TSTP Solution File: KLE096-10 by EQP---0.9e

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : EQP---0.9e
% Problem  : KLE096-10 : TPTP v8.1.0. Released v7.5.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : tptp2X_and_run_eqp %s

% Computer : n016.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 600s
% DateTime : Sun Jul 17 01:52:15 EDT 2022

% Result   : Unknown 13.34s 13.79s
% Output   : None 
% Verified : 
% SZS Type : -

% Comments : 
%------------------------------------------------------------------------------
%----No solution output by system
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.08/0.13  % Problem  : KLE096-10 : TPTP v8.1.0. Released v7.5.0.
% 0.08/0.14  % Command  : tptp2X_and_run_eqp %s
% 0.13/0.35  % Computer : n016.cluster.edu
% 0.13/0.35  % Model    : x86_64 x86_64
% 0.13/0.35  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.13/0.35  % Memory   : 8042.1875MB
% 0.13/0.35  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.13/0.35  % CPULimit : 300
% 0.13/0.35  % WCLimit  : 600
% 0.13/0.35  % DateTime : Thu Jun 16 16:52:49 EDT 2022
% 0.13/0.35  % CPUTime  : 
% 0.45/1.10  ----- EQP 0.9e, May 2009 -----
% 0.45/1.10  The job began on n016.cluster.edu, Thu Jun 16 16:52:50 2022
% 0.45/1.10  The command was "./eqp09e".
% 0.45/1.10  
% 0.45/1.10  set(prolog_style_variables).
% 0.45/1.10  set(lrpo).
% 0.45/1.10  set(basic_paramod).
% 0.45/1.10  set(functional_subsume).
% 0.45/1.10  set(ordered_paramod).
% 0.45/1.10  set(prime_paramod).
% 0.45/1.10  set(para_pairs).
% 0.45/1.10  assign(pick_given_ratio,4).
% 0.45/1.10  clear(print_kept).
% 0.45/1.10  clear(print_new_demod).
% 0.45/1.10  clear(print_back_demod).
% 0.45/1.10  clear(print_given).
% 0.45/1.10  assign(max_mem,64000).
% 0.45/1.10  end_of_commands.
% 0.45/1.10  
% 0.45/1.10  Usable:
% 0.45/1.10  end_of_list.
% 0.45/1.10  
% 0.45/1.10  Sos:
% 0.45/1.10  0 (wt=-1) [] ifeq3(A,A,B,C) = B.
% 0.45/1.10  0 (wt=-1) [] ifeq2(A,A,B,C) = B.
% 0.45/1.10  0 (wt=-1) [] ifeq(A,A,B,C) = B.
% 0.45/1.10  0 (wt=-1) [] addition(A,B) = addition(B,A).
% 0.45/1.10  0 (wt=-1) [] addition(A,addition(B,C)) = addition(addition(A,B),C).
% 0.45/1.10  0 (wt=-1) [] addition(A,zero) = A.
% 0.45/1.10  0 (wt=-1) [] addition(A,A) = A.
% 0.45/1.10  0 (wt=-1) [] multiplication(A,multiplication(B,C)) = multiplication(multiplication(A,B),C).
% 0.45/1.10  0 (wt=-1) [] multiplication(A,one) = A.
% 0.45/1.10  0 (wt=-1) [] multiplication(one,A) = A.
% 0.45/1.10  0 (wt=-1) [] multiplication(A,addition(B,C)) = addition(multiplication(A,B),multiplication(A,C)).
% 0.45/1.10  0 (wt=-1) [] multiplication(addition(A,B),C) = addition(multiplication(A,C),multiplication(B,C)).
% 0.45/1.10  0 (wt=-1) [] multiplication(A,zero) = zero.
% 0.45/1.10  0 (wt=-1) [] multiplication(zero,A) = zero.
% 0.45/1.10  0 (wt=-1) [] ifeq2(leq(A,B),true,addition(A,B),B) = B.
