TSTP Solution File: KLE113+1 by Bliksem---1.12

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Bliksem---1.12
% Problem  : KLE113+1 : TPTP v8.1.0. Released v4.0.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : bliksem %s

% Computer : n022.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 0s
% DateTime : Sun Jul 17 01:37:15 EDT 2022

% Result   : Theorem 0.71s 1.11s
% Output   : Refutation 0.71s
% Verified : 
% SZS Type : -

% Comments : 
%------------------------------------------------------------------------------
%----WARNING: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.04/0.12  % Problem  : KLE113+1 : TPTP v8.1.0. Released v4.0.0.
% 0.04/0.13  % Command  : bliksem %s
% 0.14/0.35  % Computer : n022.cluster.edu
% 0.14/0.35  % Model    : x86_64 x86_64
% 0.14/0.35  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.14/0.35  % Memory   : 8042.1875MB
% 0.14/0.35  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.14/0.35  % CPULimit : 300
% 0.14/0.35  % DateTime : Thu Jun 16 11:10:32 EDT 2022
% 0.14/0.35  % CPUTime  : 
% 0.71/1.11  *** allocated 10000 integers for termspace/termends
% 0.71/1.11  *** allocated 10000 integers for clauses
% 0.71/1.11  *** allocated 10000 integers for justifications
% 0.71/1.11  Bliksem 1.12
% 0.71/1.11  
% 0.71/1.11  
% 0.71/1.11  Automatic Strategy Selection
% 0.71/1.11  
% 0.71/1.11  
% 0.71/1.11  Clauses:
% 0.71/1.11  
% 0.71/1.11  { addition( X, Y ) = addition( Y, X ) }.
% 0.71/1.11  { addition( Z, addition( Y, X ) ) = addition( addition( Z, Y ), X ) }.
% 0.71/1.11  { addition( X, zero ) = X }.
% 0.71/1.11  { addition( X, X ) = X }.
% 0.71/1.11  { multiplication( X, multiplication( Y, Z ) ) = multiplication( 
% 0.71/1.11    multiplication( X, Y ), Z ) }.
% 0.71/1.11  { multiplication( X, one ) = X }.
% 0.71/1.11  { multiplication( one, X ) = X }.
% 0.71/1.11  { multiplication( X, addition( Y, Z ) ) = addition( multiplication( X, Y )
% 0.71/1.11    , multiplication( X, Z ) ) }.
% 0.71/1.11  { multiplication( addition( X, Y ), Z ) = addition( multiplication( X, Z )
% 0.71/1.11    , multiplication( Y, Z ) ) }.
% 0.71/1.11  { multiplication( X, zero ) = zero }.
% 0.71/1.11  { multiplication( zero, X ) = zero }.
% 0.71/1.11  { ! leq( X, Y ), addition( X, Y ) = Y }.
% 0.71/1.11  { ! addition( X, Y ) = Y, leq( X, Y ) }.
% 0.71/1.11  { multiplication( antidomain( X ), X ) = zero }.
% 0.71/1.11  { addition( antidomain( multiplication( X, Y ) ), antidomain( 
% 0.71/1.11    multiplication( X, antidomain( antidomain( Y ) ) ) ) ) = antidomain( 
% 0.71/1.11    multiplication( X, antidomain( antidomain( Y ) ) ) ) }.
% 0.71/1.11  { addition( antidomain( antidomain( X ) ), antidomain( X ) ) = one }.
% 0.71/1.11  { domain( X ) = antidomain( antidomain( X ) ) }.
% 0.71/1.11  { multiplication( X, coantidomain( X ) ) = zero }.
% 0.71/1.11  { addition( coantidomain( multiplication( X, Y ) ), coantidomain( 
% 0.71/1.11    multiplication( coantidomain( coantidomain( X ) ), Y ) ) ) = coantidomain
% 0.71/1.11    ( multiplication( coantidomain( coantidomain( X ) ), Y ) ) }.
% 0.71/1.11  { addition( coantidomain( coantidomain( X ) ), coantidomain( X ) ) = one }
% 0.71/1.11    .
% 0.71/1.11  { codomain( X ) = coantidomain( coantidomain( X ) ) }.
% 0.71/1.11  { c( X ) = antidomain( domain( X ) ) }.
% 0.71/1.11  { domain_difference( X, Y ) = multiplication( domain( X ), antidomain( Y )
% 0.71/1.11     ) }.
% 0.71/1.11  { forward_diamond( X, Y ) = domain( multiplication( X, domain( Y ) ) ) }.
% 0.71/1.11  { backward_diamond( X, Y ) = codomain( multiplication( codomain( Y ), X ) )
% 0.71/1.11     }.
% 0.71/1.11  { forward_box( X, Y ) = c( forward_diamond( X, c( Y ) ) ) }.
% 0.71/1.11  { backward_box( X, Y ) = c( backward_diamond( X, c( Y ) ) ) }.
% 0.71/1.11  { ! forward_diamond( skol1, zero ) = zero }.
