(A,antidomain(antidomain(B)))).
% 0.72/1.08  17 is a new demodulator.
% 0.72/1.08  
% 0.72/1.08  ** KEPT: 18 (wt=8) [] addition(antidomain(antidomain(A)),antidomain(A)) = one.
% 0.72/1.08  18 is a new demodulator.
% 0.72/1.08  
% 0.72/1.08  ** KEPT: 19 (wt=6) [] domain(A) = antidomain(antidomain(A)).
% 0.72/1.08  19 is a new demodulator.
% 0.72/1.08  
% 0.72/1.08  ** KEPT: 20 (wt=6) [] multiplication(A,coantidomain(A)) = zero.
% 0.72/1.08  20 is a new demodulator.
% 0.72/1.08  
% 0.72/1.08  ** KEPT: 21 (wt=18) [] addition(coantidomain(multiplication(A,B)),coantidomain(multiplication(coantidomain(coantidomain(A)),B))) = coantidomain(multiplication(coantidomain(coantidomain(A)),B)).
% 0.72/1.08  21 is a new demodulator.
% 0.72/1.08  
% 0.72/1.08  ** KEPT: 22 (wt=8) [] addition(coantidomain(coantidomain(A)),coantidomain(A)) = one.
% 0.72/1.08  22 is a new demodulator.
% 0.72/1.08  
% 0.72/1.08  ** KEPT: 23 (wt=6) [] codomain(A) = coantidomain(coantidomain(A)).
% 0.72/1.08  23 is a new demodulator.
% 0.72/1.08  
% 0.72/1.08  ** KEPT: 24 (wt=7) [demod([19])] c(A) = antidomain(antidomain(antidomain(A))).
% 0.72/1.08  24 is a new demodulator.
% 0.72/1.08  
% 0.72/1.08  ** KEPT: 25 (wt=10) [demod([19]),flip(1)] multiplication(antidomain(antidomain(A)),antidomain(B)) = domain_difference(A,B).
% 0.72/1.08  25 is a new demodulator.
% 0.72/1.08  
% 0.72/1.08  ** KEPT: 26 (wt=11) [demod([19,19]),flip(1)] antidomain(antidomain(multiplication(A,antidomain(antidomain(B))))) = forward_diamond(A,B).
% 0.72/1.08  26 is a new demodulator.
% 0.72/1.08  
% 0.72/1.08  ** KEPT: 27 (wt=11) [demod([23,23]),flip(1)] coantidomain(coantidomain(multiplication(coantidomain(coantidomain(A)),B))) = backward_diamond(B,A).
% 0.72/1.08  27 is a new demodulator.
% 0.72/1.08  
% 0.72/1.08  ** KEPT: 28 (wt=13) [demod([24,24]),flip(1)] antidomain(antidomain(antidomain(forward_diamond(A,antidomain(antidomain(antidomain(B))))))) = forward_box(A,B).
% 0.72/1.08  28 is a new demodulator.
% 0.72/1.08  
% 0.72/1.08  ** KEPT: 29 (wt=13) [demod([24,24]),flip(1)] antidomain(antidomain(antidomain(backward_diamond(A,antidomain(antidomain(antidomain(B))))))) = backward_box(A,B).
% 0.72/1.08  29 is a new demodulator.
% 0.72/1.08  
% 0.72/1.08  ** KEPT: 30 (wt=15) [demod([19]),flip(1)] addition(multiplication(antidomain(antidomain(A)),B),multiplication(antidomain(A),C)) = if_then_else(A,B,C).
% 0.72/1.08  30 is a new demodulator.
% 0.72/1.08  
% 0.72/1.08  ** KEPT: 31 (wt=16) [demod([19,19,19])] addition(backward_diamond(sK5_goals_X1,multiplication(antidomain(sK4_goals_X2),antidomain(antidomain(sK3_goals_X3)))),antidomain(antidomain(sK2_goals_X4))) = antidomain(antidomain(sK2_goals_X4)).
% 0.72/1.08  31 is a new demodulator.