% 0.45/1.10  0 (wt=-1) [] ifeq3(addition(A,B),B,leq(A,B),true) = true.
% 0.45/1.10  0 (wt=-1) [] leq(addition(one,multiplication(A,star(A))),star(A)) = true.
% 0.45/1.10  0 (wt=-1) [] leq(addition(one,multiplication(star(A),A)),star(A)) = true.
% 0.45/1.10  0 (wt=-1) [] ifeq(leq(addition(multiplication(A,B),C),B),true,leq(multiplication(star(A),C),B),true) = true.
% 0.45/1.10  0 (wt=-1) [] ifeq(leq(addition(multiplication(A,B),C),A),true,leq(multiplication(C,star(B)),A),true) = true.
% 0.45/1.10  0 (wt=-1) [] multiplication(antidomain(A),A) = zero.
% 0.45/1.10  0 (wt=-1) [] addition(antidomain(multiplication(A,B)),antidomain(multiplication(A,antidomain(antidomain(B))))) = antidomain(multiplication(A,antidomain(antidomain(B)))).
% 0.45/1.10  0 (wt=-1) [] addition(antidomain(antidomain(A)),antidomain(A)) = one.
% 0.45/1.10  0 (wt=-1) [] domain(A) = antidomain(antidomain(A)).
% 0.45/1.10  0 (wt=-1) [] multiplication(A,coantidomain(A)) = zero.
% 0.45/1.10  0 (wt=-1) [] addition(coantidomain(multiplication(A,B)),coantidomain(multiplication(coantidomain(coantidomain(A)),B))) = coantidomain(multiplication(coantidomain(coantidomain(A)),B)).
% 0.45/1.10  0 (wt=-1) [] addition(coantidomain(coantidomain(A)),coantidomain(A)) = one.
% 0.45/1.10  0 (wt=-1) [] codomain(A) = coantidomain(coantidomain(A)).
% 0.45/1.10  0 (wt=-1) [] c(A) = antidomain(domain(A)).
% 0.45/1.10  0 (wt=-1) [] domain_difference(A,B) = multiplication(domain(A),antidomain(B)).
% 0.45/1.10  0 (wt=-1) [] forward_diamond(A,B) = domain(multiplication(A,domain(B))).
% 0.45/1.10  0 (wt=-1) [] backward_diamond(A,B) = codomain(multiplication(codomain(B),A)).
% 0.45/1.10  0 (wt=-1) [] forward_box(A,B) = c(forward_diamond(A,c(B))).
% 0.45/1.10  0 (wt=-1) [] backward_box(A,B) = c(backward_diamond(A,c(B))).
% 0.45/1.10  0 (wt=-1) [] -(addition(domain(sK2_goals_X0),forward_diamond(star(sK1_goals_X1),forward_diamond(sK1_goals_X1,domain(sK2_goals_X0)))) = forward_diamond(star(sK1_goals_X1),domain(sK2_goals_X0))).
% 0.45/1.10  end_of_list.
% 0.45/1.10  
% 0.45/1.10  Demodulators:
% 0.45/1.10  end_of_list.
% 0.45/1.10  
% 0.45/1.10  Passive:
% 0.45/1.10  end_of_list.
% 0.45/1.10  
% 0.45/1.10  Starting to process input.
% 0.45/1.10  
% 0.45/1.10  ** KEPT: 1 (wt=7) [] ifeq3(A,A,B,C) = B.
% 0.45/1.10  1 is a new demodulator.
% 0.45/1.10  
% 0.45/1.10  ** KEPT: 2 (wt=7) [] ifeq2(A,A,B,C) = B.
% 0.45/1.10  2 is a new demodulator.
% 0.45/1.10  
% 0.45/1.10  ** KEPT: 3 (wt=7) [] ifeq(A,A,B,C) = B.
