TSTP Solution File: KLE096+1 by Otter---3.3

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Otter---3.3
% Problem  : KLE096+1 : TPTP v8.1.0. Released v4.0.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : otter-tptp-script %s

% Computer : n015.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Wed Jul 27 13:00:44 EDT 2022

% Result   : Unknown 2.20s 2.38s
% Output   : None 
% Verified : 
% SZS Type : -

% Comments : 
%------------------------------------------------------------------------------
%----No solution output by system
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.06/0.12  % Problem  : KLE096+1 : TPTP v8.1.0. Released v4.0.0.
% 0.06/0.12  % Command  : otter-tptp-script %s
% 0.12/0.33  % Computer : n015.cluster.edu
% 0.12/0.33  % Model    : x86_64 x86_64
% 0.12/0.33  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.12/0.33  % Memory   : 8042.1875MB
% 0.12/0.33  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.12/0.33  % CPULimit : 300
% 0.12/0.33  % WCLimit  : 300
% 0.12/0.33  % DateTime : Wed Jul 27 06:39:11 EDT 2022
% 0.12/0.33  % CPUTime  : 
% 2.01/2.18  ----- Otter 3.3f, August 2004 -----
% 2.01/2.18  The process was started by sandbox on n015.cluster.edu,
% 2.01/2.18  Wed Jul 27 06:39:12 2022
% 2.01/2.18  The command was "./otter".  The process ID is 5524.
% 2.01/2.18  
% 2.01/2.18  set(prolog_style_variables).
% 2.01/2.18  set(auto).
% 2.01/2.18     dependent: set(auto1).
% 2.01/2.18     dependent: set(process_input).
% 2.01/2.18     dependent: clear(print_kept).
% 2.01/2.18     dependent: clear(print_new_demod).
% 2.01/2.18     dependent: clear(print_back_demod).
% 2.01/2.18     dependent: clear(print_back_sub).
% 2.01/2.18     dependent: set(control_memory).
% 2.01/2.18     dependent: assign(max_mem, 12000).
% 2.01/2.18     dependent: assign(pick_given_ratio, 4).
% 2.01/2.18     dependent: assign(stats_level, 1).
% 2.01/2.18     dependent: assign(max_seconds, 10800).
% 2.01/2.18  clear(print_given).
% 2.01/2.18  
% 2.01/2.18  formula_list(usable).
% 2.01/2.18  all A (A=A).
% 2.01/2.18  all A B (addition(A,B)=addition(B,A)).
% 2.01/2.18  all C B A (addition(A,addition(B,C))=addition(addition(A,B),C)).
% 2.01/2.18  all A (addition(A,zero)=A).
% 2.01/2.18  all A (addition(A,A)=A).
% 2.01/2.18  all A B C (multiplication(A,multiplication(B,C))=multiplication(multiplication(A,B),C)).
% 2.01/2.18  all A (multiplication(A,one)=A).
% 2.01/2.18  all A (multiplication(one,A)=A).
% 2.01/2.18  all A B C (multiplication(A,addition(B,C))=addition(multiplication(A,B),multiplication(A,C))).
% 2.01/2.18  all A B C (multiplication(addition(A,B),C)=addition(multiplication(A,C),multiplication(B,C))).
% 2.01/2.18  all A (multiplication(A,zero)=zero).
% 2.01/2.18  all A (multiplication(zero,A)=zero).
% 2.01/2.18  all A B (le_q(A,B)<->addition(A,B)=B).
% 2.01/2.18  all A le_q(addition(one,multiplication(A,star(A))),star(A)).
% 2.01/2.18  all A le_q(addition(one,multiplication(star(A),A)),star(A)).
% 2.01/2.18  all A B C (le_q(addition(multiplication(A,B),C),B)->le_q(multiplication(star(A),C),B)).
% 2.01/2.18  all A B C (le_q(addition(multiplication(A,B),C),A)->le_q(multiplication(C,star(B)),A)).
% 2.01/2.18  all X0 (multiplication(antidomain(X0),X0)=zero).
