TSTP Solution File: KLE108-10 by EQP---0.9e

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : EQP---0.9e
% Problem  : KLE108-10 : TPTP v8.1.0. Released v7.5.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : tptp2X_and_run_eqp %s

% Computer : n029.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 600s
% DateTime : Sun Jul 17 01:52:18 EDT 2022

% Result   : Unknown 11.10s 11.53s
% Output   : None 
% Verified : 
% SZS Type : -

% Comments : 
%------------------------------------------------------------------------------
%----No solution output by system
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.04/0.14  % Problem  : KLE108-10 : TPTP v8.1.0. Released v7.5.0.
% 0.04/0.14  % Command  : tptp2X_and_run_eqp %s
% 0.14/0.36  % Computer : n029.cluster.edu
% 0.14/0.36  % Model    : x86_64 x86_64
% 0.14/0.36  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.14/0.36  % Memory   : 8042.1875MB
% 0.14/0.36  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.14/0.36  % CPULimit : 300
% 0.14/0.36  % WCLimit  : 600
% 0.14/0.36  % DateTime : Thu Jun 16 08:45:42 EDT 2022
% 0.14/0.36  % CPUTime  : 
% 0.74/1.13  ----- EQP 0.9e, May 2009 -----
% 0.74/1.13  The job began on n029.cluster.edu, Thu Jun 16 08:45:43 2022
% 0.74/1.13  The command was "./eqp09e".
% 0.74/1.13  
% 0.74/1.13  set(prolog_style_variables).
% 0.74/1.13  set(lrpo).
% 0.74/1.13  set(basic_paramod).
% 0.74/1.13  set(functional_subsume).
% 0.74/1.13  set(ordered_paramod).
% 0.74/1.13  set(prime_paramod).
% 0.74/1.13  set(para_pairs).
% 0.74/1.13  assign(pick_given_ratio,4).
% 0.74/1.13  clear(print_kept).
% 0.74/1.13  clear(print_new_demod).
% 0.74/1.13  clear(print_back_demod).
% 0.74/1.13  clear(print_given).
% 0.74/1.13  assign(max_mem,64000).
% 0.74/1.13  end_of_commands.
% 0.74/1.13  
% 0.74/1.13  Usable:
% 0.74/1.13  end_of_list.
% 0.74/1.13  
% 0.74/1.13  Sos:
% 0.74/1.13  0 (wt=-1) [] ifeq2(A,A,B,C) = B.
% 0.74/1.13  0 (wt=-1) [] ifeq(A,A,B,C) = B.
% 0.74/1.13  0 (wt=-1) [] addition(A,B) = addition(B,A).
% 0.74/1.13  0 (wt=-1) [] addition(A,addition(B,C)) = addition(addition(A,B),C).
% 0.74/1.13  0 (wt=-1) [] addition(A,zero) = A.
% 0.74/1.13  0 (wt=-1) [] addition(A,A) = A.
% 0.74/1.13  0 (wt=-1) [] multiplication(A,multiplication(B,C)) = multiplication(multiplication(A,B),C).
% 0.74/1.13  0 (wt=-1) [] multiplication(A,one) = A.
% 0.74/1.13  0 (wt=-1) [] multiplication(one,A) = A.
% 0.74/1.13  0 (wt=-1) [] multiplication(A,addition(B,C)) = addition(multiplication(A,B),multiplication(A,C)).
% 0.74/1.13  0 (wt=-1) [] multiplication(addition(A,B),C) = addition(multiplication(A,C),multiplication(B,C)).
% 0.74/1.13  0 (wt=-1) [] multiplication(A,zero) = zero.
% 0.74/1.13  0 (wt=-1) [] multiplication(zero,A) = zero.
% 0.74/1.13  0 (wt=-1) [] ifeq(leq(A,B),true,addition(A,B),B) = B.
% 0.74/1.13  0 (wt=-1) [] ifeq2(addition(A,B),B,leq(A,B),true) = true.
% 0.74/1.13  0 (wt=-1) [] multiplication(antidomain(A),A) = zero.