% 0.45/1.10  3 is a new demodulator.
% 0.45/1.10  
% 0.45/1.10  ** KEPT: 4 (wt=7) [] addition(A,B) = addition(B,A).
% 0.45/1.10  clause forward subsumed: 0 (wt=7) [flip(4)] addition(B,A) = addition(A,B).
% 0.45/1.10  
% 0.45/1.10  ** KEPT: 5 (wt=11) [flip(1)] addition(addition(A,B),C) = addition(A,addition(B,C)).
% 0.45/1.10  5 is a new demodulator.
% 0.45/1.10  
% 0.45/1.10  ** KEPT: 6 (wt=5) [] addition(A,zero) = A.
% 0.45/1.10  6 is a new demodulator.
% 0.45/1.10  
% 0.45/1.10  ** KEPT: 7 (wt=5) [] addition(A,A) = A.
% 0.45/1.10  7 is a new demodulator.
% 0.45/1.10  
% 0.45/1.10  ** KEPT: 8 (wt=11) [flip(1)] multiplication(multiplication(A,B),C) = multiplication(A,multiplication(B,C)).
% 0.45/1.10  8 is a new demodulator.
% 0.45/1.10  
% 0.45/1.10  ** KEPT: 9 (wt=5) [] multiplication(A,one) = A.
% 0.45/1.10  9 is a new demodulator.
% 0.45/1.10  
% 0.45/1.10  ** KEPT: 10 (wt=5) [] multiplication(one,A) = A.
% 0.45/1.10  10 is a new demodulator.
% 0.45/1.10  
% 0.45/1.10  ** KEPT: 11 (wt=13) [] multiplication(A,addition(B,C)) = addition(multiplication(A,B),multiplication(A,C)).
% 0.45/1.10  11 is a new demodulator.
% 0.45/1.10  
% 0.45/1.10  ** KEPT: 12 (wt=13) [] multiplication(addition(A,B),C) = addition(multiplication(A,C),multiplication(B,C)).
% 0.45/1.10  12 is a new demodulator.
% 0.45/1.10  
% 0.45/1.10  ** KEPT: 13 (wt=5) [] multiplication(A,zero) = zero.
% 0.45/1.10  13 is a new demodulator.
% 0.45/1.10  
% 0.45/1.10  ** KEPT: 14 (wt=5) [] multiplication(zero,A) = zero.
% 0.45/1.10  14 is a new demodulator.
% 0.45/1.10  
% 0.45/1.10  ** KEPT: 15 (wt=11) [] ifeq2(leq(A,B),true,addition(A,B),B) = B.
% 0.45/1.10  15 is a new demodulator.
% 0.45/1.10  
% 0.45/1.10  ** KEPT: 16 (wt=11) [] ifeq3(addition(A,B),B,leq(A,B),true) = true.
% 0.45/1.10  16 is a new demodulator.
% 0.45/1.10  
% 0.45/1.10  ** KEPT: 17 (wt=11) [] leq(addition(one,multiplication(A,star(A))),star(A)) = true.
% 0.45/1.10  17 is a new demodulator.
% 0.45/1.10  
% 0.45/1.10  ** KEPT: 18 (wt=11) [] leq(addition(one,multiplication(star(A),A)),star(A)) = true.
% 0.45/1.10  18 is a new demodulator.
% 0.45/1.10  
% 0.45/1.10  ** KEPT: 19 (wt=18) [] ifeq(leq(addition(multiplication(A,B),C),B),true,leq(multiplication(star(A),C),B),true) = true.
% 0.45/1.10  19 is a new demodulator.
% 0.45/1.10  
% 0.45/1.10  ** KEPT: 20 (wt=18) [] ifeq(leq(addition(multiplication(A,B),C),A),true,leq(multiplication(C,star(B)),A),true) = true.
% 0.45/1.10  20 is a new demodulator.