% 2.01/2.18  all X0 X1 (addition(antidomain(multiplication(X0,X1)),antidomain(multiplication(X0,antidomain(antidomain(X1)))))=antidomain(multiplication(X0,antidomain(antidomain(X1))))).
% 2.01/2.18  all X0 (addition(antidomain(antidomain(X0)),antidomain(X0))=one).
% 2.01/2.18  all X0 (domain(X0)=antidomain(antidomain(X0))).
% 2.01/2.18  all X0 (multiplication(X0,coantidomain(X0))=zero).
% 2.01/2.18  all X0 X1 (addition(coantidomain(multiplication(X0,X1)),coantidomain(multiplication(coantidomain(coantidomain(X0)),X1)))=coantidomain(multiplication(coantidomain(coantidomain(X0)),X1))).
% 2.01/2.18  all X0 (addition(coantidomain(coantidomain(X0)),coantidomain(X0))=one).
% 2.01/2.18  all X0 (codomain(X0)=coantidomain(coantidomain(X0))).
% 2.01/2.18  all X0 (c(X0)=antidomain(domain(X0))).
% 2.01/2.18  all X0 X1 (domain_difference(X0,X1)=multiplication(domain(X0),antidomain(X1))).
% 2.01/2.18  all X0 X1 (forward_diamond(X0,X1)=domain(multiplication(X0,domain(X1)))).
% 2.01/2.18  all X0 X1 (backward_diamond(X0,X1)=codomain(multiplication(codomain(X1),X0))).
% 2.01/2.18  all X0 X1 (forward_box(X0,X1)=c(forward_diamond(X0,c(X1)))).
% 2.01/2.18  all X0 X1 (backward_box(X0,X1)=c(backward_diamond(X0,c(X1)))).
% 2.01/2.18  -(all X0 X1 (addition(domain(X0),forward_diamond(star(X1),forward_diamond(X1,domain(X0))))=forward_diamond(star(X1),domain(X0)))).
% 2.01/2.18  end_of_list.
% 2.01/2.18  
% 2.01/2.18  -------> usable clausifies to:
% 2.01/2.18  
% 2.01/2.18  list(usable).
% 2.01/2.18  0 [] A=A.
% 2.01/2.18  0 [] addition(A,B)=addition(B,A).
% 2.01/2.18  0 [] addition(A,addition(B,C))=addition(addition(A,B),C).
% 2.01/2.18  0 [] addition(A,zero)=A.
% 2.01/2.18  0 [] addition(A,A)=A.
% 2.01/2.18  0 [] multiplication(A,multiplication(B,C))=multiplication(multiplication(A,B),C).
% 2.01/2.18  0 [] multiplication(A,one)=A.
% 2.01/2.18  0 [] multiplication(one,A)=A.
% 2.01/2.18  0 [] multiplication(A,addition(B,C))=addition(multiplication(A,B),multiplication(A,C)).
% 2.01/2.18  0 [] multiplication(addition(A,B),C)=addition(multiplication(A,C),multiplication(B,C)).
% 2.01/2.18  0 [] multiplication(A,zero)=zero.
% 2.01/2.18  0 [] multiplication(zero,A)=zero.
% 2.01/2.18  0 [] -le_q(A,B)|addition(A,B)=B.
% 2.01/2.18  0 [] le_q(A,B)|addition(A,B)!=B.
% 2.01/2.18  0 [] le_q(addition(one,multiplication(A,star(A))),star(A)).
% 2.01/2.18  0 [] le_q(addition(one,multiplication(star(A),A)),star(A)).
% 2.01/2.18  0 [] -le_q(addition(multiplication(A,B),C),B)|le_q(multiplication(star(A),C),B).
% 2.01/2.18  0 [] -le_q(addition(multiplication(A,B),C),A)|le_q(multiplication(C,star(B)),A).
% 2.01/2.18  0 [] multiplication(antidomain(X0),X0)=zero.
% 2.01/2.18  0 [] addition(antidomain(multiplication(X0,X1)),antidomain(multiplication(X0,antidomain(antidomain(X1)))))=antidomain(multiplication(X0,antidomain(antidomain(X1)))).