% 0.72/1.08  
% 0.72/1.08  ** KEPT: 32 (wt=14) [demod([19,19,25,19,19])] addition(backward_diamond(sK1_goals_X0,domain_difference(sK4_goals_X2,antidomain(sK3_goals_X3))),antidomain(antidomain(sK2_goals_X4))) = antidomain(antidomain(sK2_goals_X4)).
% 0.72/1.08  32 is a new demodulator.
% 0.72/1.08  
% 0.72/1.08  ** KEPT: 33 (wt=16) [demod([19,19,19])] -(addition(backward_diamond(if_then_else(sK4_goals_X2,sK1_goals_X0,sK5_goals_X1),antidomain(antidomain(sK3_goals_X3))),antidomain(antidomain(sK2_goals_X4))) = antidomain(antidomain(sK2_goals_X4))).
% 0.72/1.08  
% 0.72/1.08  After processing input:
% 0.72/1.08  
% 0.72/1.08  Usable:
% 0.72/1.08  end_of_list.
% 0.72/1.08  
% 0.72/1.08  Sos:
% 0.72/1.08  5 (wt=5) [] addition(A,zero) = A.
% 0.72/1.08  6 (wt=5) [] addition(A,A) = A.
% 0.72/1.08  8 (wt=5) [] multiplication(A,one) = A.
% 0.72/1.08  9 (wt=5) [] multiplication(one,A) = A.
% 0.72/1.08  12 (wt=5) [] multiplication(A,zero) = zero.
% 0.72/1.08  13 (wt=5) [] multiplication(zero,A) = zero.
% 0.72/1.08  16 (wt=6) [] multiplication(antidomain(A),A) = zero.
% 0.72/1.08  19 (wt=6) [] domain(A) = antidomain(antidomain(A)).
% 0.72/1.08  20 (wt=6) [] multiplication(A,coantidomain(A)) = zero.
% 0.72/1.08  23 (wt=6) [] codomain(A) = coantidomain(coantidomain(A)).
% 0.72/1.08  1 (wt=7) [] ifeq2(A,A,B,C) = B.
% 0.72/1.08  2 (wt=7) [] ifeq(A,A,B,C) = B.
% 0.72/1.08  3 (wt=7) [] addition(A,B) = addition(B,A).
% 0.72/1.08  24 (wt=7) [demod([19])] c(A) = antidomain(antidomain(antidomain(A))).
% 0.72/1.08  18 (wt=8) [] addition(antidomain(antidomain(A)),antidomain(A)) = one.
% 0.72/1.08  22 (wt=8) [] addition(coantidomain(coantidomain(A)),coantidomain(A)) = one.
% 0.72/1.08  25 (wt=10) [demod([19]),flip(1)] multiplication(antidomain(antidomain(A)),antidomain(B)) = domain_difference(A,B).
% 11.05/11.49  4 (wt=11) [flip(1)] addition(addition(A,B),C) = addition(A,addition(B,C)).
% 11.05/11.49  7 (wt=11) [flip(1)] multiplication(multiplication(A,B),C) = multiplication(A,multiplication(B,C)).
% 11.05/11.49  14 (wt=11) [] ifeq(leq(A,B),true,addition(A,B),B) = B.
% 11.05/11.49  15 (wt=11) [] ifeq2(addition(A,B),B,leq(A,B),true) = true.
% 11.05/11.49  26 (wt=11) [demod([19,19]),flip(1)] antidomain(antidomain(multiplication(A,antidomain(antidomain(B))))) = forward_diamond(A,B).
% 11.05/11.49  27 (wt=11) [demod([23,23]),flip(1)] coantidomain(coantidomain(multiplication(coantidomain(coantidomain(A)),B))) = backward_diamond(B,A).
% 11.05/11.49  10 (wt=13) [] multiplication(A,addition(B,C)) = addition(multiplication(A,B),multiplication(A,C)).
% 11.05/11.49  11 (wt=13) [] multiplication(addition(A,B),C) = addition(multiplication(A,C),multiplication(B,C)).
% 11.05/11.49  28 (wt=13) [demod([24,24]),flip(1)] antidomain(antidomain(antidomain(forward_diamond(A,antidomain(antidomain(antidomain(B))))))) = forward_box(A,B).