% 0.45/1.10  
% 0.45/1.10  ** KEPT: 21 (wt=6) [] multiplication(antidomain(A),A) = zero.
% 0.45/1.10  21 is a new demodulator.
% 0.45/1.10  
% 0.45/1.10  ** KEPT: 22 (wt=18) [] addition(antidomain(multiplication(A,B)),antidomain(multiplication(A,antidomain(antidomain(B))))) = antidomain(multiplication(A,antidomain(antidomain(B)))).
% 0.45/1.10  22 is a new demodulator.
% 0.45/1.10  
% 0.45/1.10  ** KEPT: 23 (wt=8) [] addition(antidomain(antidomain(A)),antidomain(A)) = one.
% 0.45/1.10  23 is a new demodulator.
% 0.45/1.10  
% 0.45/1.10  ** KEPT: 24 (wt=6) [] domain(A) = antidomain(antidomain(A)).
% 0.45/1.10  24 is a new demodulator.
% 0.45/1.10  
% 0.45/1.10  ** KEPT: 25 (wt=6) [] multiplication(A,coantidomain(A)) = zero.
% 0.45/1.10  25 is a new demodulator.
% 0.45/1.10  
% 0.45/1.10  ** KEPT: 26 (wt=18) [] addition(coantidomain(multiplication(A,B)),coantidomain(multiplication(coantidomain(coantidomain(A)),B))) = coantidomain(multiplication(coantidomain(coantidomain(A)),B)).
% 0.45/1.10  26 is a new demodulator.
% 0.45/1.10  
% 0.45/1.10  ** KEPT: 27 (wt=8) [] addition(coantidomain(coantidomain(A)),coantidomain(A)) = one.
% 0.45/1.10  27 is a new demodulator.
% 0.45/1.10  
% 0.45/1.10  ** KEPT: 28 (wt=6) [] codomain(A) = coantidomain(coantidomain(A)).
% 0.45/1.10  28 is a new demodulator.
% 0.45/1.10  
% 0.45/1.10  ** KEPT: 29 (wt=7) [demod([24])] c(A) = antidomain(antidomain(antidomain(A))).
% 0.45/1.10  29 is a new demodulator.
% 0.45/1.10  
% 0.45/1.10  ** KEPT: 30 (wt=10) [demod([24]),flip(1)] multiplication(antidomain(antidomain(A)),antidomain(B)) = domain_difference(A,B).
% 0.45/1.10  30 is a new demodulator.
% 0.45/1.10  
% 0.45/1.10  ** KEPT: 31 (wt=11) [demod([24,24]),flip(1)] antidomain(antidomain(multiplication(A,antidomain(antidomain(B))))) = forward_diamond(A,B).
% 0.45/1.10  31 is a new demodulator.
% 0.45/1.10  
% 0.45/1.10  ** KEPT: 32 (wt=11) [demod([28,28]),flip(1)] coantidomain(coantidomain(multiplication(coantidomain(coantidomain(A)),B))) = backward_diamond(B,A).
% 0.45/1.10  32 is a new demodulator.
% 0.45/1.10  
% 0.45/1.10  ** KEPT: 33 (wt=13) [demod([29,29]),flip(1)] antidomain(antidomain(antidomain(forward_diamond(A,antidomain(antidomain(antidomain(B))))))) = forward_box(A,B).
% 0.45/1.10  33 is a new demodulator.
% 0.45/1.10  
% 0.45/1.10  ** KEPT: 34 (wt=13) [demod([29,29]),flip(1)] antidomain(antidomain(antidomain(backward_diamond(A,antidomain(antidomain(antidomain(B))))))) = backward_box(A,B).
% 0.45/1.10  34 is a new demodulator.
% 0.45/1.10  
% 0.45/1.10  ** KEPT: 35 (wt=19) [demod([24,24,24])] -(addition(antidomain(antidomain(sK2_goals_X0)),forward_diamond(star(sK1_goals_X1),forward_diamond(sK1_goals_X1,antidomain(antidomain(sK2_goals_X0))))) = forward_diamond(star(sK1_goals_X1),antidomain(antidomain(sK2_goals_X0)))).