% 2.01/2.18  0 [] addition(antidomain(antidomain(X0)),antidomain(X0))=one.
% 2.01/2.18  0 [] domain(X0)=antidomain(antidomain(X0)).
% 2.01/2.18  0 [] multiplication(X0,coantidomain(X0))=zero.
% 2.01/2.18  0 [] addition(coantidomain(multiplication(X0,X1)),coantidomain(multiplication(coantidomain(coantidomain(X0)),X1)))=coantidomain(multiplication(coantidomain(coantidomain(X0)),X1)).
% 2.01/2.18  0 [] addition(coantidomain(coantidomain(X0)),coantidomain(X0))=one.
% 2.01/2.18  0 [] codomain(X0)=coantidomain(coantidomain(X0)).
% 2.01/2.18  0 [] c(X0)=antidomain(domain(X0)).
% 2.01/2.18  0 [] domain_difference(X0,X1)=multiplication(domain(X0),antidomain(X1)).
% 2.01/2.18  0 [] forward_diamond(X0,X1)=domain(multiplication(X0,domain(X1))).
% 2.01/2.18  0 [] backward_diamond(X0,X1)=codomain(multiplication(codomain(X1),X0)).
% 2.01/2.18  0 [] forward_box(X0,X1)=c(forward_diamond(X0,c(X1))).
% 2.01/2.18  0 [] backward_box(X0,X1)=c(backward_diamond(X0,c(X1))).
% 2.01/2.18  0 [] addition(domain($c2),forward_diamond(star($c1),forward_diamond($c1,domain($c2))))!=forward_diamond(star($c1),domain($c2)).
% 2.01/2.18  end_of_list.
% 2.01/2.18  
% 2.01/2.18  SCAN INPUT: prop=0, horn=1, equality=1, symmetry=0, max_lits=2.
% 2.01/2.18  
% 2.01/2.18  This is a Horn set with equality.  The strategy will be
% 2.01/2.18  Knuth-Bendix and hyper_res, with positive clauses in
% 2.01/2.18  sos and nonpositive clauses in usable.
% 2.01/2.18  
% 2.01/2.18     dependent: set(knuth_bendix).
% 2.01/2.18     dependent: set(anl_eq).
% 2.01/2.18     dependent: set(para_from).
% 2.01/2.18     dependent: set(para_into).
% 2.01/2.18     dependent: clear(para_from_right).
% 2.01/2.18     dependent: clear(para_into_right).
% 2.01/2.18     dependent: set(para_from_vars).
% 2.01/2.18     dependent: set(eq_units_both_ways).
% 2.01/2.18     dependent: set(dynamic_demod_all).
% 2.01/2.18     dependent: set(dynamic_demod).
% 2.01/2.18     dependent: set(order_eq).
% 2.01/2.18     dependent: set(back_demod).
% 2.01/2.18     dependent: set(lrpo).
% 2.01/2.18     dependent: set(hyper_res).
% 2.01/2.18     dependent: clear(order_hyper).
% 2.01/2.18  
% 2.01/2.18  ------------> process usable:
% 2.01/2.18  ** KEPT (pick-wt=8): 1 [] -le_q(A,B)|addition(A,B)=B.
% 2.01/2.18  ** KEPT (pick-wt=8): 2 [] le_q(A,B)|addition(A,B)!=B.
% 2.01/2.18  ** KEPT (pick-wt=13): 3 [] -le_q(addition(multiplication(A,B),C),B)|le_q(multiplication(star(A),C),B).
% 2.01/2.18  ** KEPT (pick-wt=13): 4 [] -le_q(addition(multiplication(A,B),C),A)|le_q(multiplication(C,star(B)),A).
% 2.01/2.18  ** KEPT (pick-wt=16): 5 [] addition(domain($c2),forward_diamond(star($c1),forward_diamond($c1,domain($c2))))!=forward_diamond(star($c1),domain($c2)).
% 2.01/2.18  
% 2.01/2.18  ------------> process sos:
% 2.01/2.18  ** KEPT (pick-wt=3): 6 [] A=A.