% 0.74/1.13  0 (wt=-1) [] addition(antidomain(multiplication(A,B)),antidomain(multiplication(A,antidomain(antidomain(B))))) = antidomain(multiplication(A,antidomain(antidomain(B)))).
% 0.74/1.13  0 (wt=-1) [] addition(antidomain(antidomain(A)),antidomain(A)) = one.
% 0.74/1.13  0 (wt=-1) [] domain(A) = antidomain(antidomain(A)).
% 0.74/1.13  0 (wt=-1) [] multiplication(A,coantidomain(A)) = zero.
% 0.74/1.13  0 (wt=-1) [] addition(coantidomain(multiplication(A,B)),coantidomain(multiplication(coantidomain(coantidomain(A)),B))) = coantidomain(multiplication(coantidomain(coantidomain(A)),B)).
% 0.74/1.13  0 (wt=-1) [] addition(coantidomain(coantidomain(A)),coantidomain(A)) = one.
% 0.74/1.13  0 (wt=-1) [] codomain(A) = coantidomain(coantidomain(A)).
% 0.74/1.13  0 (wt=-1) [] c(A) = antidomain(domain(A)).
% 0.74/1.13  0 (wt=-1) [] domain_difference(A,B) = multiplication(domain(A),antidomain(B)).
% 0.74/1.13  0 (wt=-1) [] forward_diamond(A,B) = domain(multiplication(A,domain(B))).
% 0.74/1.13  0 (wt=-1) [] backward_diamond(A,B) = codomain(multiplication(codomain(B),A)).
% 0.74/1.13  0 (wt=-1) [] forward_box(A,B) = c(forward_diamond(A,c(B))).
% 0.74/1.13  0 (wt=-1) [] backward_box(A,B) = c(backward_diamond(A,c(B))).
% 0.74/1.13  0 (wt=-1) [] addition(domain(sK2_goals_X1),forward_box(sK3_goals_X0,domain(sK1_goals_X2))) = forward_box(sK3_goals_X0,domain(sK1_goals_X2)).
% 0.74/1.13  0 (wt=-1) [] -(addition(backward_diamond(sK3_goals_X0,domain(sK2_goals_X1)),domain(sK1_goals_X2)) = domain(sK1_goals_X2)).
% 0.74/1.13  end_of_list.
% 0.74/1.13  
% 0.74/1.13  Demodulators:
% 0.74/1.13  end_of_list.
% 0.74/1.13  
% 0.74/1.13  Passive:
% 0.74/1.13  end_of_list.
% 0.74/1.13  
% 0.74/1.13  Starting to process input.
% 0.74/1.13  
% 0.74/1.13  ** KEPT: 1 (wt=7) [] ifeq2(A,A,B,C) = B.
% 0.74/1.13  1 is a new demodulator.
% 0.74/1.13  
% 0.74/1.13  ** KEPT: 2 (wt=7) [] ifeq(A,A,B,C) = B.
% 0.74/1.13  2 is a new demodulator.
% 0.74/1.13  
% 0.74/1.13  ** KEPT: 3 (wt=7) [] addition(A,B) = addition(B,A).
% 0.74/1.13  clause forward subsumed: 0 (wt=7) [flip(3)] addition(B,A) = addition(A,B).
% 0.74/1.13  
% 0.74/1.13  ** KEPT: 4 (wt=11) [flip(1)] addition(addition(A,B),C) = addition(A,addition(B,C)).
% 0.74/1.13  4 is a new demodulator.
% 0.74/1.13  
% 0.74/1.13  ** KEPT: 5 (wt=5) [] addition(A,zero) = A.
% 0.74/1.13  5 is a new demodulator.
% 0.74/1.13  
% 0.74/1.13  ** KEPT: 6 (wt=5) [] addition(A,A) = A.
% 0.74/1.13  6 is a new demodulator.
% 0.74/1.13  
% 0.74/1.13  ** KEPT: 7 (wt=11) [flip(1)] multiplication(multiplication(A,B),C) = multiplication(A,multiplication(B,C)).
% 0.74/1.13  7 is a new demodulator.
% 0.74/1.13  
% 0.74/1.13  ** KEPT: 8 (wt=5) [] multiplication(A,one) = A.