% 0.45/1.10  
% 0.45/1.10  After processing input:
% 0.45/1.10  
% 0.45/1.10  Usable:
% 0.45/1.10  end_of_list.
% 0.45/1.10  
% 0.45/1.10  Sos:
% 0.45/1.10  6 (wt=5) [] addition(A,zero) = A.
% 0.45/1.10  7 (wt=5) [] addition(A,A) = A.
% 0.45/1.10  9 (wt=5) [] multiplication(A,one) = A.
% 0.45/1.10  10 (wt=5) [] multiplication(one,A) = A.
% 0.45/1.10  13 (wt=5) [] multiplication(A,zero) = zero.
% 0.45/1.10  14 (wt=5) [] multiplication(zero,A) = zero.
% 0.45/1.10  21 (wt=6) [] multiplication(antidomain(A),A) = zero.
% 0.45/1.10  24 (wt=6) [] domain(A) = antidomain(antidomain(A)).
% 0.45/1.10  25 (wt=6) [] multiplication(A,coantidomain(A)) = zero.
% 0.45/1.10  28 (wt=6) [] codomain(A) = coantidomain(coantidomain(A)).
% 0.45/1.10  1 (wt=7) [] ifeq3(A,A,B,C) = B.
% 0.45/1.10  2 (wt=7) [] ifeq2(A,A,B,C) = B.
% 0.45/1.10  3 (wt=7) [] ifeq(A,A,B,C) = B.
% 0.45/1.10  4 (wt=7) [] addition(A,B) = addition(B,A).
% 0.45/1.10  29 (wt=7) [demod([24])] c(A) = antidomain(antidomain(antidomain(A))).
% 0.45/1.10  23 (wt=8) [] addition(antidomain(antidomain(A)),antidomain(A)) = one.
% 0.45/1.10  27 (wt=8) [] addition(coantidomain(coantidomain(A)),coantidomain(A)) = one.
% 0.45/1.10  30 (wt=10) [demod([24]),flip(1)] multiplication(antidomain(antidomain(A)),antidomain(B)) = domain_difference(A,B).
% 13.34/13.78  5 (wt=11) [flip(1)] addition(addition(A,B),C) = addition(A,addition(B,C)).
% 13.34/13.78  8 (wt=11) [flip(1)] multiplication(multiplication(A,B),C) = multiplication(A,multiplication(B,C)).
% 13.34/13.78  15 (wt=11) [] ifeq2(leq(A,B),true,addition(A,B),B) = B.
% 13.34/13.78  16 (wt=11) [] ifeq3(addition(A,B),B,leq(A,B),true) = true.
% 13.34/13.78  17 (wt=11) [] leq(addition(one,multiplication(A,star(A))),star(A)) = true.
% 13.34/13.78  18 (wt=11) [] leq(addition(one,multiplication(star(A),A)),star(A)) = true.
% 13.34/13.78  31 (wt=11) [demod([24,24]),flip(1)] antidomain(antidomain(multiplication(A,antidomain(antidomain(B))))) = forward_diamond(A,B).
% 13.34/13.78  32 (wt=11) [demod([28,28]),flip(1)] coantidomain(coantidomain(multiplication(coantidomain(coantidomain(A)),B))) = backward_diamond(B,A).
% 13.34/13.78  11 (wt=13) [] multiplication(A,addition(B,C)) = addition(multiplication(A,B),multiplication(A,C)).
% 13.34/13.78  12 (wt=13) [] multiplication(addition(A,B),C) = addition(multiplication(A,C),multiplication(B,C)).
% 13.34/13.78  33 (wt=13) [demod([29,29]),flip(1)] antidomain(antidomain(antidomain(forward_diamond(A,antidomain(antidomain(antidomain(B))))))) = forward_box(A,B).