% 2.01/2.18  ** KEPT (pick-wt=7): 7 [] addition(A,B)=addition(B,A).
% 2.01/2.18  ** KEPT (pick-wt=11): 9 [copy,8,flip.1] addition(addition(A,B),C)=addition(A,addition(B,C)).
% 2.01/2.18  ---> New Demodulator: 10 [new_demod,9] addition(addition(A,B),C)=addition(A,addition(B,C)).
% 2.01/2.18  ** KEPT (pick-wt=5): 11 [] addition(A,zero)=A.
% 2.01/2.18  ---> New Demodulator: 12 [new_demod,11] addition(A,zero)=A.
% 2.01/2.18  ** KEPT (pick-wt=5): 13 [] addition(A,A)=A.
% 2.01/2.18  ---> New Demodulator: 14 [new_demod,13] addition(A,A)=A.
% 2.01/2.18  ** KEPT (pick-wt=11): 16 [copy,15,flip.1] multiplication(multiplication(A,B),C)=multiplication(A,multiplication(B,C)).
% 2.01/2.18  ---> New Demodulator: 17 [new_demod,16] multiplication(multiplication(A,B),C)=multiplication(A,multiplication(B,C)).
% 2.01/2.18  ** KEPT (pick-wt=5): 18 [] multiplication(A,one)=A.
% 2.01/2.18  ---> New Demodulator: 19 [new_demod,18] multiplication(A,one)=A.
% 2.01/2.18  ** KEPT (pick-wt=5): 20 [] multiplication(one,A)=A.
% 2.01/2.18  ---> New Demodulator: 21 [new_demod,20] multiplication(one,A)=A.
% 2.01/2.18  ** KEPT (pick-wt=13): 22 [] multiplication(A,addition(B,C))=addition(multiplication(A,B),multiplication(A,C)).
% 2.01/2.18  ---> New Demodulator: 23 [new_demod,22] multiplication(A,addition(B,C))=addition(multiplication(A,B),multiplication(A,C)).
% 2.01/2.18  ** KEPT (pick-wt=13): 24 [] multiplication(addition(A,B),C)=addition(multiplication(A,C),multiplication(B,C)).
% 2.01/2.18  ---> New Demodulator: 25 [new_demod,24] multiplication(addition(A,B),C)=addition(multiplication(A,C),multiplication(B,C)).
% 2.01/2.18  ** KEPT (pick-wt=5): 26 [] multiplication(A,zero)=zero.
% 2.01/2.18  ---> New Demodulator: 27 [new_demod,26] multiplication(A,zero)=zero.
% 2.01/2.18  ** KEPT (pick-wt=5): 28 [] multiplication(zero,A)=zero.
% 2.01/2.18  ---> New Demodulator: 29 [new_demod,28] multiplication(zero,A)=zero.
% 2.01/2.18  ** KEPT (pick-wt=9): 30 [] le_q(addition(one,multiplication(A,star(A))),star(A)).
% 2.01/2.18  ** KEPT (pick-wt=9): 31 [] le_q(addition(one,multiplication(star(A),A)),star(A)).
% 2.01/2.18  ** KEPT (pick-wt=6): 32 [] multiplication(antidomain(A),A)=zero.
% 2.01/2.18  ---> New Demodulator: 33 [new_demod,32] multiplication(antidomain(A),A)=zero.
% 2.01/2.18  ** KEPT (pick-wt=18): 34 [] addition(antidomain(multiplication(A,B)),antidomain(multiplication(A,antidomain(antidomain(B)))))=antidomain(multiplication(A,antidomain(antidomain(B)))).
% 2.01/2.18  ---> New Demodulator: 35 [new_demod,34] addition(antidomain(multiplication(A,B)),antidomain(multiplication(A,antidomain(antidomain(B)))))=antidomain(multiplication(A,antidomain(antidomain(B)))).
% 2.01/2.18  ** KEPT (pick-wt=8): 36 [] addition(antidomain(antidomain(A)),antidomain(A))=one.
% 2.01/2.18  ---> New Demodulator: 37 [new_demod,36] addition(antidomain(antidomain(A)),antidomain(A))=one.