% 11.05/11.49  29 (wt=13) [demod([24,24]),flip(1)] antidomain(antidomain(antidomain(backward_diamond(A,antidomain(antidomain(antidomain(B))))))) = backward_box(A,B).
% 11.05/11.49  32 (wt=14) [demod([19,19,25,19,19])] addition(backward_diamond(sK1_goals_X0,domain_difference(sK4_goals_X2,antidomain(sK3_goals_X3))),antidomain(antidomain(sK2_goals_X4))) = antidomain(antidomain(sK2_goals_X4)).
% 11.05/11.49  30 (wt=15) [demod([19]),flip(1)] addition(multiplication(antidomain(antidomain(A)),B),multiplication(antidomain(A),C)) = if_then_else(A,B,C).
% 11.05/11.49  31 (wt=16) [demod([19,19,19])] addition(backward_diamond(sK5_goals_X1,multiplication(antidomain(sK4_goals_X2),antidomain(antidomain(sK3_goals_X3)))),antidomain(antidomain(sK2_goals_X4))) = antidomain(antidomain(sK2_goals_X4)).
% 11.05/11.49  33 (wt=16) [demod([19,19,19])] -(addition(backward_diamond(if_then_else(sK4_goals_X2,sK1_goals_X0,sK5_goals_X1),antidomain(antidomain(sK3_goals_X3))),antidomain(antidomain(sK2_goals_X4))) = antidomain(antidomain(sK2_goals_X4))).
% 11.05/11.49  17 (wt=18) [] addition(antidomain(multiplication(A,B)),antidomain(multiplication(A,antidomain(antidomain(B))))) = antidomain(multiplication(A,antidomain(antidomain(B)))).
% 11.05/11.49  21 (wt=18) [] addition(coantidomain(multiplication(A,B)),coantidomain(multiplication(coantidomain(coantidomain(A)),B))) = coantidomain(multiplication(coantidomain(coantidomain(A)),B)).
% 11.05/11.49  end_of_list.
% 11.05/11.49  
% 11.05/11.49  Demodulators:
% 11.05/11.49  1 (wt=7) [] ifeq2(A,A,B,C) = B.
% 11.05/11.49  2 (wt=7) [] ifeq(A,A,B,C) = B.
% 11.05/11.49  4 (wt=11) [flip(1)] addition(addition(A,B),C) = addition(A,addition(B,C)).
% 11.05/11.49  5 (wt=5) [] addition(A,zero) = A.
% 11.05/11.49  6 (wt=5) [] addition(A,A) = A.
% 11.05/11.49  7 (wt=11) [flip(1)] multiplication(multiplication(A,B),C) = multiplication(A,multiplication(B,C)).
% 11.05/11.49  8 (wt=5) [] multiplication(A,one) = A.
% 11.05/11.49  9 (wt=5) [] multiplication(one,A) = A.
% 11.05/11.49  10 (wt=13) [] multiplication(A,addition(B,C)) = addition(multiplication(A,B),multiplication(A,C)).
% 11.05/11.49  11 (wt=13) [] multiplication(addition(A,B),C) = addition(multiplication(A,C),multiplication(B,C)).
% 11.05/11.49  12 (wt=5) [] multiplication(A,zero) = zero.
% 11.05/11.49  13 (wt=5) [] multiplication(zero,A) = zero.
% 11.05/11.49  14 (wt=11) [] ifeq(leq(A,B),true,addition(A,B),B) = B.
% 11.05/11.49  15 (wt=11) [] ifeq2(addition(A,B),B,leq(A,B),true) = true.
% 11.05/11.49  16 (wt=6) [] multiplication(antidomain(A),A) = zero.
% 11.05/11.49  17 (wt=18) [] addition(antidomain(multiplication(A,B)),antidomain(multiplication(A,antidomain(antidomain(B))))) = antidomain(multiplication(A,antidomain(antidomain(B)))).
% 11.05/11.49  18 (wt=8) [] addition(antidomain(antidomain(A)),antidomain(A)) = one.