% 0.71/1.11  
% 0.71/1.11  percentage equality = 0.933333, percentage horn = 1.000000
% 0.71/1.11  This is a pure equality problem
% 0.71/1.11  
% 0.71/1.11  
% 0.71/1.11  
% 0.71/1.11  Options Used:
% 0.71/1.11  
% 0.71/1.11  useres =            1
% 0.71/1.11  useparamod =        1
% 0.71/1.11  useeqrefl =         1
% 0.71/1.11  useeqfact =         1
% 0.71/1.11  usefactor =         1
% 0.71/1.11  usesimpsplitting =  0
% 0.71/1.11  usesimpdemod =      5
% 0.71/1.11  usesimpres =        3
% 0.71/1.11  
% 0.71/1.11  resimpinuse      =  1000
% 0.71/1.11  resimpclauses =     20000
% 0.71/1.11  substype =          eqrewr
% 0.71/1.11  backwardsubs =      1
% 0.71/1.11  selectoldest =      5
% 0.71/1.11  
% 0.71/1.11  litorderings [0] =  split
% 0.71/1.11  litorderings [1] =  extend the termordering, first sorting on arguments
% 0.71/1.11  
% 0.71/1.11  termordering =      kbo
% 0.71/1.11  
% 0.71/1.11  litapriori =        0
% 0.71/1.11  termapriori =       1
% 0.71/1.11  litaposteriori =    0
% 0.71/1.11  termaposteriori =   0
% 0.71/1.11  demodaposteriori =  0
% 0.71/1.11  ordereqreflfact =   0
% 0.71/1.11  
% 0.71/1.11  litselect =         negord
% 0.71/1.11  
% 0.71/1.11  maxweight =         15
% 0.71/1.11  maxdepth =          30000
% 0.71/1.11  maxlength =         115
% 0.71/1.11  maxnrvars =         195
% 0.71/1.11  excuselevel =       1
% 0.71/1.11  increasemaxweight = 1
% 0.71/1.11  
% 0.71/1.11  maxselected =       10000000
% 0.71/1.11  maxnrclauses =      10000000
% 0.71/1.11  
% 0.71/1.11  showgenerated =    0
% 0.71/1.11  showkept =         0
% 0.71/1.11  showselected =     0
% 0.71/1.11  showdeleted =      0
% 0.71/1.11  showresimp =       1
% 0.71/1.11  showstatus =       2000
% 0.71/1.11  
% 0.71/1.11  prologoutput =     0
% 0.71/1.11  nrgoals =          5000000
% 0.71/1.11  totalproof =       1
% 0.71/1.11  
% 0.71/1.11  Symbols occurring in the translation:
% 0.71/1.11  
% 0.71/1.11  {}  [0, 0]      (w:1, o:2, a:1, s:1, b:0), 
% 0.71/1.11  .  [1, 2]      (w:1, o:24, a:1, s:1, b:0), 
% 0.71/1.11  !  [4, 1]      (w:0, o:14, a:1, s:1, b:0), 
% 0.71/1.11  =  [13, 2]      (w:1, o:0, a:0, s:1, b:0), 
% 0.71/1.11  ==>  [14, 2]      (w:1, o:0, a:0, s:1, b:0), 
% 0.71/1.11  addition  [37, 2]      (w:1, o:48, a:1, s:1, b:0), 
% 0.71/1.11  zero  [39, 0]      (w:1, o:9, a:1, s:1, b:0), 
% 0.71/1.11  multiplication  [40, 2]      (w:1, o:50, a:1, s:1, b:0), 
% 0.71/1.11  one  [41, 0]      (w:1, o:10, a:1, s:1, b:0), 
% 0.71/1.11  leq  [42, 2]      (w:1, o:49, a:1, s:1, b:0), 
% 0.71/1.11  antidomain  [44, 1]      (w:1, o:19, a:1, s:1, b:0), 
% 0.71/1.11  domain  [46, 1]      (w:1, o:23, a:1, s:1, b:0), 
% 0.71/1.11  coantidomain  [47, 1]      (w:1, o:20, a:1, s:1, b:0), 
% 0.71/1.11  codomain  [48, 1]      (w:1, o:21, a:1, s:1, b:0), 
% 0.71/1.11  c  [49, 1]      (w:1, o:22, a:1, s:1, b:0), 
% 0.71/1.11  domain_difference  [50, 2]      (w:1, o:51, a:1, s:1, b:0), 
% 0.71/1.11  forward_diamond  [51, 2]      (w:1, o:52, a:1, s:1, b:0), 
% 0.71/1.11  backward_diamond  [52, 2]      (w:1, o:53, a:1, s:1, b:0), 
% 0.71/1.11  forward_box  [53, 2]      (w:1, o:54, a:1, s:1, b:0), 
% 0.71/1.11  backward_box  [54, 2]      (w:1, o:55, a:1, s:1, b:0), 
% 0.71/1.11  skol1  [55, 0]      (w:1, o:13, a:1, s:1, b:1).
% 0.71/1.11  
% 0.71/1.11  
% 0.71/1.11  Starting Search:
% 0.71/1.11  
% 0.71/1.11  *** allocated 15000 integers for clauses
% 0.71/1.11  *** allocated 22500 integers for clauses
% 0.71/1.11  
% 0.71/1.11  Bliksems!, er is een bewijs:
% 0.71/1.11  % SZS status Theorem
% 0.71/1.11  % SZS output start Refutation
% 0.71/1.11  
% 0.71/1.11  (2) {G0,W5,D3,L1,V1,M1} I { addition( X, zero ) ==> X }.
% 0.71/1.11  (5) {G0,W5,D3,L1,V1,M1} I { multiplication( X, one ) ==> X }.
% 0.71/1.11  (9) {G0,W5,D3,L1,V1,M1} I { multiplication( X, zero ) ==> zero }.
% 0.71/1.11  (13) {G0,W6,D4,L1,V1,M1} I { multiplication( antidomain( X ), X ) ==> zero
% 0.71/1.11     }.
% 0.71/1.11  (15) {G0,W8,D5,L1,V1,M1} I { addition( antidomain( antidomain( X ) ), 
% 0.71/1.11    antidomain( X ) ) ==> one }.
% 0.71/1.11  (16) {G0,W6,D4,L1,V1,M1} I { antidomain( antidomain( X ) ) ==> domain( X )
% 0.71/1.11     }.
% 0.71/1.11  (21) {G0,W6,D4,L1,V1,M1} I { antidomain( domain( X ) ) ==> c( X ) }.
% 0.71/1.11  (23) {G0,W9,D5,L1,V2,M1} I { domain( multiplication( X, domain( Y ) ) ) ==>
% 0.71/1.11     forward_diamond( X, Y ) }.
% 0.71/1.11  (27) {G0,W5,D3,L1,V0,M1} I { ! forward_diamond( skol1, zero ) ==> zero }.
% 0.71/1.11  (38) {G1,W6,D4,L1,V1,M1} P(16,16);d(21) { domain( antidomain( X ) ) ==> c( 
% 0.71/1.11    X ) }.
% 0.71/1.11  (46) {G1,W4,D3,L1,V0,M1} P(13,5) { antidomain( one ) ==> zero }.
% 0.71/1.11  (47) {G2,W5,D3,L1,V0,M1} P(46,38) { domain( zero ) ==> c( one ) }.
% 0.71/1.11  (48) {G2,W5,D3,L1,V0,M1} P(46,16) { domain( one ) ==> antidomain( zero )
% 0.71/1.11     }.
% 0.71/1.11  (183) {G1,W7,D4,L1,V1,M1} S(15);d(16) { addition( domain( X ), antidomain( 
% 0.71/1.11    X ) ) ==> one }.
% 0.71/1.11  (197) {G3,W4,D3,L1,V0,M1} P(48,183);d(46);d(2) { antidomain( zero ) ==> one
% 0.71/1.11     }.
% 0.71/1.11  (206) {G4,W4,D3,L1,V0,M1} P(197,16);d(46);d(47) { c( one ) ==> zero }.