% 2.01/2.18  ** KEPT (pick-wt=6): 38 [] domain(A)=antidomain(antidomain(A)).
% 2.01/2.18  ---> New Demodulator: 39 [new_demod,38] domain(A)=antidomain(antidomain(A)).
% 2.01/2.18  ** KEPT (pick-wt=6): 40 [] multiplication(A,coantidomain(A))=zero.
% 2.01/2.18  ---> New Demodulator: 41 [new_demod,40] multiplication(A,coantidomain(A))=zero.
% 2.01/2.18  ** KEPT (pick-wt=18): 42 [] addition(coantidomain(multiplication(A,B)),coantidomain(multiplication(coantidomain(coantidomain(A)),B)))=coantidomain(multiplication(coantidomain(coantidomain(A)),B)).
% 2.01/2.18  ---> New Demodulator: 43 [new_demod,42] addition(coantidomain(multiplication(A,B)),coantidomain(multiplication(coantidomain(coantidomain(A)),B)))=coantidomain(multiplication(coantidomain(coantidomain(A)),B)).
% 2.01/2.18  ** KEPT (pick-wt=8): 44 [] addition(coantidomain(coantidomain(A)),coantidomain(A))=one.
% 2.01/2.18  ---> New Demodulator: 45 [new_demod,44] addition(coantidomain(coantidomain(A)),coantidomain(A))=one.
% 2.01/2.18  ** KEPT (pick-wt=6): 46 [] codomain(A)=coantidomain(coantidomain(A)).
% 2.01/2.18  ---> New Demodulator: 47 [new_demod,46] codomain(A)=coantidomain(coantidomain(A)).
% 2.01/2.18  ** KEPT (pick-wt=7): 49 [copy,48,demod,39] c(A)=antidomain(antidomain(antidomain(A))).
% 2.01/2.18  ---> New Demodulator: 50 [new_demod,49] c(A)=antidomain(antidomain(antidomain(A))).
% 2.01/2.18  ** KEPT (pick-wt=10): 52 [copy,51,demod,39,flip.1] multiplication(antidomain(antidomain(A)),antidomain(B))=domain_difference(A,B).
% 2.01/2.18  ---> New Demodulator: 53 [new_demod,52] multiplication(antidomain(antidomain(A)),antidomain(B))=domain_difference(A,B).
% 2.01/2.18  ** KEPT (pick-wt=11): 55 [copy,54,demod,39,39,flip.1] antidomain(antidomain(multiplication(A,antidomain(antidomain(B)))))=forward_diamond(A,B).
% 2.01/2.18  ---> New Demodulator: 56 [new_demod,55] antidomain(antidomain(multiplication(A,antidomain(antidomain(B)))))=forward_diamond(A,B).
% 2.01/2.18  ** KEPT (pick-wt=11): 58 [copy,57,demod,47,47,flip.1] coantidomain(coantidomain(multiplication(coantidomain(coantidomain(A)),B)))=backward_diamond(B,A).
% 2.01/2.18  ---> New Demodulator: 59 [new_demod,58] coantidomain(coantidomain(multiplication(coantidomain(coantidomain(A)),B)))=backward_diamond(B,A).
% 2.01/2.18  ** KEPT (pick-wt=13): 61 [copy,60,demod,50,50,flip.1] antidomain(antidomain(antidomain(forward_diamond(A,antidomain(antidomain(antidomain(B)))))))=forward_box(A,B).
% 2.01/2.18  ---> New Demodulator: 62 [new_demod,61] antidomain(antidomain(antidomain(forward_diamond(A,antidomain(antidomain(antidomain(B)))))))=forward_box(A,B).
% 2.01/2.18  ** KEPT (pick-wt=13): 64 [copy,63,demod,50,50,flip.1] antidomain(antidomain(antidomain(backward_diamond(A,antidomain(antidomain(antidomain(B)))))))=backward_box(A,B).
% 2.01/2.18  ---> New Demodulator: 65 [new_demod,64] antidomain(antidomain(antidomain(backward_diamond(A,antidomain(antidomain(antidomain(B)))))))=backward_box(A,B).