% 13.34/13.78  34 (wt=13) [demod([29,29]),flip(1)] antidomain(antidomain(antidomain(backward_diamond(A,antidomain(antidomain(antidomain(B))))))) = backward_box(A,B).
% 13.34/13.78  19 (wt=18) [] ifeq(leq(addition(multiplication(A,B),C),B),true,leq(multiplication(star(A),C),B),true) = true.
% 13.34/13.78  20 (wt=18) [] ifeq(leq(addition(multiplication(A,B),C),A),true,leq(multiplication(C,star(B)),A),true) = true.
% 13.34/13.78  22 (wt=18) [] addition(antidomain(multiplication(A,B)),antidomain(multiplication(A,antidomain(antidomain(B))))) = antidomain(multiplication(A,antidomain(antidomain(B)))).
% 13.34/13.78  26 (wt=18) [] addition(coantidomain(multiplication(A,B)),coantidomain(multiplication(coantidomain(coantidomain(A)),B))) = coantidomain(multiplication(coantidomain(coantidomain(A)),B)).
% 13.34/13.78  35 (wt=19) [demod([24,24,24])] -(addition(antidomain(antidomain(sK2_goals_X0)),forward_diamond(star(sK1_goals_X1),forward_diamond(sK1_goals_X1,antidomain(antidomain(sK2_goals_X0))))) = forward_diamond(star(sK1_goals_X1),antidomain(antidomain(sK2_goals_X0)))).
% 13.34/13.78  end_of_list.
% 13.34/13.78  
% 13.34/13.78  Demodulators:
% 13.34/13.78  1 (wt=7) [] ifeq3(A,A,B,C) = B.
% 13.34/13.78  2 (wt=7) [] ifeq2(A,A,B,C) = B.
% 13.34/13.78  3 (wt=7) [] ifeq(A,A,B,C) = B.
% 13.34/13.78  5 (wt=11) [flip(1)] addition(addition(A,B),C) = addition(A,addition(B,C)).
% 13.34/13.78  6 (wt=5) [] addition(A,zero) = A.
% 13.34/13.78  7 (wt=5) [] addition(A,A) = A.
% 13.34/13.78  8 (wt=11) [flip(1)] multiplication(multiplication(A,B),C) = multiplication(A,multiplication(B,C)).
% 13.34/13.78  9 (wt=5) [] multiplication(A,one) = A.
% 13.34/13.78  10 (wt=5) [] multiplication(one,A) = A.
% 13.34/13.78  11 (wt=13) [] multiplication(A,addition(B,C)) = addition(multiplication(A,B),multiplication(A,C)).
% 13.34/13.78  12 (wt=13) [] multiplication(addition(A,B),C) = addition(multiplication(A,C),multiplication(B,C)).
% 13.34/13.78  13 (wt=5) [] multiplication(A,zero) = zero.
% 13.34/13.78  14 (wt=5) [] multiplication(zero,A) = zero.
% 13.34/13.78  15 (wt=11) [] ifeq2(leq(A,B),true,addition(A,B),B) = B.
% 13.34/13.78  16 (wt=11) [] ifeq3(addition(A,B),B,leq(A,B),true) = true.
% 13.34/13.78  17 (wt=11) [] leq(addition(one,multiplication(A,star(A))),star(A)) = true.
% 13.34/13.78  18 (wt=11) [] leq(addition(one,multiplication(star(A),A)),star(A)) = true.
% 13.34/13.78  19 (wt=18) [] ifeq(leq(addition(multiplication(A,B),C),B),true,leq(multiplication(star(A),C),B),true) = true.
% 13.34/13.78  20 (wt=18) [] ifeq(leq(addition(multiplication(A,B),C),A),true,leq(multiplication(C,star(B)),A),true) = true.