% 0.71/1.11  (245) {G5,W5,D3,L1,V1,M1} P(47,23);d(206);d(9);d(47);d(206) { 
% 0.71/1.11    forward_diamond( X, zero ) ==> zero }.
% 0.71/1.11  (250) {G6,W0,D0,L0,V0,M0} R(245,27) {  }.
% 0.71/1.11  
% 0.71/1.11  
% 0.71/1.11  % SZS output end Refutation
% 0.71/1.11  found a proof!
% 0.71/1.11  
% 0.71/1.11  
% 0.71/1.11  Unprocessed initial clauses:
% 0.71/1.11  
% 0.71/1.11  (252) {G0,W7,D3,L1,V2,M1}  { addition( X, Y ) = addition( Y, X ) }.
% 0.71/1.11  (253) {G0,W11,D4,L1,V3,M1}  { addition( Z, addition( Y, X ) ) = addition( 
% 0.71/1.11    addition( Z, Y ), X ) }.
% 0.71/1.11  (254) {G0,W5,D3,L1,V1,M1}  { addition( X, zero ) = X }.
% 0.71/1.11  (255) {G0,W5,D3,L1,V1,M1}  { addition( X, X ) = X }.
% 0.71/1.11  (256) {G0,W11,D4,L1,V3,M1}  { multiplication( X, multiplication( Y, Z ) ) =
% 0.71/1.11     multiplication( multiplication( X, Y ), Z ) }.
% 0.71/1.11  (257) {G0,W5,D3,L1,V1,M1}  { multiplication( X, one ) = X }.
% 0.71/1.11  (258) {G0,W5,D3,L1,V1,M1}  { multiplication( one, X ) = X }.
% 0.71/1.11  (259) {G0,W13,D4,L1,V3,M1}  { multiplication( X, addition( Y, Z ) ) = 
% 0.71/1.11    addition( multiplication( X, Y ), multiplication( X, Z ) ) }.
% 0.71/1.11  (260) {G0,W13,D4,L1,V3,M1}  { multiplication( addition( X, Y ), Z ) = 
% 0.71/1.11    addition( multiplication( X, Z ), multiplication( Y, Z ) ) }.
% 0.71/1.11  (261) {G0,W5,D3,L1,V1,M1}  { multiplication( X, zero ) = zero }.
% 0.71/1.11  (262) {G0,W5,D3,L1,V1,M1}  { multiplication( zero, X ) = zero }.
% 0.71/1.11  (263) {G0,W8,D3,L2,V2,M2}  { ! leq( X, Y ), addition( X, Y ) = Y }.
% 0.71/1.11  (264) {G0,W8,D3,L2,V2,M2}  { ! addition( X, Y ) = Y, leq( X, Y ) }.
% 0.71/1.11  (265) {G0,W6,D4,L1,V1,M1}  { multiplication( antidomain( X ), X ) = zero
% 0.71/1.11     }.
% 0.71/1.11  (266) {G0,W18,D7,L1,V2,M1}  { addition( antidomain( multiplication( X, Y )
% 0.71/1.11     ), antidomain( multiplication( X, antidomain( antidomain( Y ) ) ) ) ) = 
% 0.71/1.11    antidomain( multiplication( X, antidomain( antidomain( Y ) ) ) ) }.
% 0.71/1.11  (267) {G0,W8,D5,L1,V1,M1}  { addition( antidomain( antidomain( X ) ), 
% 0.71/1.11    antidomain( X ) ) = one }.
% 0.71/1.11  (268) {G0,W6,D4,L1,V1,M1}  { domain( X ) = antidomain( antidomain( X ) )
% 0.71/1.11     }.
% 0.71/1.11  (269) {G0,W6,D4,L1,V1,M1}  { multiplication( X, coantidomain( X ) ) = zero
% 0.71/1.11     }.
% 0.71/1.11  (270) {G0,W18,D7,L1,V2,M1}  { addition( coantidomain( multiplication( X, Y
% 0.71/1.11     ) ), coantidomain( multiplication( coantidomain( coantidomain( X ) ), Y
% 0.71/1.11     ) ) ) = coantidomain( multiplication( coantidomain( coantidomain( X ) )
% 0.71/1.11    , Y ) ) }.
% 0.71/1.11  (271) {G0,W8,D5,L1,V1,M1}  { addition( coantidomain( coantidomain( X ) ), 
% 0.71/1.11    coantidomain( X ) ) = one }.
% 0.71/1.11  (272) {G0,W6,D4,L1,V1,M1}  { codomain( X ) = coantidomain( coantidomain( X
% 0.71/1.11     ) ) }.
% 0.71/1.11  (273) {G0,W6,D4,L1,V1,M1}  { c( X ) = antidomain( domain( X ) ) }.
% 0.71/1.11  (274) {G0,W9,D4,L1,V2,M1}  { domain_difference( X, Y ) = multiplication( 
% 0.71/1.11    domain( X ), antidomain( Y ) ) }.
% 0.71/1.11  (275) {G0,W9,D5,L1,V2,M1}  { forward_diamond( X, Y ) = domain( 
% 0.71/1.11    multiplication( X, domain( Y ) ) ) }.
% 0.71/1.11  (276) {G0,W9,D5,L1,V2,M1}  { backward_diamond( X, Y ) = codomain( 
% 0.71/1.11    multiplication( codomain( Y ), X ) ) }.
% 0.71/1.11  (277) {G0,W9,D5,L1,V2,M1}  { forward_box( X, Y ) = c( forward_diamond( X, c
% 0.71/1.11    ( Y ) ) ) }.
% 0.71/1.11  (278) {G0,W9,D5,L1,V2,M1}  { backward_box( X, Y ) = c( backward_diamond( X
% 0.71/1.11    , c( Y ) ) ) }.
% 0.71/1.11  (279) {G0,W5,D3,L1,V0,M1}  { ! forward_diamond( skol1, zero ) = zero }.
% 0.71/1.11  
% 0.71/1.11  
% 0.71/1.11  Total Proof:
% 0.71/1.11  
% 0.71/1.11  subsumption: (2) {G0,W5,D3,L1,V1,M1} I { addition( X, zero ) ==> X }.
% 0.71/1.11  parent0: (254) {G0,W5,D3,L1,V1,M1}  { addition( X, zero ) = X }.
% 0.71/1.11  substitution0:
% 0.71/1.11     X := X
% 0.71/1.11  end
% 0.71/1.11  permutation0:
% 0.71/1.11     0 ==> 0
% 0.71/1.11  end
% 0.71/1.11  
% 0.71/1.11  subsumption: (5) {G0,W5,D3,L1,V1,M1} I { multiplication( X, one ) ==> X }.
% 0.71/1.11  parent0: (257) {G0,W5,D3,L1,V1,M1}  { multiplication( X, one ) = X }.
% 0.71/1.11  substitution0:
% 0.71/1.11     X := X
% 0.71/1.11  end
% 0.71/1.11  permutation0:
% 0.71/1.11     0 ==> 0
% 0.71/1.11  end
% 0.71/1.11  
% 0.71/1.11  subsumption: (9) {G0,W5,D3,L1,V1,M1} I { multiplication( X, zero ) ==> zero
% 0.71/1.11     }.
% 0.71/1.11  parent0: (261) {G0,W5,D3,L1,V1,M1}  { multiplication( X, zero ) = zero }.
% 0.71/1.11  substitution0:
% 0.71/1.11     X := X
% 0.71/1.11  end
% 0.71/1.11  permutation0:
% 0.71/1.11     0 ==> 0
% 0.71/1.11  end
% 0.71/1.11  
% 0.71/1.11  subsumption: (13) {G0,W6,D4,L1,V1,M1} I { multiplication( antidomain( X ), 
% 0.71/1.11    X ) ==> zero }.
% 0.71/1.11  parent0: (265) {G0,W6,D4,L1,V1,M1}  { multiplication( antidomain( X ), X ) 
% 0.71/1.11    = zero }.
% 0.71/1.11  substitution0:
% 0.71/1.11     X := X
% 0.71/1.11  end
% 0.71/1.11  permutation0:
% 0.71/1.11     0 ==> 0
% 0.71/1.11  end
% 0.71/1.11  
% 0.71/1.11  subsumption: (15) {G0,W8,D5,L1,V1,M1} I { addition( antidomain( antidomain
% 0.71/1.11    ( X ) ), antidomain( X ) ) ==> one }.
% 0.71/1.11  parent0: (267) {G0,W8,D5,L1,V1,M1}  { addition( antidomain( antidomain( X )
% 0.71/1.11     ), antidomain( X ) ) = one }.
% 0.71/1.11  substitution0:
% 0.71/1.11     X := X
% 0.71/1.11  end
% 0.71/1.11  permutation0:
% 0.71/1.11     0 ==> 0
% 0.71/1.11  end
% 0.71/1.11  
% 0.71/1.11  eqswap: (339) {G0,W6,D4,L1,V1,M1}  { antidomain( antidomain( X ) ) = domain
% 0.71/1.11    ( X ) }.
% 0.71/1.11  parent0[0]: (268) {G0,W6,D4,L1,V1,M1}  { domain( X ) = antidomain( 
% 0.71/1.11    antidomain( X ) ) }.
% 0.71/1.11  substitution0:
% 0.71/1.11     X := X
% 0.71/1.11  end
% 0.71/1.11  
% 0.71/1.11  subsumption: (16) {G0,W6,D4,L1,V1,M1} I { antidomain( antidomain( X ) ) ==>
% 0.71/1.11     domain( X ) }.
% 0.71/1.11  parent0: (339) {G0,W6,D4,L1,V1,M1}  { antidomain( antidomain( X ) ) = 
% 0.71/1.11    domain( X ) }.
% 0.71/1.11  substitution0:
% 0.71/1.11     X := X
% 0.71/1.11  end
% 0.71/1.11  permutation0:
% 0.71/1.11     0 ==> 0
% 0.71/1.11  end
% 0.71/1.11  
% 0.71/1.11  eqswap: (360) {G0,W6,D4,L1,V1,M1}  { antidomain( domain( X ) ) = c( X ) }.
% 0.71/1.11  parent0[0]: (273) {G0,W6,D4,L1,V1,M1}  { c( X ) = antidomain( domain( X ) )
% 0.71/1.11     }.
% 0.71/1.11  substitution0:
% 0.71/1.11     X := X
% 0.71/1.11  end
% 0.71/1.11  
% 0.71/1.11  subsumption: (21) {G0,W6,D4,L1,V1,M1} I { antidomain( domain( X ) ) ==> c( 
% 0.71/1.11    X ) }.
% 0.71/1.11  parent0: (360) {G0,W6,D4,L1,V1,M1}  { antidomain( domain( X ) ) = c( X )
% 0.71/1.11     }.
% 0.71/1.11  substitution0:
% 0.71/1.11     X := X
% 0.71/1.11  end
% 0.71/1.11  permutation0:
% 0.71/1.11     0 ==> 0
% 0.71/1.11  end
% 0.71/1.11  
% 0.71/1.11  *** allocated 33750 integers for clauses
% 0.71/1.11  eqswap: (383) {G0,W9,D5,L1,V2,M1}  { domain( multiplication( X, domain( Y )
% 0.71/1.11     ) ) = forward_diamond( X, Y ) }.
% 0.71/1.11  parent0[0]: (275) {G0,W9,D5,L1,V2,M1}  { forward_diamond( X, Y ) = domain( 
% 0.71/1.11    multiplication( X, domain( Y ) ) ) }.
% 0.71/1.11  substitution0:
% 0.71/1.11     X := X
% 0.71/1.11     Y := Y
% 0.71/1.11  end
% 0.71/1.11  
% 0.71/1.11  subsumption: (23) {G0,W9,D5,L1,V2,M1} I { domain( multiplication( X, domain
% 0.71/1.11    ( Y ) ) ) ==> forward_diamond( X, Y ) }.
% 0.71/1.11  parent0: (383) {G0,W9,D5,L1,V2,M1}  { domain( multiplication( X, domain( Y
% 0.71/1.11     ) ) ) = forward_diamond( X, Y ) }.
% 0.71/1.11  substitution0:
% 0.71/1.11     X := X
% 0.71/1.11     Y := Y
% 0.71/1.11  end
% 0.71/1.11  permutation0:
% 0.71/1.11     0 ==> 0
% 0.71/1.11  end
% 0.71/1.11  
% 0.71/1.11  subsumption: (27) {G0,W5,D3,L1,V0,M1} I { ! forward_diamond( skol1, zero ) 
% 0.71/1.11    ==> zero }.
% 0.71/1.11  parent0: (279) {G0,W5,D3,L1,V0,M1}  { ! forward_diamond( skol1, zero ) = 
% 0.71/1.11    zero }.