% 11.05/11.49  19 (wt=6) [] domain(A) = antidomain(antidomain(A)).
% 11.05/11.49  20 (wt=6) [] multiplication(A,coantidomain(A)) = zero.
% 11.05/11.49  21 (wt=18) [] addition(coantidomain(multiplication(A,B)),coantidomain(multiplication(coantidomain(coantidomain(A)),B))) = coantidomain(multiplication(coantidomain(coantidomain(A)),B)).
% 11.05/11.49  22 (wt=8) [] addition(coantidomain(coantidomain(A)),coantidomain(A)) = one.
% 11.05/11.49  23 (wt=6) [] codomain(A) = coantidomain(coantidomain(A)).
% 11.05/11.49  24 (wt=7) [demod([19])] c(A) = antidomain(antidomain(antidomain(A))).
% 11.05/11.49  25 (wt=10) [demod([19]),flip(1)] multiplication(antidomain(antidomain(A)),antidomain(B)) = domain_difference(A,B).
% 11.05/11.49  26 (wt=11) [demod([19,19]),flip(1)] antidomain(antidomain(multiplication(A,antidomain(antidomain(B))))) = forward_diamond(A,B).
% 11.05/11.49  27 (wt=11) [demod([23,23]),flip(1)] coantidomain(coantidomain(multiplication(coantidomain(coantidomain(A)),B))) = backward_diamond(B,A).
% 11.05/11.49  28 (wt=13) [demod([24,24]),flip(1)] antidomain(antidomain(antidomain(forward_diamond(A,antidomain(antidomain(antidomain(B))))))) = forward_box(A,B).
% 11.05/11.49  29 (wt=13) [demod([24,24]),flip(1)] antidomain(antidomain(antidomain(backward_diamond(A,antidomain(antidomain(antidomain(B))))))) = backward_box(A,B).
% 11.05/11.49  30 (wt=15) [demod([19]),flip(1)] addition(multiplication(antidomain(antidomain(A)),B),multiplication(antidomain(A),C)) = if_then_else(A,B,C).
% 11.05/11.49  31 (wt=16) [demod([19,19,19])] addition(backward_diamond(sK5_goals_X1,multiplication(antidomain(sK4_goals_X2),antidomain(antidomain(sK3_goals_X3)))),antidomain(antidomain(sK2_goals_X4))) = antidomain(antidomain(sK2_goals_X4)).
% 11.05/11.49  32 (wt=14) [demod([19,19,25,19,19])] addition(backward_diamond(sK1_goals_X0,domain_difference(sK4_goals_X2,antidomain(sK3_goals_X3))),antidomain(antidomain(sK2_goals_X4))) = antidomain(antidomain(sK2_goals_X4)).
% 11.05/11.49  end_of_list.
% 11.05/11.49  
% 11.05/11.49  Passive:
% 11.05/11.49  end_of_list.
% 11.05/11.49  
% 11.05/11.49  ------------- memory usage ------------
% 11.05/11.49  Memory dynamically allocated (tp_alloc): 63964.