% 0.74/1.13  8 is a new demodulator.
% 0.74/1.13  
% 0.74/1.13  ** KEPT: 9 (wt=5) [] multiplication(one,A) = A.
% 0.74/1.13  9 is a new demodulator.
% 0.74/1.13  
% 0.74/1.13  ** KEPT: 10 (wt=13) [] multiplication(A,addition(B,C)) = addition(multiplication(A,B),multiplication(A,C)).
% 0.74/1.13  10 is a new demodulator.
% 0.74/1.13  
% 0.74/1.13  ** KEPT: 11 (wt=13) [] multiplication(addition(A,B),C) = addition(multiplication(A,C),multiplication(B,C)).
% 0.74/1.13  11 is a new demodulator.
% 0.74/1.13  
% 0.74/1.13  ** KEPT: 12 (wt=5) [] multiplication(A,zero) = zero.
% 0.74/1.13  12 is a new demodulator.
% 0.74/1.13  
% 0.74/1.13  ** KEPT: 13 (wt=5) [] multiplication(zero,A) = zero.
% 0.74/1.13  13 is a new demodulator.
% 0.74/1.13  
% 0.74/1.13  ** KEPT: 14 (wt=11) [] ifeq(leq(A,B),true,addition(A,B),B) = B.
% 0.74/1.13  14 is a new demodulator.
% 0.74/1.13  
% 0.74/1.13  ** KEPT: 15 (wt=11) [] ifeq2(addition(A,B),B,leq(A,B),true) = true.
% 0.74/1.13  15 is a new demodulator.
% 0.74/1.14  
% 0.74/1.14  ** KEPT: 16 (wt=6) [] multiplication(antidomain(A),A) = zero.
% 0.74/1.14  16 is a new demodulator.
% 0.74/1.14  
% 0.74/1.14  ** KEPT: 17 (wt=18) [] addition(antidomain(multiplication(A,B)),antidomain(multiplication(A,antidomain(antidomain(B))))) = antidomain(multiplication(A,antidomain(antidomain(B)))).
% 0.74/1.14  17 is a new demodulator.
% 0.74/1.14  
% 0.74/1.14  ** KEPT: 18 (wt=8) [] addition(antidomain(antidomain(A)),antidomain(A)) = one.
% 0.74/1.14  18 is a new demodulator.
% 0.74/1.14  
% 0.74/1.14  ** KEPT: 19 (wt=6) [] domain(A) = antidomain(antidomain(A)).
% 0.74/1.14  19 is a new demodulator.
% 0.74/1.14  
% 0.74/1.14  ** KEPT: 20 (wt=6) [] multiplication(A,coantidomain(A)) = zero.
% 0.74/1.14  20 is a new demodulator.
% 0.74/1.14  
% 0.74/1.14  ** KEPT: 21 (wt=18) [] addition(coantidomain(multiplication(A,B)),coantidomain(multiplication(coantidomain(coantidomain(A)),B))) = coantidomain(multiplication(coantidomain(coantidomain(A)),B)).
% 0.74/1.14  21 is a new demodulator.
% 0.74/1.14  
% 0.74/1.14  ** KEPT: 22 (wt=8) [] addition(coantidomain(coantidomain(A)),coantidomain(A)) = one.
% 0.74/1.14  22 is a new demodulator.
% 0.74/1.14  
% 0.74/1.14  ** KEPT: 23 (wt=6) [] codomain(A) = coantidomain(coantidomain(A)).
% 0.74/1.14  23 is a new demodulator.
% 0.74/1.14  
% 0.74/1.14  ** KEPT: 24 (wt=7) [demod([19])] c(A) = antidomain(antidomain(antidomain(A))).
% 0.74/1.14  24 is a new demodulator.
% 0.74/1.14  
% 0.74/1.14  ** KEPT: 25 (wt=10) [demod([19]),flip(1)] multiplication(antidomain(antidomain(A)),antidomain(B)) = domain_difference(A,B).
% 0.74/1.14  25 is a new demodulator.