% 0.71/1.11  substitution0:
% 0.71/1.11  end
% 0.71/1.11  permutation0:
% 0.71/1.11     0 ==> 0
% 0.71/1.11  end
% 0.71/1.11  
% 0.71/1.11  eqswap: (411) {G0,W6,D4,L1,V1,M1}  { domain( X ) ==> antidomain( antidomain
% 0.71/1.11    ( X ) ) }.
% 0.71/1.11  parent0[0]: (16) {G0,W6,D4,L1,V1,M1} I { antidomain( antidomain( X ) ) ==> 
% 0.71/1.11    domain( X ) }.
% 0.71/1.11  substitution0:
% 0.71/1.11     X := X
% 0.71/1.11  end
% 0.71/1.11  
% 0.71/1.11  paramod: (415) {G1,W7,D4,L1,V1,M1}  { domain( antidomain( X ) ) ==> 
% 0.71/1.11    antidomain( domain( X ) ) }.
% 0.71/1.11  parent0[0]: (16) {G0,W6,D4,L1,V1,M1} I { antidomain( antidomain( X ) ) ==> 
% 0.71/1.11    domain( X ) }.
% 0.71/1.11  parent1[0; 5]: (411) {G0,W6,D4,L1,V1,M1}  { domain( X ) ==> antidomain( 
% 0.71/1.11    antidomain( X ) ) }.
% 0.71/1.11  substitution0:
% 0.71/1.11     X := X
% 0.71/1.11  end
% 0.71/1.11  substitution1:
% 0.71/1.11     X := antidomain( X )
% 0.71/1.11  end
% 0.71/1.11  
% 0.71/1.11  paramod: (416) {G1,W6,D4,L1,V1,M1}  { domain( antidomain( X ) ) ==> c( X )
% 0.71/1.11     }.
% 0.71/1.11  parent0[0]: (21) {G0,W6,D4,L1,V1,M1} I { antidomain( domain( X ) ) ==> c( X
% 0.71/1.11     ) }.
% 0.71/1.11  parent1[0; 4]: (415) {G1,W7,D4,L1,V1,M1}  { domain( antidomain( X ) ) ==> 
% 0.71/1.11    antidomain( domain( X ) ) }.
% 0.71/1.11  substitution0:
% 0.71/1.11     X := X
% 0.71/1.11  end
% 0.71/1.11  substitution1:
% 0.71/1.11     X := X
% 0.71/1.11  end
% 0.71/1.11  
% 0.71/1.11  subsumption: (38) {G1,W6,D4,L1,V1,M1} P(16,16);d(21) { domain( antidomain( 
% 0.71/1.11    X ) ) ==> c( X ) }.
% 0.71/1.11  parent0: (416) {G1,W6,D4,L1,V1,M1}  { domain( antidomain( X ) ) ==> c( X )
% 0.71/1.11     }.
% 0.71/1.11  substitution0:
% 0.71/1.11     X := X
% 0.71/1.11  end
% 0.71/1.11  permutation0:
% 0.71/1.11     0 ==> 0
% 0.71/1.11  end
% 0.71/1.11  
% 0.71/1.11  eqswap: (418) {G0,W6,D4,L1,V1,M1}  { zero ==> multiplication( antidomain( X
% 0.71/1.11     ), X ) }.
% 0.71/1.11  parent0[0]: (13) {G0,W6,D4,L1,V1,M1} I { multiplication( antidomain( X ), X
% 0.71/1.11     ) ==> zero }.
% 0.71/1.11  substitution0:
% 0.71/1.11     X := X
% 0.71/1.11  end
% 0.71/1.11  
% 0.71/1.11  paramod: (420) {G1,W4,D3,L1,V0,M1}  { zero ==> antidomain( one ) }.
% 0.71/1.11  parent0[0]: (5) {G0,W5,D3,L1,V1,M1} I { multiplication( X, one ) ==> X }.
% 0.71/1.11  parent1[0; 2]: (418) {G0,W6,D4,L1,V1,M1}  { zero ==> multiplication( 
% 0.71/1.11    antidomain( X ), X ) }.
% 0.71/1.11  substitution0:
% 0.71/1.11     X := antidomain( one )
% 0.71/1.11  end
% 0.71/1.11  substitution1:
% 0.71/1.11     X := one
% 0.71/1.11  end
% 0.71/1.11  
% 0.71/1.11  eqswap: (421) {G1,W4,D3,L1,V0,M1}  { antidomain( one ) ==> zero }.
% 0.71/1.11  parent0[0]: (420) {G1,W4,D3,L1,V0,M1}  { zero ==> antidomain( one ) }.
% 0.71/1.11  substitution0:
% 0.71/1.11  end
% 0.71/1.11  
% 0.71/1.11  subsumption: (46) {G1,W4,D3,L1,V0,M1} P(13,5) { antidomain( one ) ==> zero
% 0.71/1.11     }.
% 0.71/1.11  parent0: (421) {G1,W4,D3,L1,V0,M1}  { antidomain( one ) ==> zero }.
% 0.71/1.11  substitution0:
% 0.71/1.11  end
% 0.71/1.11  permutation0:
% 0.71/1.11     0 ==> 0
% 0.71/1.11  end
% 0.71/1.11  
% 0.71/1.11  eqswap: (423) {G1,W6,D4,L1,V1,M1}  { c( X ) ==> domain( antidomain( X ) )
% 0.71/1.11     }.
% 0.71/1.11  parent0[0]: (38) {G1,W6,D4,L1,V1,M1} P(16,16);d(21) { domain( antidomain( X
% 0.71/1.11     ) ) ==> c( X ) }.
% 0.71/1.11  substitution0:
% 0.71/1.11     X := X
% 0.71/1.11  end
% 0.71/1.11  
% 0.71/1.11  paramod: (424) {G2,W5,D3,L1,V0,M1}  { c( one ) ==> domain( zero ) }.
% 0.71/1.11  parent0[0]: (46) {G1,W4,D3,L1,V0,M1} P(13,5) { antidomain( one ) ==> zero
% 0.71/1.11     }.
% 0.71/1.11  parent1[0; 4]: (423) {G1,W6,D4,L1,V1,M1}  { c( X ) ==> domain( antidomain( 
% 0.71/1.11    X ) ) }.
% 0.71/1.11  substitution0:
% 0.71/1.11  end
% 0.71/1.11  substitution1:
% 0.71/1.11     X := one
% 0.71/1.11  end
% 0.71/1.11  
% 0.71/1.11  eqswap: (425) {G2,W5,D3,L1,V0,M1}  { domain( zero ) ==> c( one ) }.
