TSTP Solution File: KLE090-10 by Otter---3.3

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Otter---3.3
% Problem  : KLE090-10 : TPTP v8.1.0. Released v7.3.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : otter-tptp-script %s

% Computer : n020.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Wed Jul 27 13:00:43 EDT 2022

% Result   : Unsatisfiable 2.00s 2.16s
% Output   : Refutation 2.00s
% Verified : 
% SZS Type : Refutation
%            Derivation depth      :   10
%            Number of leaves      :   17
% Syntax   : Number of clauses     :   45 (  45 unt;   0 nHn;  14 RR)
%            Number of literals    :   45 (  44 equ;   2 neg)
%            Maximal clause size   :    1 (   1 avg)
%            Maximal term depth    :    6 (   2 avg)
%            Number of predicates  :    2 (   0 usr;   1 prp; 0-2 aty)
%            Number of functors    :    8 (   8 usr;   4 con; 0-2 aty)
%            Number of variables   :   50 (   5 sgn)

% