TSTP Solution File: KLE104-10 by EQP---0.9e

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : EQP---0.9e
% Problem  : KLE104-10 : TPTP v8.1.0. Released v7.3.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : tptp2X_and_run_eqp %s

% Computer : n025.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 600s
% DateTime : Sun Jul 17 01:52:17 EDT 2022

% Result   : Unknown 10.00s 10.40s
% Output   : None 
% Verified : 
% SZS Type : -

% Comments : 
%------------------------------------------------------------------------------
%----No solution output by system
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.04/0.11  % Problem  : KLE104-10 : TPTP v8.1.0. Released v7.3.0.
% 0.04/0.12  % Command  : tptp2X_and_run_eqp %s
% 0.11/0.33  % Computer : n025.cluster.edu
% 0.11/0.33  % Model    : x86_64 x86_64
% 0.11/0.33  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.11/0.33  % Memory   : 8042.1875MB
% 0.11/0.33  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.11/0.33  % CPULimit : 300
% 0.11/0.33  % WCLimit  : 600
% 0.11/0.33  % DateTime : Thu Jun 16 15:22:41 EDT 2022
% 0.11/0.33  % CPUTime  : 
% 0.68/1.09  ----- EQP 0.9e, May 2009 -----
% 0.68/1.09  The job began on n025.cluster.edu, Thu Jun 16 15:22:42 2022
% 0.68/1.09  The command was "./eqp09e".
% 0.68/1.09  
% 0.68/1.09  set(prolog_style_variables).
% 0.68/1.09  set(lrpo).
% 0.68/1.09  set(basic_paramod).
% 0.68/1.09  set(functional_subsume).
% 0.68/1.09  set(ordered_paramod).
% 0.68/1.09  set(prime_paramod).
% 0.68/1.09  set(para_pairs).
% 0.68/1.09  assign(pick_given_ratio,4).
% 0.68/1.09  clear(print_kept).
% 0.68/1.09  clear(print_new_demod).
% 0.68/1.09  clear(print_back_demod).
% 0.68/1.09  clear(print_given).
% 0.68/1.09  assign(max_mem,64000).
% 0.68/1.09  end_of_commands.
% 0.68/1.09  
% 0.68/1.09  Usable:
% 0.68/1.09  end_of_list.
% 0.68/1.09  
% 0.68/1.09  Sos:
% 0.68/1.09  0 (wt=-1) [] ifeq2(A,A,B,C) = B.
% 0.68/1.09  0 (wt=-1) [] ifeq(A,A,B,C) = B.
% 0.68/1.09  0 (wt=-1) [] addition(A,B) = addition(B,A).
% 0.68/1.09  0 (wt=-1) [] addition(A,addition(B,C)) = addition(addition(A,B),C).
% 0.68/1.09  0 (wt=-1) [] addition(A,zero) = A.
% 0.68/1.09  0 (wt=-1) [] addition(A,A) = A.
% 0.68/1.09  0 (wt=-1) [] multiplication(A,multiplication(B,C)) = multiplication(multiplication(A,B),C).
% 0.68/1.09  0 (wt=-1) [] multiplication(A,one) = A.
% 0.68/1.09  0 (wt=-1) [] multiplication(one,A) = A.
% 0.68/1.09  0 (wt=-1) [] multiplication(A,addition(B,C)) = addition(multiplication(A,B),multiplication(A,C)).
% 0.68/1.09  0 (wt=-1) [] multiplication(addition(A,B),C) = addition(multiplication(A,C),multiplication(B,C)).
% 0.68/1.09  0 (wt=-1) [] multiplication(A,zero) = zero.
% 0.68/1.09  0 (wt=-1) [] multiplication(zero,A) = zero.
% 0.68/1.09  0 (wt=-1) [] ifeq(leq(A,B),true,addition(A,B),B) = B.
% 0.68/1.09  0 (wt=-1) [] ifeq2(addition(A,B),B,leq(A,B),true) = true.
% 0.68/1.09  0 (wt=-1) [] multiplication(antidomain(A),A) = zero.
% 0.68/1.09  0 (wt=-1) [] addition(antidomain(multiplication(A,B)),antidomain(multiplication(A,antidomain(antidomain(B))))) = antidomain(multiplication(A,antidomain(antidomain(B)))).
% 0.68/1.09  0 (wt=-1) [] addition(antidomain(antidomain(A)),antidomain(A)) = one.
% 0.68/1.09  0 (wt=-1) [] domain(A) = antidomain(antidomain(A)).
% 0.68/1.09  0 (wt=-1) [] multiplication(A,coantidomain(A)) = zero.
% 0.68/1.09  0 (wt=-1) [] addition(coantidomain(multiplication(A,B)),coantidomain(multiplication(coantidomain(coantidomain(A)),B))) = coantidomain(multiplication(coantidomain(coantidomain(A)),B)).
% 0.68/1.09  0 (wt=-1) [] addition(coantidomain(coantidomain(A)),coantidomain(A)) = one.
% 0.68/1.09  0 (wt=-1) [] codomain(A) = coantidomain(coantidomain(A)).
% 0.68/1.09  0 (wt=-1) [] c(A) = antidomain(domain(A)).
% 0.68/1.09  0 (wt=-1) [] domain_difference(A,B) = multiplication(domain(A),antidomain(B)).
% 0.68/1.09  0 (wt=-1) [] forward_diamond(A,B) = domain(multiplication(A,domain(B))).
% 0.68/1.09  0 (wt=-1) [] backward_diamond(A,B) = codomain(multiplication(codomain(B),A)).
% 0.68/1.09  0 (wt=-1) [] forward_box(A,B) = c(forward_diamond(A,c(B))).
% 0.68/1.09  0 (wt=-1) [] backward_box(A,B) = c(backward_diamond(A,c(B))).
% 0.68/1.09  0 (wt=-1) [] addition(domain(sK2_goals_X1),backward_box(sK3_goals_X0,domain(sK1_goals_X2))) = one.
% 0.68/1.09  0 (wt=-1) [] -(addition(forward_box(sK3_goals_X0,domain(sK2_goals_X1)),domain(sK1_goals_X2)) = one).
% 0.68/1.09  end_of_list.
% 0.68/1.09  
% 0.68/1.09  Demodulators:
% 0.68/1.09  end_of_list.
% 0.68/1.09  
% 0.68/1.09  Passive:
% 0.68/1.09  end_of_list.
% 0.68/1.09  
% 0.68/1.09  Starting to process input.
% 0.68/1.09  
% 0.68/1.09  ** KEPT: 1 (wt=7) [] ifeq2(A,A,B,C) = B.
% 0.68/1.09  1 is a new demodulator.
% 0.68/1.09  
% 0.68/1.09  ** KEPT: 2 (wt=7) [] ifeq(A,A,B,C) = B.
% 0.68/1.09  2 is a new demodulator.
% 0.68/1.09  
% 0.68/1.09  ** KEPT: 3 (wt=7) [] addition(A,B) = addition(B,A).
% 0.68/1.09  clause forward subsumed: 0 (wt=7) [flip(3)] addition(B,A) = addition(A,B).
% 0.68/1.09  
% 0.68/1.09  ** KEPT: 4 (wt=11) [flip(1)] addition(addition(A,B),C) = addition(A,addition(B,C)).
% 0.68/1.09  4 is a new demodulator.
% 0.68/1.09  
% 0.68/1.09  ** KEPT: 5 (wt=5) [] addition(A,zero) = A.
% 0.68/1.09  5 is a new demodulator.
% 0.68/1.09  
% 0.68/1.09  ** KEPT: 6 (wt=5) [] addition(A,A) = A.
% 0.68/1.09  6 is a new demodulator.
% 0.68/1.09  
% 0.68/1.09  ** KEPT: 7 (wt=11) [flip(1)] multiplication(multiplication(A,B),C) = multiplication(A,multiplication(B,C)).
% 0.68/1.09  7 is a new demodulator.
% 0.68/1.09  
% 0.68/1.09  ** KEPT: 8 (wt=5) [] multiplication(A,one) = A.
% 0.68/1.09  8 is a new demodulator.
% 0.68/1.09  
% 0.68/1.09  ** KEPT: 9 (wt=5) [] multiplication(one,A) = A.
% 0.68/1.09  9 is a new demodulator.
% 0.68/1.09  
% 0.68/1.09  ** KEPT: 10 (wt=13) [] multiplication(A,addition(B,C)) = addition(multiplication(A,B),multiplication(A,C)).
% 0.68/1.09  10 is a new demodulator.
% 0.68/1.09  
% 0.68/1.09  ** KEPT: 11 (wt=13) [] multiplication(addition(A,B),C) = addition(multiplication(A,C),multiplication(B,C)).
% 0.68/1.09  11 is a new demodulator.
% 0.68/1.09  
% 0.68/1.09  ** KEPT: 12 (wt=5) [] multiplication(A,zero) = zero.
% 0.68/1.09  12 is a new demodulator.
% 0.68/1.09  
% 0.68/1.09  ** KEPT: 13 (wt=5) [] multiplication(zero,A) = zero.
% 0.68/1.09  13 is a new demodulator.
% 0.68/1.09  
% 0.68/1.09  ** KEPT: 14 (wt=11) [] ifeq(leq(A,B),true,addition(A,B),B) = B.
% 0.68/1.09  14 is a new demodulator.
% 0.68/1.09  
% 0.68/1.09  ** KEPT: 15 (wt=11) [] ifeq2(addition(A,B),B,leq(A,B),true) = true.
% 0.68/1.09  15 is a new demodulator.
% 0.68/1.09  
% 0.68/1.09  ** KEPT: 16 (wt=6) [] multiplication(antidomain(A),A) = zero.
% 0.68/1.09  16 is a new demodulator.
% 0.68/1.09  
% 0.68/1.09  ** KEPT: 17 (wt=18) [] addition(antidomain(multiplication(A,B)),antidomain(multiplication(A,antidomain(antidomain(B))))) = antidomain(multiplication(A,antidomain(antidomain(B)))).
% 0.68/1.09  17 is a new demodulator.
% 0.68/1.09  
% 0.68/1.09  ** KEPT: 18 (wt=8) [] addition(antidomain(antidomain(A)),antidomain(A)) = one.
% 0.68/1.09  18 is a new demodulator.
% 0.68/1.09  
% 0.68/1.09  ** KEPT: 19 (wt=6) [] domain(A) = antidomain(antidomain(A)).
% 0.68/1.09  19 is a new demodulator.
% 0.68/1.09  
% 0.68/1.09  ** KEPT: 20 (wt=6) [] multiplication(A,coantidomain(A)) = zero.
% 0.68/1.09  20 is a new demodulator.
% 0.68/1.09  
% 0.68/1.09  ** KEPT: 21 (wt=18) [] addition(coantidomain(multiplication(A,B)),coantidomain(multiplication(coantidomain(coantidomain(A)),B))) = coantidomain(multiplication(coantidomain(coantidomain(A)),B)).
% 0.68/1.09  21 is a new demodulator.
% 0.68/1.09  
% 0.68/1.09  ** KEPT: 22 (wt=8) [] addition(coantidomain(coantidomain(A)),coantidomain(A)) = one.
% 0.68/1.09  22 is a new demodulator.
% 0.68/1.09  
% 0.68/1.09  ** KEPT: 23 (wt=6) [] codomain(A) = coantidomain(coantidomain(A)).
% 0.68/1.09  23 is a new demodulator.
% 0.68/1.09  
% 0.68/1.09  ** KEPT: 24 (wt=7) [demod([19])] c(A) = antidomain(antidomain(antidomain(A))).
% 0.68/1.09  24 is a new demodulator.
% 0.68/1.09  
% 0.68/1.09  ** KEPT: 25 (wt=10) [demod([19]),flip(1)] multiplication(antidomain(antidomain(A)),antidomain(B)) = domain_difference(A,B).