% 0.71/1.11  parent0[0]: (424) {G2,W5,D3,L1,V0,M1}  { c( one ) ==> domain( zero ) }.
% 0.71/1.11  substitution0:
% 0.71/1.11  end
% 0.71/1.11  
% 0.71/1.11  subsumption: (47) {G2,W5,D3,L1,V0,M1} P(46,38) { domain( zero ) ==> c( one
% 0.71/1.11     ) }.
% 0.71/1.11  parent0: (425) {G2,W5,D3,L1,V0,M1}  { domain( zero ) ==> c( one ) }.
% 0.71/1.11  substitution0:
% 0.71/1.11  end
% 0.71/1.11  permutation0:
% 0.71/1.11     0 ==> 0
% 0.71/1.11  end
% 0.71/1.11  
% 0.71/1.11  eqswap: (427) {G0,W6,D4,L1,V1,M1}  { domain( X ) ==> antidomain( antidomain
% 0.71/1.11    ( X ) ) }.
% 0.71/1.11  parent0[0]: (16) {G0,W6,D4,L1,V1,M1} I { antidomain( antidomain( X ) ) ==> 
% 0.71/1.11    domain( X ) }.
% 0.71/1.11  substitution0:
% 0.71/1.11     X := X
% 0.71/1.11  end
% 0.71/1.11  
% 0.71/1.11  paramod: (428) {G1,W5,D3,L1,V0,M1}  { domain( one ) ==> antidomain( zero )
% 0.71/1.11     }.
% 0.71/1.11  parent0[0]: (46) {G1,W4,D3,L1,V0,M1} P(13,5) { antidomain( one ) ==> zero
% 0.71/1.11     }.
% 0.71/1.11  parent1[0; 4]: (427) {G0,W6,D4,L1,V1,M1}  { domain( X ) ==> antidomain( 
% 0.71/1.11    antidomain( X ) ) }.
% 0.71/1.11  substitution0:
% 0.71/1.11  end
% 0.71/1.11  substitution1:
% 0.71/1.11     X := one
% 0.71/1.11  end
% 0.71/1.11  
% 0.71/1.11  subsumption: (48) {G2,W5,D3,L1,V0,M1} P(46,16) { domain( one ) ==> 
% 0.71/1.11    antidomain( zero ) }.
% 0.71/1.11  parent0: (428) {G1,W5,D3,L1,V0,M1}  { domain( one ) ==> antidomain( zero )
% 0.71/1.11     }.
% 0.71/1.11  substitution0:
% 0.71/1.11  end
% 0.71/1.11  permutation0:
% 0.71/1.11     0 ==> 0
% 0.71/1.11  end
% 0.71/1.11  
% 0.71/1.11  paramod: (432) {G1,W7,D4,L1,V1,M1}  { addition( domain( X ), antidomain( X
% 0.71/1.11     ) ) ==> one }.
% 0.71/1.11  parent0[0]: (16) {G0,W6,D4,L1,V1,M1} I { antidomain( antidomain( X ) ) ==> 
% 0.71/1.11    domain( X ) }.
% 0.71/1.11  parent1[0; 2]: (15) {G0,W8,D5,L1,V1,M1} I { addition( antidomain( 
% 0.71/1.11    antidomain( X ) ), antidomain( X ) ) ==> one }.
% 0.71/1.11  substitution0:
% 0.71/1.11     X := X
% 0.71/1.11  end
% 0.71/1.11  substitution1:
% 0.71/1.11     X := X
% 0.71/1.11  end
% 0.71/1.11  
% 0.71/1.11  subsumption: (183) {G1,W7,D4,L1,V1,M1} S(15);d(16) { addition( domain( X )
% 0.71/1.11    , antidomain( X ) ) ==> one }.
% 0.71/1.11  parent0: (432) {G1,W7,D4,L1,V1,M1}  { addition( domain( X ), antidomain( X
% 0.71/1.11     ) ) ==> one }.
% 0.71/1.11  substitution0:
% 0.71/1.11     X := X
% 0.71/1.11  end
% 0.71/1.11  permutation0:
% 0.71/1.11     0 ==> 0
% 0.71/1.11  end
% 0.71/1.11  
% 0.71/1.11  eqswap: (435) {G1,W7,D4,L1,V1,M1}  { one ==> addition( domain( X ), 
% 0.71/1.11    antidomain( X ) ) }.
% 0.71/1.11  parent0[0]: (183) {G1,W7,D4,L1,V1,M1} S(15);d(16) { addition( domain( X ), 
% 0.71/1.11    antidomain( X ) ) ==> one }.
% 0.71/1.11  substitution0:
% 0.71/1.11     X := X
% 0.71/1.11  end
% 0.71/1.11  
% 0.71/1.11  paramod: (438) {G2,W7,D4,L1,V0,M1}  { one ==> addition( antidomain( zero )
% 0.71/1.11    , antidomain( one ) ) }.
% 0.71/1.11  parent0[0]: (48) {G2,W5,D3,L1,V0,M1} P(46,16) { domain( one ) ==> 
% 0.71/1.11    antidomain( zero ) }.
% 0.71/1.11  parent1[0; 3]: (435) {G1,W7,D4,L1,V1,M1}  { one ==> addition( domain( X ), 
% 0.71/1.11    antidomain( X ) ) }.
% 0.71/1.11  substitution0:
% 0.71/1.11  end
% 0.71/1.11  substitution1:
% 0.71/1.11     X := one
% 0.71/1.11  end
% 0.71/1.11  
% 0.71/1.11  paramod: (439) {G2,W6,D4,L1,V0,M1}  { one ==> addition( antidomain( zero )
% 0.71/1.11    , zero ) }.
% 0.71/1.11  parent0[0]: (46) {G1,W4,D3,L1,V0,M1} P(13,5) { antidomain( one ) ==> zero
% 0.71/1.11     }.
% 0.71/1.11  parent1[0; 5]: (438) {G2,W7,D4,L1,V0,M1}  { one ==> addition( antidomain( 
% 0.71/1.11    zero ), antidomain( one ) ) }.
% 0.71/1.11  substitution0:
% 0.71/1.11  end
% 0.71/1.11  substitution1:
% 0.71/1.11  end
% 0.71/1.11  
% 0.71/1.11  paramod: (440) {G1,W4,D3,L1,V0,M1}  { one ==> antidomain( zero ) }.
% 0.71/1.11  parent0[0]: (2) {G0,W5,D3,L1,V1,M1} I { addition( X, zero ) ==> X }.