% 11.05/11.49    type (bytes each)        gets      frees     in use      avail      bytes
% 11.05/11.49  sym_ent (  96)               78          0         78          0      7.3 K
% 11.05/11.49  term (  16)             3695183    2789366     905817         14  17583.7 K
% 11.05/11.49  gen_ptr (   8)          5119188     484048    4635140          0  36212.0 K
% 11.05/11.49  context ( 808)          3721092    3721090          2          7      7.1 K
% 11.05/11.49  trail (  12)           11799064   11799064          0          9      0.1 K
% 11.05/11.49  bt_node (  68)          1380230    1380227          3         48      3.4 K
% 11.05/11.49  ac_position (285432)          0          0          0          0      0.0 K
% 11.05/11.49  ac_match_pos (14044)          0          0          0          0      0.0 K
% 11.05/11.49  ac_match_free_vars_pos (4020)
% 11.05/11.49                                0          0          0          0      0.0 K
% 11.05/11.49  discrim (  12)           504082      52597     451485          0   5290.8 K
% 11.05/11.49  flat (  40)            10340413   10340413          0        115      4.5 K
% 11.05/11.49  discrim_pos (  12)       162490     162490          0          1      0.0 K
% 11.05/11.49  fpa_head (  12)           40020          0      40020          0    469.0 K
% 11.05/11.49  fpa_tree (  28)          120276     120276          0         53      1.4 K
% 11.05/11.49  fpa_pos (  36)            41592      41592          0          1      0.0 K
% 11.05/11.49  literal (  12)           151272     123542      27730          0    325.0 K
% 11.05/11.49  clause (  24)            151272     123542      27730          0    649.9 K
% 11.05/11.49  list (  12)               13922      13866         56          5      0.7 K
% 11.05/11.49  list_pos (  20)          101277       9890      91387          0   1784.9 K
% 11.05/11.49  pair_index (   40)              2          0          2          0      0.1 K
% 11.05/11.49  
% 11.05/11.49  -------------- statistics -------------
% 11.05/11.49  Clauses input                 33
% 11.05/11.49    Usable input                   0
% 11.05/11.49    Sos input                     33
% 11.05/11.49    Demodulators input             0
% 11.05/11.49    Passive input                  0
% 11.05/11.49  
% 11.05/11.49  Processed BS (before search)  34
% 11.05/11.49  Forward subsumed BS            1
% 11.05/11.49  Kept BS                       33
% 11.05/11.49  New demodulators BS           31
% 11.05/11.49  Back demodulated BS            0
% 11.05/11.49  
% 11.05/11.49  Clauses or pairs given    203310
% 11.05/11.49  Clauses ge
% 11.05/11.49  
% 11.05/11.49  ********** ABNORMAL END **********
% 11.05/11.49  ********** in tp_alloc, max_mem parameter exceeded.
% 11.05/11.49  nerated          92454
% 11.05/11.49  Forward subsumed           64758
% 11.05/11.49  Deleted by weight              0
% 11.05/11.49  Deleted by variable count      0
% 11.05/11.49  Kept                       27696
% 11.05/11.49  New demodulators           13832
% 11.05/11.49  Back demodulated            2046
% 11.05/11.49  Ordered paramod prunes         0
% 11.05/11.49  Basic paramod prunes      729961
% 11.05/11.49  Prime paramod prunes        3816
% 11.05/11.49  Semantic prunes                0
% 11.05/11.49  
% 11.05/11.49  Rewrite attmepts         1485857
% 11.05/11.49  Rewrites                  130743
% 11.05/11.49  
% 11.05/11.49  FPA overloads                  0
% 11.05/11.49  FPA underloads                 0
% 11.05/11.49  
% 11.05/11.49  Usable size                    0
% 11.05/11.49  Sos size                   25683
% 11.05/11.49  Demodulators size          12292
% 11.05/11.49  Passive size                   0
% 11.05/11.49  Disabled size               2046
% 11.05/11.49  
% 11.05/11.49  Proofs found                   0
% 11.05/11.49  
% 11.05/11.49  ----------- times (seconds) ----------- Thu Jun 16 08:18:28 2022
% 11.05/11.49  
% 11.05/11.49  user CPU time             8.93   (0 hr, 0 min, 8 sec)
% 11.05/11.49  system CPU time           1.48   (0 hr, 0 min, 1 sec)
% 11.05/11.49  wall-clock time          10      (0 hr, 0 min, 10 sec)
% 11.05/11.49  input time                0.00
% 11.05/11.49  paramodulation time       0.50
% 11.05/11.49  demodulation time         0.36
% 11.05/11.49  orient time               0.20
% 11.05/11.49  weigh time                0.04
% 11.05/11.49  forward subsume time      0.15
% 11.05/11.49  back demod find time      1.11
% 11.05/11.49  conflict time             0.03
% 11.05/11.49  LRPO time                 0.09
% 11.05/11.49  store clause time         5.85
% 11.05/11.49  disable clause time       0.10
% 11.05/11.49  prime paramod time        0.12
% 11.05/11.49  semantics time            0.00
% 11.05/11.49  
% 11.05/11.50  EQP interrupted
%------------------------------------------------------------------------------