% 0.68/1.09  25 is a new demodulator.
% 0.68/1.09  
% 0.68/1.09  ** KEPT: 26 (wt=11) [demod([19,19]),flip(1)] antidomain(antidomain(multiplication(A,antidomain(antidomain(B))))) = forward_diamond(A,B).
% 0.68/1.09  26 is a new demodulator.
% 0.68/1.09  
% 0.68/1.09  ** KEPT: 27 (wt=11) [demod([23,23]),flip(1)] coantidomain(coantidomain(multiplication(coantidomain(coantidomain(A)),B))) = backward_diamond(B,A).
% 0.68/1.09  27 is a new demodulator.
% 0.68/1.09  
% 0.68/1.09  ** KEPT: 28 (wt=13) [demod([24,24]),flip(1)] antidomain(antidomain(antidomain(forward_diamond(A,antidomain(antidomain(antidomain(B))))))) = forward_box(A,B).
% 0.68/1.09  28 is a new demodulator.
% 0.68/1.09  
% 0.68/1.09  ** KEPT: 29 (wt=13) [demod([24,24]),flip(1)] antidomain(antidomain(antidomain(backward_diamond(A,antidomain(antidomain(antidomain(B))))))) = backward_box(A,B).
% 0.68/1.09  29 is a new demodulator.
% 0.68/1.09  
% 0.68/1.09  ** KEPT: 30 (wt=11) [demod([19,19])] addition(antidomain(antidomain(sK2_goals_X1)),backward_box(sK3_goals_X0,antidomain(antidomain(sK1_goals_X2)))) = one.
% 0.68/1.09  30 is a new demodulator.
% 0.68/1.09  
% 0.68/1.09  ** KEPT: 31 (wt=11) [demod([19,19])] -(addition(forward_box(sK3_goals_X0,antidomain(antidomain(sK2_goals_X1))),antidomain(antidomain(sK1_goals_X2))) = one).
% 0.68/1.09  
% 0.68/1.09  After processing input:
% 0.68/1.09  
% 0.68/1.09  Usable:
% 0.68/1.09  end_of_list.
% 0.68/1.09  
% 0.68/1.09  Sos:
% 0.68/1.09  5 (wt=5) [] addition(A,zero) = A.
% 0.68/1.09  6 (wt=5) [] addition(A,A) = A.
% 0.68/1.09  8 (wt=5) [] multiplication(A,one) = A.
% 0.68/1.09  9 (wt=5) [] multiplication(one,A) = A.
% 0.68/1.09  12 (wt=5) [] multiplication(A,zero) = zero.
% 0.68/1.09  13 (wt=5) [] multiplication(zero,A) = zero.
% 0.68/1.09  16 (wt=6) [] multiplication(antidomain(A),A) = zero.
% 0.68/1.09  19 (wt=6) [] domain(A) = antidomain(antidomain(A)).
% 0.68/1.09  20 (wt=6) [] multiplication(A,coantidomain(A)) = zero.
% 0.68/1.09  23 (wt=6) [] codomain(A) = coantidomain(coantidomain(A)).
% 0.68/1.09  1 (wt=7) [] ifeq2(A,A,B,C) = B.
% 0.68/1.09  2 (wt=7) [] ifeq(A,A,B,C) = B.
% 0.68/1.09  3 (wt=7) [] addition(A,B) = addition(B,A).
% 0.68/1.09  24 (wt=7) [demod([19])] c(A) = antidomain(antidomain(antidomain(A))).
% 0.68/1.09  18 (wt=8) [] addition(antidomain(antidomain(A)),antidomain(A)) = one.
% 0.68/1.09  22 (wt=8) [] addition(coantidomain(coantidomain(A)),coantidomain(A)) = one.
% 0.68/1.09  25 (wt=10) [demod([19]),flip(1)] multiplication(antidomain(antidomain(A)),antidomain(B)) = domain_difference(A,B).
% 0.68/1.09  4 (wt=11) [flip(1)] addition(addition(A,B),C) = addition(A,addition(B,C)).