% 0.74/1.14  
% 0.74/1.14  ** KEPT: 26 (wt=11) [demod([19,19]),flip(1)] antidomain(antidomain(multiplication(A,antidomain(antidomain(B))))) = forward_diamond(A,B).
% 0.74/1.14  26 is a new demodulator.
% 0.74/1.14  
% 0.74/1.14  ** KEPT: 27 (wt=11) [demod([23,23]),flip(1)] coantidomain(coantidomain(multiplication(coantidomain(coantidomain(A)),B))) = backward_diamond(B,A).
% 0.74/1.14  27 is a new demodulator.
% 0.74/1.14  
% 0.74/1.14  ** KEPT: 28 (wt=13) [demod([24,24]),flip(1)] antidomain(antidomain(antidomain(forward_diamond(A,antidomain(antidomain(antidomain(B))))))) = forward_box(A,B).
% 0.74/1.14  28 is a new demodulator.
% 0.74/1.14  
% 0.74/1.14  ** KEPT: 29 (wt=13) [demod([24,24]),flip(1)] antidomain(antidomain(antidomain(backward_diamond(A,antidomain(antidomain(antidomain(B))))))) = backward_box(A,B).
% 0.74/1.14  29 is a new demodulator.
% 0.74/1.14  
% 0.74/1.14  ** KEPT: 30 (wt=15) [demod([19,19,19])] addition(antidomain(antidomain(sK2_goals_X1)),forward_box(sK3_goals_X0,antidomain(antidomain(sK1_goals_X2)))) = forward_box(sK3_goals_X0,antidomain(antidomain(sK1_goals_X2))).
% 0.74/1.14  30 is a new demodulator.
% 0.74/1.14  
% 0.74/1.14  ** KEPT: 31 (wt=13) [demod([19,19,19])] -(addition(backward_diamond(sK3_goals_X0,antidomain(antidomain(sK2_goals_X1))),antidomain(antidomain(sK1_goals_X2))) = antidomain(antidomain(sK1_goals_X2))).
% 0.74/1.14  
% 0.74/1.14  After processing input:
% 0.74/1.14  
% 0.74/1.14  Usable:
% 0.74/1.14  end_of_list.
% 0.74/1.14  
% 0.74/1.14  Sos:
% 0.74/1.14  5 (wt=5) [] addition(A,zero) = A.
% 0.74/1.14  6 (wt=5) [] addition(A,A) = A.
% 0.74/1.14  8 (wt=5) [] multiplication(A,one) = A.
% 0.74/1.14  9 (wt=5) [] multiplication(one,A) = A.
% 0.74/1.14  12 (wt=5) [] multiplication(A,zero) = zero.
% 0.74/1.14  13 (wt=5) [] multiplication(zero,A) = zero.
% 0.74/1.14  16 (wt=6) [] multiplication(antidomain(A),A) = zero.
% 0.74/1.14  19 (wt=6) [] domain(A) = antidomain(antidomain(A)).
% 0.74/1.14  20 (wt=6) [] multiplication(A,coantidomain(A)) = zero.
% 0.74/1.14  23 (wt=6) [] codomain(A) = coantidomain(coantidomain(A)).
% 0.74/1.14  1 (wt=7) [] ifeq2(A,A,B,C) = B.
% 0.74/1.14  2 (wt=7) [] ifeq(A,A,B,C) = B.
% 0.74/1.14  3 (wt=7) [] addition(A,B) = addition(B,A).
% 0.74/1.14  24 (wt=7) [demod([19])] c(A) = antidomain(antidomain(antidomain(A))).
% 0.74/1.14  18 (wt=8) [] addition(antidomain(antidomain(A)),antidomain(A)) = one.
% 0.74/1.14  22 (wt=8) [] addition(coantidomain(coantidomain(A)),coantidomain(A)) = one.
% 0.74/1.14  25 (wt=10) [demod([19]),flip(1)] multiplication(antidomain(antidomain(A)),antidomain(B)) = domain_difference(A,B).
% 0.74/1.14  4 (wt=11) [flip(1)] addition(addition(A,B),C) = addition(A,addition(B,C)).