% 13.34/13.78  21 (wt=6) [] multiplication(antidomain(A),A) = zero.
% 13.34/13.78  22 (wt=18) [] addition(antidomain(multiplication(A,B)),antidomain(multiplication(A,antidomain(antidomain(B))))) = antidomain(multiplication(A,antidomain(antidomain(B)))).
% 13.34/13.78  23 (wt=8) [] addition(antidomain(antidomain(A)),antidomain(A)) = one.
% 13.34/13.78  24 (wt=6) [] domain(A) = antidomain(antidomain(A)).
% 13.34/13.78  25 (wt=6) [] multiplication(A,coantidomain(A)) = zero.
% 13.34/13.78  26 (wt=18) [] addition(coantidomain(multiplication(A,B)),coantidomain(multiplication(coantidomain(coantidomain(A)),B))) = coantidomain(multiplication(coantidomain(coantidomain(A)),B)).
% 13.34/13.78  27 (wt=8) [] addition(coantidomain(coantidomain(A)),coantidomain(A)) = one.
% 13.34/13.78  28 (wt=6) [] codomain(A) = coantidomain(coantidomain(A)).
% 13.34/13.78  29 (wt=7) [demod([24])] c(A) = antidomain(antidomain(antidomain(A))).
% 13.34/13.78  30 (wt=10) [demod([24]),flip(1)] multiplication(antidomain(antidomain(A)),antidomain(B)) = domain_difference(A,B).
% 13.34/13.78  31 (wt=11) [demod([24,24]),flip(1)] antidomain(antidomain(multiplication(A,antidomain(antidomain(B))))) = forward_diamond(A,B).
% 13.34/13.78  32 (wt=11) [demod([28,28]),flip(1)] coantidomain(coantidomain(multiplication(coantidomain(coantidomain(A)),B))) = backward_diamond(B,A).
% 13.34/13.78  33 (wt=13) [demod([29,29]),flip(1)] antidomain(antidomain(antidomain(forward_diamond(A,antidomain(antidomain(antidomain(B))))))) = forward_box(A,B).
% 13.34/13.78  34 (wt=13) [demod([29,29]),flip(1)] antidomain(antidomain(antidomain(backward_diamond(A,antidomain(antidomain(antidomain(B))))))) = backward_box(A,B).
% 13.34/13.78  end_of_list.
% 13.34/13.78  
% 13.34/13.78  Passive:
% 13.34/13.78  end_of_list.
% 13.34/13.78  
% 13.34/13.78  ------------- memory usage ------------
% 13.34/13.78  Memory dynamically allocated (tp_alloc): 63964.
% 13.34/13.78    type (bytes each)        gets      frees     in use      avail      bytes
% 13.34/13.78  sym_ent (  96)               75          0         75          0      7.0 K
% 13.34/13.78  term (  16)             3726939    2963307     763632          0  14824.4 K
% 13.34/13.78  gen_ptr (   8)          4878982     687149    4191833          0  32748.7 K
% 13.34/13.78  context ( 808)         10785128   10785125          3          5      6.3 K
% 13.34/13.78  trail (  12)             504067     504067          0          8      0.1 K
% 13.34/13.78  bt_node (  68)          5548796    5548793          3         36      2.6 K
% 13.34/13.78  ac_position (285432)          0          0          0          0      0.0 K
% 13.34/13.78  ac_match_pos (14044)          0          0          0          0      0.0 K
% 13.34/13.78  ac_match_free_vars_pos (4020)
% 13.34/13.78                                0          0          0          0      0.0 K
% 13.34/13.78  discrim (  12)           772826      53659     719167          0   8427.7 K
% 13.34/13.78  flat (  40)             7926661    7926656          5        122      5.0 K
% 13.34/13.78  discrim_pos (  12)       219562     219561          1          0      0.0 K
% 13.34/13.78  fpa_head (  12)          113730          0     113730          0   1332.8 K
% 13.34/13.78  fpa_tree (  28)          274994     274994          0         45      1.2 K
% 13.34/13.78  fpa_pos (  36)            44357      44357          0          1      0.0 K