% 0.68/1.09  7 (wt=11) [flip(1)] multiplication(multiplication(A,B),C) = multiplication(A,multiplication(B,C)).
% 0.68/1.09  14 (wt=11) [] ifeq(leq(A,B),true,addition(A,B),B) = B.
% 0.68/1.09  15 (wt=11) [] ifeq2(addition(A,B),B,leq(A,B),true) = true.
% 0.68/1.09  26 (wt=11) [demod([19,19]),flip(1)] antidomain(antidomain(multiplication(A,antidomain(antidomain(B))))) = forward_diamond(A,B).
% 0.68/1.09  27 (wt=11) [demod([23,23]),flip(1)] coantidomain(coantidomain(multiplication(coantidomain(coantidomain(A)),B))) = backward_diamond(B,A).
% 0.68/1.09  30 (wt=11) [demod([19,19])] addition(antidomain(antidomain(sK2_goals_X1)),backward_box(sK3_goals_X0,antidomain(antidomain(sK1_goals_X2)))) = one.
% 0.68/1.09  31 (wt=11) [demod([19,19])] -(addition(forward_box(sK3_goals_X0,antidomain(antidomain(sK2_goals_X1))),antidomain(antidomain(sK1_goals_X2))) = one).
% 0.68/1.09  10 (wt=13) [] multiplication(A,addition(B,C)) = addition(multiplication(A,B),multiplication(A,C)).
% 10.00/10.40  11 (wt=13) [] multiplication(addition(A,B),C) = addition(multiplication(A,C),multiplication(B,C)).
% 10.00/10.40  28 (wt=13) [demod([24,24]),flip(1)] antidomain(antidomain(antidomain(forward_diamond(A,antidomain(antidomain(antidomain(B))))))) = forward_box(A,B).
% 10.00/10.40  29 (wt=13) [demod([24,24]),flip(1)] antidomain(antidomain(antidomain(backward_diamond(A,antidomain(antidomain(antidomain(B))))))) = backward_box(A,B).
% 10.00/10.40  17 (wt=18) [] addition(antidomain(multiplication(A,B)),antidomain(multiplication(A,antidomain(antidomain(B))))) = antidomain(multiplication(A,antidomain(antidomain(B)))).
% 10.00/10.40  21 (wt=18) [] addition(coantidomain(multiplication(A,B)),coantidomain(multiplication(coantidomain(coantidomain(A)),B))) = coantidomain(multiplication(coantidomain(coantidomain(A)),B)).
% 10.00/10.40  end_of_list.
% 10.00/10.40  
% 10.00/10.40  Demodulators:
% 10.00/10.40  1 (wt=7) [] ifeq2(A,A,B,C) = B.
% 10.00/10.40  2 (wt=7) [] ifeq(A,A,B,C) = B.
% 10.00/10.40  4 (wt=11) [flip(1)] addition(addition(A,B),C) = addition(A,addition(B,C)).
% 10.00/10.40  5 (wt=5) [] addition(A,zero) = A.
% 10.00/10.40  6 (wt=5) [] addition(A,A) = A.
% 10.00/10.40  7 (wt=11) [flip(1)] multiplication(multiplication(A,B),C) = multiplication(A,multiplication(B,C)).
% 10.00/10.40  8 (wt=5) [] multiplication(A,one) = A.
% 10.00/10.40  9 (wt=5) [] multiplication(one,A) = A.
% 10.00/10.40  10 (wt=13) [] multiplication(A,addition(B,C)) = addition(multiplication(A,B),multiplication(A,C)).
% 10.00/10.40  11 (wt=13) [] multiplication(addition(A,B),C) = addition(multiplication(A,C),multiplication(B,C)).
% 10.00/10.40  12 (wt=5) [] multiplication(A,zero) = zero.
% 10.00/10.40  13 (wt=5) [] multiplication(zero,A) = zero.
% 10.00/10.40  14 (wt=11) [] ifeq(leq(A,B),true,addition(A,B),B) = B.
% 10.00/10.40  15 (wt=11) [] ifeq2(addition(A,B),B,leq(A,B),true) = true.