% 0.74/1.14  7 (wt=11) [flip(1)] multiplication(multiplication(A,B),C) = multiplication(A,multiplication(B,C)).
% 0.74/1.14  14 (wt=11) [] ifeq(leq(A,B),true,addition(A,B),B) = B.
% 0.74/1.14  15 (wt=11) [] ifeq2(addition(A,B),B,leq(A,B),true) = true.
% 0.74/1.14  26 (wt=11) [demod([19,19]),flip(1)] antidomain(antidomain(multiplication(A,antidomain(antidomain(B))))) = forward_diamond(A,B).
% 0.74/1.14  27 (wt=11) [demod([23,23]),flip(1)] coantidomain(coantidomain(multiplication(coantidomain(coantidomain(A)),B))) = backward_diamond(B,A).
% 0.74/1.14  10 (wt=13) [] multiplication(A,addition(B,C)) = addition(multiplication(A,B),multiplication(A,C)).
% 0.74/1.14  11 (wt=13) [] multiplication(addition(A,B),C) = addition(multiplication(A,C),multiplication(B,C)).
% 11.10/11.53  28 (wt=13) [demod([24,24]),flip(1)] antidomain(antidomain(antidomain(forward_diamond(A,antidomain(antidomain(antidomain(B))))))) = forward_box(A,B).
% 11.10/11.53  29 (wt=13) [demod([24,24]),flip(1)] antidomain(antidomain(antidomain(backward_diamond(A,antidomain(antidomain(antidomain(B))))))) = backward_box(A,B).
% 11.10/11.53  31 (wt=13) [demod([19,19,19])] -(addition(backward_diamond(sK3_goals_X0,antidomain(antidomain(sK2_goals_X1))),antidomain(antidomain(sK1_goals_X2))) = antidomain(antidomain(sK1_goals_X2))).
% 11.10/11.53  30 (wt=15) [demod([19,19,19])] addition(antidomain(antidomain(sK2_goals_X1)),forward_box(sK3_goals_X0,antidomain(antidomain(sK1_goals_X2)))) = forward_box(sK3_goals_X0,antidomain(antidomain(sK1_goals_X2))).
% 11.10/11.53  17 (wt=18) [] addition(antidomain(multiplication(A,B)),antidomain(multiplication(A,antidomain(antidomain(B))))) = antidomain(multiplication(A,antidomain(antidomain(B)))).
% 11.10/11.53  21 (wt=18) [] addition(coantidomain(multiplication(A,B)),coantidomain(multiplication(coantidomain(coantidomain(A)),B))) = coantidomain(multiplication(coantidomain(coantidomain(A)),B)).
% 11.10/11.53  end_of_list.
% 11.10/11.53  
% 11.10/11.53  Demodulators:
% 11.10/11.53  1 (wt=7) [] ifeq2(A,A,B,C) = B.
% 11.10/11.53  2 (wt=7) [] ifeq(A,A,B,C) = B.
% 11.10/11.53  4 (wt=11) [flip(1)] addition(addition(A,B),C) = addition(A,addition(B,C)).
% 11.10/11.53  5 (wt=5) [] addition(A,zero) = A.
% 11.10/11.53  6 (wt=5) [] addition(A,A) = A.
% 11.10/11.53  7 (wt=11) [flip(1)] multiplication(multiplication(A,B),C) = multiplication(A,multiplication(B,C)).
% 11.10/11.53  8 (wt=5) [] multiplication(A,one) = A.
% 11.10/11.53  9 (wt=5) [] multiplication(one,A) = A.
% 11.10/11.53  10 (wt=13) [] multiplication(A,addition(B,C)) = addition(multiplication(A,B),multiplication(A,C)).
% 11.10/11.53  11 (wt=13) [] multiplication(addition(A,B),C) = addition(multiplication(A,C),multiplication(B,C)).
% 11.10/11.53  12 (wt=5) [] multiplication(A,zero) = zero.
% 11.10/11.53  13 (wt=5) [] multiplication(zero,A) = zero.
% 11.10/11.53  14 (wt=11) [] ifeq(leq(A,B),true,addition(A,B),B) = B.