% 0.71/1.11  parent1[0; 2]: (439) {G2,W6,D4,L1,V0,M1}  { one ==> addition( antidomain( 
% 0.71/1.11    zero ), zero ) }.
% 0.71/1.11  substitution0:
% 0.71/1.11     X := antidomain( zero )
% 0.71/1.11  end
% 0.71/1.11  substitution1:
% 0.71/1.11  end
% 0.71/1.11  
% 0.71/1.11  eqswap: (441) {G1,W4,D3,L1,V0,M1}  { antidomain( zero ) ==> one }.
% 0.71/1.11  parent0[0]: (440) {G1,W4,D3,L1,V0,M1}  { one ==> antidomain( zero ) }.
% 0.71/1.11  substitution0:
% 0.71/1.11  end
% 0.71/1.11  
% 0.71/1.11  subsumption: (197) {G3,W4,D3,L1,V0,M1} P(48,183);d(46);d(2) { antidomain( 
% 0.71/1.11    zero ) ==> one }.
% 0.71/1.11  parent0: (441) {G1,W4,D3,L1,V0,M1}  { antidomain( zero ) ==> one }.
% 0.71/1.11  substitution0:
% 0.71/1.11  end
% 0.71/1.11  permutation0:
% 0.71/1.11     0 ==> 0
% 0.71/1.11  end
% 0.71/1.11  
% 0.71/1.11  eqswap: (443) {G0,W6,D4,L1,V1,M1}  { domain( X ) ==> antidomain( antidomain
% 0.71/1.11    ( X ) ) }.
% 0.71/1.11  parent0[0]: (16) {G0,W6,D4,L1,V1,M1} I { antidomain( antidomain( X ) ) ==> 
% 0.71/1.11    domain( X ) }.
% 0.71/1.11  substitution0:
% 0.71/1.11     X := X
% 0.71/1.11  end
% 0.71/1.11  
% 0.71/1.11  paramod: (446) {G1,W5,D3,L1,V0,M1}  { domain( zero ) ==> antidomain( one )
% 0.71/1.11     }.
% 0.71/1.11  parent0[0]: (197) {G3,W4,D3,L1,V0,M1} P(48,183);d(46);d(2) { antidomain( 
% 0.71/1.11    zero ) ==> one }.
% 0.71/1.11  parent1[0; 4]: (443) {G0,W6,D4,L1,V1,M1}  { domain( X ) ==> antidomain( 
% 0.71/1.11    antidomain( X ) ) }.
% 0.71/1.11  substitution0:
% 0.71/1.11  end
% 0.71/1.11  substitution1:
% 0.71/1.11     X := zero
% 0.71/1.11  end
% 0.71/1.11  
% 0.71/1.11  paramod: (447) {G2,W4,D3,L1,V0,M1}  { domain( zero ) ==> zero }.
% 0.71/1.11  parent0[0]: (46) {G1,W4,D3,L1,V0,M1} P(13,5) { antidomain( one ) ==> zero
% 0.71/1.11     }.
% 0.71/1.11  parent1[0; 3]: (446) {G1,W5,D3,L1,V0,M1}  { domain( zero ) ==> antidomain( 
% 0.71/1.11    one ) }.
% 0.71/1.11  substitution0:
% 0.71/1.11  end
% 0.71/1.11  substitution1:
% 0.71/1.11  end
% 0.71/1.11  
% 0.71/1.11  paramod: (448) {G3,W4,D3,L1,V0,M1}  { c( one ) ==> zero }.
% 0.71/1.11  parent0[0]: (47) {G2,W5,D3,L1,V0,M1} P(46,38) { domain( zero ) ==> c( one )
% 0.71/1.11     }.
% 0.71/1.11  parent1[0; 1]: (447) {G2,W4,D3,L1,V0,M1}  { domain( zero ) ==> zero }.
% 0.71/1.11  substitution0:
% 0.71/1.11  end
% 0.71/1.11  substitution1:
% 0.71/1.11  end
% 0.71/1.11  
% 0.71/1.11  subsumption: (206) {G4,W4,D3,L1,V0,M1} P(197,16);d(46);d(47) { c( one ) ==>
% 0.71/1.11     zero }.
% 0.71/1.11  parent0: (448) {G3,W4,D3,L1,V0,M1}  { c( one ) ==> zero }.
% 0.71/1.11  substitution0:
% 0.71/1.11  end
% 0.71/1.11  permutation0:
% 0.71/1.11     0 ==> 0
% 0.71/1.11  end
% 0.71/1.11  
% 0.71/1.11  eqswap: (451) {G0,W9,D5,L1,V2,M1}  { forward_diamond( X, Y ) ==> domain( 
% 0.71/1.11    multiplication( X, domain( Y ) ) ) }.
% 0.71/1.11  parent0[0]: (23) {G0,W9,D5,L1,V2,M1} I { domain( multiplication( X, domain
% 0.71/1.11    ( Y ) ) ) ==> forward_diamond( X, Y ) }.
% 0.71/1.11  substitution0:
% 0.71/1.11     X := X
% 0.71/1.11     Y := Y
% 0.71/1.11  end
% 0.71/1.11  
% 0.71/1.11  paramod: (456) {G1,W9,D5,L1,V1,M1}  { forward_diamond( X, zero ) ==> domain
% 0.71/1.11    ( multiplication( X, c( one ) ) ) }.
% 0.71/1.11  parent0[0]: (47) {G2,W5,D3,L1,V0,M1} P(46,38) { domain( zero ) ==> c( one )
% 0.71/1.11     }.
% 0.71/1.11  parent1[0; 7]: (451) {G0,W9,D5,L1,V2,M1}  { forward_diamond( X, Y ) ==> 
% 0.71/1.11    domain( multiplication( X, domain( Y ) ) ) }.
% 0.71/1.11  substitution0:
% 0.71/1.11  end
% 0.71/1.11  substitution1:
% 0.71/1.11     X := X
% 0.71/1.11     Y := zero
% 0.71/1.11  end
% 0.71/1.11  
% 0.71/1.11  paramod: (457) {G2,W8,D4,L1,V1,M1}  { forward_diamond( X, zero ) ==> domain
% 0.71/1.11    ( multiplication( X, zero ) ) }.
% 0.71/1.11  parent0[0]: (206) {G4,W4,D3,L1,V0,M1} P(197,16);d(46);d(47) { c( one ) ==> 
% 0.71/1.11    zero }.