% 10.00/10.40  16 (wt=6) [] multiplication(antidomain(A),A) = zero.
% 10.00/10.40  17 (wt=18) [] addition(antidomain(multiplication(A,B)),antidomain(multiplication(A,antidomain(antidomain(B))))) = antidomain(multiplication(A,antidomain(antidomain(B)))).
% 10.00/10.40  18 (wt=8) [] addition(antidomain(antidomain(A)),antidomain(A)) = one.
% 10.00/10.40  19 (wt=6) [] domain(A) = antidomain(antidomain(A)).
% 10.00/10.40  20 (wt=6) [] multiplication(A,coantidomain(A)) = zero.
% 10.00/10.40  21 (wt=18) [] addition(coantidomain(multiplication(A,B)),coantidomain(multiplication(coantidomain(coantidomain(A)),B))) = coantidomain(multiplication(coantidomain(coantidomain(A)),B)).
% 10.00/10.40  22 (wt=8) [] addition(coantidomain(coantidomain(A)),coantidomain(A)) = one.
% 10.00/10.40  23 (wt=6) [] codomain(A) = coantidomain(coantidomain(A)).
% 10.00/10.40  24 (wt=7) [demod([19])] c(A) = antidomain(antidomain(antidomain(A))).
% 10.00/10.40  25 (wt=10) [demod([19]),flip(1)] multiplication(antidomain(antidomain(A)),antidomain(B)) = domain_difference(A,B).
% 10.00/10.40  26 (wt=11) [demod([19,19]),flip(1)] antidomain(antidomain(multiplication(A,antidomain(antidomain(B))))) = forward_diamond(A,B).
% 10.00/10.40  27 (wt=11) [demod([23,23]),flip(1)] coantidomain(coantidomain(multiplication(coantidomain(coantidomain(A)),B))) = backward_diamond(B,A).
% 10.00/10.40  28 (wt=13) [demod([24,24]),flip(1)] antidomain(antidomain(antidomain(forward_diamond(A,antidomain(antidomain(antidomain(B))))))) = forward_box(A,B).
% 10.00/10.40  29 (wt=13) [demod([24,24]),flip(1)] antidomain(antidomain(antidomain(backward_diamond(A,antidomain(antidomain(antidomain(B))))))) = backward_box(A,B).
% 10.00/10.40  30 (wt=11) [demod([19,19])] addition(antidomain(antidomain(sK2_goals_X1)),backward_box(sK3_goals_X0,antidomain(antidomain(sK1_goals_X2)))) = one.
% 10.00/10.40  end_of_list.
% 10.00/10.40  
% 10.00/10.40  Passive:
% 10.00/10.40  end_of_list.
% 10.00/10.40  
% 10.00/10.40  ------------- memory usage ------------
% 10.00/10.40  Memory dynamically allocated (tp_alloc): 63964.