% 11.10/11.53  15 (wt=11) [] ifeq2(addition(A,B),B,leq(A,B),true) = true.
% 11.10/11.53  16 (wt=6) [] multiplication(antidomain(A),A) = zero.
% 11.10/11.53  17 (wt=18) [] addition(antidomain(multiplication(A,B)),antidomain(multiplication(A,antidomain(antidomain(B))))) = antidomain(multiplication(A,antidomain(antidomain(B)))).
% 11.10/11.53  18 (wt=8) [] addition(antidomain(antidomain(A)),antidomain(A)) = one.
% 11.10/11.53  19 (wt=6) [] domain(A) = antidomain(antidomain(A)).
% 11.10/11.53  20 (wt=6) [] multiplication(A,coantidomain(A)) = zero.
% 11.10/11.53  21 (wt=18) [] addition(coantidomain(multiplication(A,B)),coantidomain(multiplication(coantidomain(coantidomain(A)),B))) = coantidomain(multiplication(coantidomain(coantidomain(A)),B)).
% 11.10/11.53  22 (wt=8) [] addition(coantidomain(coantidomain(A)),coantidomain(A)) = one.
% 11.10/11.53  23 (wt=6) [] codomain(A) = coantidomain(coantidomain(A)).
% 11.10/11.53  24 (wt=7) [demod([19])] c(A) = antidomain(antidomain(antidomain(A))).
% 11.10/11.53  25 (wt=10) [demod([19]),flip(1)] multiplication(antidomain(antidomain(A)),antidomain(B)) = domain_difference(A,B).
% 11.10/11.53  26 (wt=11) [demod([19,19]),flip(1)] antidomain(antidomain(multiplication(A,antidomain(antidomain(B))))) = forward_diamond(A,B).
% 11.10/11.53  27 (wt=11) [demod([23,23]),flip(1)] coantidomain(coantidomain(multiplication(coantidomain(coantidomain(A)),B))) = backward_diamond(B,A).
% 11.10/11.53  28 (wt=13) [demod([24,24]),flip(1)] antidomain(antidomain(antidomain(forward_diamond(A,antidomain(antidomain(antidomain(B))))))) = forward_box(A,B).
% 11.10/11.53  29 (wt=13) [demod([24,24]),flip(1)] antidomain(antidomain(antidomain(backward_diamond(A,antidomain(antidomain(antidomain(B))))))) = backward_box(A,B).
% 11.10/11.53  30 (wt=15) [demod([19,19,19])] addition(antidomain(antidomain(sK2_goals_X1)),forward_box(sK3_goals_X0,antidomain(antidomain(sK1_goals_X2)))) = forward_box(sK3_goals_X0,antidomain(antidomain(sK1_goals_X2))).
% 11.10/11.53  end_of_list.
% 11.10/11.53  
% 11.10/11.53  Passive:
% 11.10/11.53  end_of_list.
% 11.10/11.53  
% 11.10/11.53  ------------- memory usage ------------
% 11.10/11.53  Memory dynamically allocated (tp_alloc): 63964.