% 13.34/13.78  literal (  12)           134148     111041      23107          0    270.8 K
% 13.34/13.78  clause (  24)            134148     111041      23107          0    541.6 K
% 13.34/13.78  list (  12)               21310      21254         56          4      0.7 K
% 13.34/13.78  list_pos (  20)           95466      11844      83622          0   1633.2 K
% 13.34/13.78  pair_index (   40)              2          0          2          0      0.1 K
% 13.34/13.78  
% 13.34/13.78  -------------- statistics -------------
% 13.34/13.78  Clauses input                 35
% 13.34/13.78    Usable input                   0
% 13.34/13.78    Sos input                     35
% 13.34/13.78    Demodulators input             0
% 13.34/13.78    Passive input                  0
% 13.34/13.78  
% 13.34/13.78  Processed BS (before search)  36
% 13.34/13.78  Forward subsumed BS            1
% 13.34/13.78  Kept BS                       35
% 13.34/13.78  New demodulators BS           33
% 13.34/13.78  Back demodulated BS            0
% 13.34/13.78  
% 13.34/13.78  Clauses or pairs given    794420
% 13.34/13.78  Clauses generated         107079
% 13.34/13.78  Forward subsumed           84007
% 13.34/13.78  Deleted by weight              0
% 13.34/13.78  Deleted by variable count      0
% 13.34/13.78  Kept                       23071
% 13.34/13.78  New demodulators           21218
% 13.34/13.78  Back demodulated            2402
% 13.34/13.78  Ordered paramod prunes         0
% 13.34/13.78  Basic paramod prunes     3282357
% 13.34/13.78  Prime paramod prunes       10659
% 13.34/13.78  Sem
% 13.34/13.78  
% 13.34/13.78  ********** ABNORMAL END **********
% 13.34/13.78  ********** in tp_alloc, max_mem parameter exceeded.
% 13.34/13.78  antic prunes                0
% 13.34/13.78  
% 13.34/13.78  Rewrite attmepts         1687228
% 13.34/13.78  Rewrites                  205519
% 13.34/13.78  
% 13.34/13.78  FPA overloads                  0
% 13.34/13.78  FPA underloads                 0
% 13.34/13.78  
% 13.34/13.78  Usable size                    0
% 13.34/13.78  Sos size                   20704
% 13.34/13.78  Demodulators size          19108
% 13.34/13.78  Passive size                   0
% 13.34/13.78  Disabled size               2402
% 13.34/13.78  
% 13.34/13.78  Proofs found                   0
% 13.34/13.78  
% 13.34/13.78  ----------- times (seconds) ----------- Thu Jun 16 16:53:02 2022
% 13.34/13.78  
% 13.34/13.78  user CPU time             9.70   (0 hr, 0 min, 9 sec)
% 13.34/13.78  system CPU time           2.98   (0 hr, 0 min, 2 sec)
% 13.34/13.78  wall-clock time          12      (0 hr, 0 min, 12 sec)
% 13.34/13.78  input time                0.00
% 13.34/13.78  paramodulation time       0.98
% 13.34/13.78  demodulation time         0.37
% 13.34/13.78  orient time               0.14
% 13.34/13.78  weigh time                0.04
% 13.34/13.78  forward subsume time      0.09
% 13.34/13.78  back demod find time      1.37
% 13.34/13.78  conflict time             0.02
% 13.34/13.78  LRPO time                 0.06
% 13.34/13.78  store clause time         5.43
% 13.34/13.78  disable clause time       0.32
% 13.34/13.78  prime paramod time        0.12
% 13.34/13.78  semantics time            0.00
% 13.34/13.78  
% 13.34/13.78  EQP interrupted
%------------------------------------------------------------------------------