% 2.01/2.18    Following clause subsumed by 6 during input processing: 0 [copy,6,flip.1] A=A.
% 2.01/2.18    Following clause subsumed by 7 during input processing: 0 [copy,7,flip.1] addition(A,B)=addition(B,A).
% 2.01/2.18  >>>> Starting back demodulation with 10.
% 2.01/2.18  >>>> Starting back demodulation with 12.
% 2.01/2.18  >>>> Starting back demodulation with 14.
% 2.01/2.18  >>>> Starting back demodulation with 17.
% 2.01/2.18  >>>> Starting back demodulation with 19.
% 2.01/2.18  >>>> Starting back demodulation with 21.
% 2.01/2.18  >>>> Starting back demodulation with 23.
% 2.01/2.18  >>>> Starting back demodulation with 25.
% 2.01/2.18  >>>> Starting back demodulation with 27.
% 2.01/2.18  >>>> Starting back demodulation with 29.
% 2.01/2.18  >>>> Starting back demodulation with 33.
% 2.01/2.18  >>>> Starting back demodulation with 35.
% 2.01/2.18  >>>> Starting back demodulation with 37.
% 2.01/2.18  >>>> Starting back demodulation with 39.
% 2.01/2.18      >> back demodulating 5 with 39.
% 2.01/2.18  >>>> Starting back demodulation with 41.
% 2.01/2.18  >>>> Starting back demodulation with 43.
% 2.01/2.18  >>>> Starting back demodulation with 45.
% 2.01/2.18  >>>> Starting back demodulation with 47.
% 2.20/2.38  >>>> Starting back demodulation with 50.
% 2.20/2.38  >>>> Starting back demodulation with 53.
% 2.20/2.38  >>>> Starting back demodulation with 56.
% 2.20/2.38  >>>> Starting back demodulation with 59.
% 2.20/2.38  >>>> Starting back demodulation with 62.
% 2.20/2.38  >>>> Starting back demodulation with 65.
% 2.20/2.38  
% 2.20/2.38  ======= end of input processing =======
% 2.20/2.38  
% 2.20/2.38  =========== start of search ===========
% 2.20/2.38  
% 2.20/2.38  
% 2.20/2.38  Resetting weight limit to 8.
% 2.20/2.38  
% 2.20/2.38  
% 2.20/2.38  Resetting weight limit to 8.
% 2.20/2.38  
% 2.20/2.38  sos_size=187
% 2.20/2.38  
% 2.20/2.38  
% 2.20/2.38  Resetting weight limit to 7.
% 2.20/2.38  
% 2.20/2.38  
% 2.20/2.38  Resetting weight limit to 7.
% 2.20/2.38  
% 2.20/2.38  sos_size=23
% 2.20/2.38  
% 2.20/2.38  Search stopped because sos empty.
% 2.20/2.38  
% 2.20/2.38  
% 2.20/2.38  Search stopped because sos empty.
% 2.20/2.38  
% 2.20/2.38  ============ end of search ============
% 2.20/2.38  
% 2.20/2.38  -------------- statistics -------------
% 2.20/2.38  clauses given                411
% 2.20/2.38  clauses generated          34737
% 2.20/2.38  clauses kept                 579
% 2.20/2.38  clauses forward subsumed   10754
% 2.20/2.38  clauses back subsumed         66
% 2.20/2.38  Kbytes malloced             6835
% 2.20/2.38  
% 2.20/2.38  ----------- times (seconds) -----------
% 2.20/2.38  user CPU time          0.20          (0 hr, 0 min, 0 sec)
% 2.20/2.38  system CPU time        0.00          (0 hr, 0 min, 0 sec)
% 2.20/2.38  wall-clock time        1             (0 hr, 0 min, 1 sec)
% 2.20/2.38  
% 2.20/2.38  Process 5524 finished Wed Jul 27 06:39:13 2022
% 2.20/2.38  Otter interrupted
% 2.20/2.38  PROOF NOT FOUND
%------------------------------------------------------------------------------