% 10.00/10.40    type (bytes each)        gets      frees     in use      avail      bytes
% 10.00/10.40  sym_ent (  96)               74          0         74          0      6.9 K
% 10.00/10.40  term (  16)             3852945    3010565     842380          5  16356.8 K
% 10.00/10.40  gen_ptr (   8)          5015900     554336    4461564          0  34856.0 K
% 10.00/10.40  context ( 808)          5307956    5307954          2          7      7.1 K
% 10.00/10.40  trail (  12)            6151826    6151826          0          9      0.1 K
% 10.00/10.40  bt_node (  68)          2170948    2170941          7         44      3.4 K
% 10.00/10.40  ac_position (285432)          0          0          0          0      0.0 K
% 10.00/10.40  ac_match_pos (14044)          0          0          0          0      0.0 K
% 10.00/10.40  ac_match_free_vars_pos (4020)
% 10.00/10.40                                0          0          0          0      0.0 K
% 10.00/10.40  discrim (  12)           589291      39579     549712          0   6441.9 K
% 10.00/10.40  flat (  40)            10048632   10048632          0        131      5.1 K
% 10.00/10.40  discrim_pos (  12)       181039     181039          0          1      0.0 K
% 10.00/10.40  fpa_head (  12)           88529          0      88529          0   1037.4 K
% 10.00/10.40  fpa_tree (  28)          143050     143050          0         49      1.3 K
% 10.00/10.40  fpa_pos (  36)            38446      38446          0          1      0.0 K
% 10.00/10.40  literal (  12)           152093     127510      24583          1    288.1 K
% 10.00/10.40  clause (  24)            152093     127510      24583          1    576.2 K
% 10.00/10.40  list (  12)               13922      13866         56          4      0.7 K
% 10.00/10.40  list_pos (  20)           91044       8089      82955          0   1620.2 K
% 10.00/10.40  pair_index (   40)              2          0          2          0      0.1 K
% 10.00/10.40  
% 10.00/10.40  -------------- statistics -------------
% 10.00/10.40  Clauses input                 31
% 10.00/10.40    Usable input                   0
% 10.00/10.40    Sos input                     31
% 10.00/10.40    Demodulators input             0
% 10.00/10.40    Passive input                  0
% 10.00/10.40  
% 10.00/10.40  Processed BS (before search)  32
% 10.00/10.40  Forward subsumed BS            1
% 10.00/10.40  Kept BS                       31
% 10.00/10.40  New demodulators BS           29
% 10.00/10.40  Back demodulated BS            0
% 10.00/10.40  
% 10.00/10.40  Clauses or pairs given    336300
% 10.00/10.40  Clauses generated         100427
% 10.00/10.40  Forward subsumed           75875
% 10.00/10.40  Deleted by weight              0
% 10.00/10.40  Deleted by variable count      0
% 10.00/10.40  Kept                       24552
% 10.00/10.40  New demodulators           13834
% 10.00/10.40  Back demodulated            1694
% 10.00/10.40  Ordered paramod prunes         0
% 10.00/10.40  Basic paramod prunes     1387127
% 10.00/10.40  Prime paramod prunes        6423
% 10.00/10.40  Semantic prunes                0
% 10.00/10.40  
% 10.00/10.40  Rewrite attmepts         1675383
% 10.00/10.40  Rewrites                  150615
% 10.00/10.40  
% 10.00/10.40  FPA overloads                  0
% 10.00/10.40  FPA underloads                 0
% 10.00/10.40  
% 10.00/10.40  Usable size                    0
% 10.00/10.40  Sos size                   22889
% 10.00/10.40  Demodulators size          12594
% 10.00/10.40  Passive size                   0
% 10.00/10.40  Disabled size               1694
% 10.00/10.40  
% 10.00/10.40  Proofs found                   0
% 10.00/10.40  
% 10.00/10.40  ----------- times (seconds) ----------- Thu Jun 16 15:22:51 2022
% 10.00/10.40  
% 10.00/10.40  user CPU time             7.49   (0 hr, 0 min, 7 sec)
% 10.00/10.40  system CPU time           1.82   (0 hr, 0 min, 1 sec)
% 10.00/10.40  wall-clock time           9      (0 hr, 0 min, 9 sec)
% 10.00/10.40  input time                0.00
% 10.00/10.40  para
% 10.00/10.40  
% 10.00/10.40  ********** ABNORMAL END **********
% 10.00/10.40  ********** in tp_alloc, max_mem parameter exceeded.
% 10.00/10.40  modulation time       0.59
% 10.00/10.40  demodulation time         0.30
% 10.00/10.40  orient time               0.19
% 10.00/10.40  weigh time                0.03
% 10.00/10.40  forward subsume time      0.10
% 10.00/10.40  back demod find time      0.66
% 10.00/10.40  conflict time             0.02
% 10.00/10.40  LRPO time                 0.09
% 10.00/10.40  store clause time         4.89
% 10.00/10.40  disable clause time       0.13
% 10.00/10.40  prime paramod time        0.12
% 10.00/10.40  semantics time            0.00
% 10.00/10.40  
% 10.00/10.40  EQP interrupted
%------------------------------------------------------------------------------