% 0.71/1.11  parent1[0; 7]: (456) {G1,W9,D5,L1,V1,M1}  { forward_diamond( X, zero ) ==> 
% 0.71/1.11    domain( multiplication( X, c( one ) ) ) }.
% 0.71/1.11  substitution0:
% 0.71/1.11  end
% 0.71/1.11  substitution1:
% 0.71/1.11     X := X
% 0.71/1.11  end
% 0.71/1.11  
% 0.71/1.11  paramod: (458) {G1,W6,D3,L1,V1,M1}  { forward_diamond( X, zero ) ==> domain
% 0.71/1.11    ( zero ) }.
% 0.71/1.11  parent0[0]: (9) {G0,W5,D3,L1,V1,M1} I { multiplication( X, zero ) ==> zero
% 0.71/1.11     }.
% 0.71/1.11  parent1[0; 5]: (457) {G2,W8,D4,L1,V1,M1}  { forward_diamond( X, zero ) ==> 
% 0.71/1.11    domain( multiplication( X, zero ) ) }.
% 0.71/1.11  substitution0:
% 0.71/1.11     X := X
% 0.71/1.11  end
% 0.71/1.11  substitution1:
% 0.71/1.11     X := X
% 0.71/1.11  end
% 0.71/1.11  
% 0.71/1.11  paramod: (459) {G2,W6,D3,L1,V1,M1}  { forward_diamond( X, zero ) ==> c( one
% 0.71/1.11     ) }.
% 0.71/1.11  parent0[0]: (47) {G2,W5,D3,L1,V0,M1} P(46,38) { domain( zero ) ==> c( one )
% 0.71/1.11     }.
% 0.71/1.11  parent1[0; 4]: (458) {G1,W6,D3,L1,V1,M1}  { forward_diamond( X, zero ) ==> 
% 0.71/1.11    domain( zero ) }.
% 0.71/1.11  substitution0:
% 0.71/1.11  end
% 0.71/1.11  substitution1:
% 0.71/1.11     X := X
% 0.71/1.11  end
% 0.71/1.11  
% 0.71/1.11  paramod: (460) {G3,W5,D3,L1,V1,M1}  { forward_diamond( X, zero ) ==> zero
% 0.71/1.11     }.
% 0.71/1.11  parent0[0]: (206) {G4,W4,D3,L1,V0,M1} P(197,16);d(46);d(47) { c( one ) ==> 
% 0.71/1.11    zero }.
% 0.71/1.11  parent1[0; 4]: (459) {G2,W6,D3,L1,V1,M1}  { forward_diamond( X, zero ) ==> 
% 0.71/1.11    c( one ) }.
% 0.71/1.11  substitution0:
% 0.71/1.11  end
% 0.71/1.11  substitution1:
% 0.71/1.11     X := X
% 0.71/1.11  end
% 0.71/1.11  
% 0.71/1.11  subsumption: (245) {G5,W5,D3,L1,V1,M1} P(47,23);d(206);d(9);d(47);d(206) { 
% 0.71/1.11    forward_diamond( X, zero ) ==> zero }.
% 0.71/1.11  parent0: (460) {G3,W5,D3,L1,V1,M1}  { forward_diamond( X, zero ) ==> zero
% 0.71/1.11     }.
% 0.71/1.11  substitution0:
% 0.71/1.11     X := X
% 0.71/1.11  end
% 0.71/1.11  permutation0:
% 0.71/1.11     0 ==> 0
% 0.71/1.11  end
% 0.71/1.11  
% 0.71/1.11  eqswap: (462) {G5,W5,D3,L1,V1,M1}  { zero ==> forward_diamond( X, zero )
% 0.71/1.11     }.
% 0.71/1.11  parent0[0]: (245) {G5,W5,D3,L1,V1,M1} P(47,23);d(206);d(9);d(47);d(206) { 
% 0.71/1.11    forward_diamond( X, zero ) ==> zero }.
% 0.71/1.11  substitution0:
% 0.71/1.11     X := X
% 0.71/1.11  end
% 0.71/1.11  
% 0.71/1.11  eqswap: (463) {G0,W5,D3,L1,V0,M1}  { ! zero ==> forward_diamond( skol1, 
% 0.71/1.11    zero ) }.
% 0.71/1.11  parent0[0]: (27) {G0,W5,D3,L1,V0,M1} I { ! forward_diamond( skol1, zero ) 
% 0.71/1.11    ==> zero }.
% 0.71/1.11  substitution0:
% 0.71/1.11  end
% 0.71/1.11  
% 0.71/1.11  resolution: (464) {G1,W0,D0,L0,V0,M0}  {  }.
% 0.71/1.11  parent0[0]: (463) {G0,W5,D3,L1,V0,M1}  { ! zero ==> forward_diamond( skol1
% 0.71/1.11    , zero ) }.
% 0.71/1.11  parent1[0]: (462) {G5,W5,D3,L1,V1,M1}  { zero ==> forward_diamond( X, zero
% 0.71/1.11     ) }.
% 0.71/1.11  substitution0:
% 0.71/1.11  end
% 0.71/1.11  substitution1:
% 0.71/1.11     X := skol1
% 0.71/1.11  end
% 0.71/1.11  
% 0.71/1.11  subsumption: (250) {G6,W0,D0,L0,V0,M0} R(245,27) {  }.
% 0.71/1.11  parent0: (464) {G1,W0,D0,L0,V0,M0}  {  }.
% 0.71/1.11  substitution0:
% 0.71/1.11  end
% 0.71/1.11  permutation0:
% 0.71/1.11  end
% 0.71/1.11  
% 0.71/1.11  Proof check complete!
% 0.71/1.11  
% 0.71/1.11  Memory use:
% 0.71/1.11  
% 0.71/1.11  space for terms:        3064
% 0.71/1.11  space for clauses:      20029
% 0.71/1.11  
% 0.71/1.11  
% 0.71/1.11  clauses generated:      921
% 0.71/1.11  clauses kept:           251
% 0.71/1.11  clauses selected:       57
% 0.71/1.11  clauses deleted:        10
% 0.71/1.11  clauses inuse deleted:  0
% 0.71/1.11  
% 0.71/1.11  subsentry:          1589
% 0.71/1.11  literals s-matched: 926
% 0.71/1.11  literals matched:   926
% 0.71/1.11  full subsumption:   47
% 0.71/1.11  
% 0.71/1.11  checksum:           -895951358
% 0.71/1.11  
% 0.71/1.11  
% 0.71/1.11  Bliksem ended
%------------------------------------------------------------------------------