% 11.10/11.53    type (bytes each)        gets      frees     in use      avail      bytes
% 11.10/11.53  sym_ent (  96)               74          0         74          0      6.9 K
% 11.10/11.53  term (  16)             3871846    3030548     841298         18  16336.2 K
% 11.10/11.53  gen_ptr (   8)          5018783     558958    4459825          0  34842.4 K
% 11.10/11.53  context ( 808)          5346018    5346016          2          7      7.1 K
% 11.10/11.53  trail (  12)            6225399    6225399          0          9      0.1 K
% 11.10/11.53  bt_node (  68)          2180876    2180873          3         48      3.4 K
% 11.10/11.53  ac_position (285432)          0          0          0          0      0.0 K
% 11.10/11.53  ac_match_pos (14044)          0          0          0          0      0.0 K
% 11.10/11.53  ac_match_free_vars_pos (4020)
% 11.10/11.53                                0          0          0          0      0.0 K
% 11.10/11.53  discrim (  12)           591957      41951     550006          0   6445.4 K
% 11.10/11.53  flat (  40)            10071495   10071495          0        131      5.1 K
% 11.10/11.53  discrim_pos (  12)       181199     181199          0          1      0.0 K
% 11.10/11.53  fpa_head (  12)           89743          0      89743          0   1051.7 K
% 11.10/11.53  fpa_tree (  28)          143074     143074          0         49      1.3 K
% 11.10/11.53  fpa_pos (  36)            38379      38379          0          1      0.0 K
% 11.10/11.53  literal (  12)           151858     127353      24505          1    287.2 K
% 11.10/11.53  clause (  24)            151858     127353      24505          1    574.4 K
% 11.10/11.53  list (  12)               13933      13877         56          4      0.7 K
% 11.10/11.53  list_pos (  20)           90907       8256      82651          0   1614.3 K
% 11.10/11.53  pair_index (   40)              2          0          2          0      0.1 K
% 11.10/11.53  
% 11.10/11.53  -------------- statistics -------------
% 11.10/11.53  Clauses input                 31
% 11.10/11.53    Usable input                   0
% 11.10/11.53    Sos input                     31
% 11.10/11.53    Demodulators input             0
% 11.10/11.53    Passive input                  0
% 11.10/11.53  
% 11.10/11.53  Processed BS (before search)  32
% 11.10/11.53  Forward subsumed BS            1
% 11.10/11.53  Kept BS                       31
% 11.10/11.53  New demodulators BS           29
% 11.10/11.53  Back demodulated BS            0
% 11.10/11.53  
% 11.10/11.53  Clauses or pairs given    335585
% 11.10/11.53  Clauses generated         100519
% 11.10/11.53  Forward subsumed           76045
% 11.10/11.53  Deleted by weight              0
% 11.10/11.53  Deleted by variable count      0
% 11.10/11.53  Kept                       24474
% 11.10/11.53  New demodulators           13845
% 11.10/11.53  Back demodulated            1737
% 11.10/11.53  Ordered paramod prunes         0
% 11.10/11.53  Basic paramod prunes     1363895
% 11.10/11.53  Prime paramod prunes        6379
% 11.10/11.53  Semantic prunes                0
% 11.10/11.53  
% 11.10/11.53  Rewrite attmepts         1694656
% 11.10/11.53  Rewrites                  151033
% 11.10/11.53  
% 11.10/11.53  FPA overloads                  0
% 11.10/11.53  FPA underloads                 0
% 11.10/11.53  
% 11.10/11.53  Usable size                    0
% 11.10/11.53  Sos size                   22768
% 11.10/11.53  Demodulators size          12610
% 11.10/11.53  Passive size                   0
% 11.10/11.53  Disabled size               1737
% 11.10/11.53  
% 11.10/11.53  Proofs found                   0
% 11.10/11.53  
% 11.10/11.53  ----------- times (seconds) ----------- Thu Jun 16 08:45:53 2022
% 11.10/11.53  
% 11.10/11.53  user CPU time             8.49   (
% 11.10/11.53  
% 11.10/11.53  ********** ABNORMAL END **********
% 11.10/11.53  ********** in tp_alloc, max_mem parameter exceeded.
% 11.10/11.53  0 hr, 0 min, 8 sec)
% 11.10/11.53  system CPU time           1.89   (0 hr, 0 min, 1 sec)
% 11.10/11.53  wall-clock time          10      (0 hr, 0 min, 10 sec)
% 11.10/11.53  input time                0.00
% 11.10/11.53  paramodulation time       0.61
% 11.10/11.53  demodulation time         0.36
% 11.10/11.53  orient time               0.20
% 11.10/11.53  weigh time                0.03
% 11.10/11.53  forward subsume time      0.12
% 11.10/11.53  back demod find time      0.93
% 11.10/11.53  conflict time             0.02
% 11.10/11.53  LRPO time                 0.08
% 11.10/11.53  store clause time         5.47
% 11.10/11.53  disable clause time       0.21
% 11.10/11.53  prime paramod time        0.12
% 11.10/11.53  semantics time            0.00
% 11.10/11.53  
% 11.10/11.53  EQP interrupted
%------------------------------------------------------------------------------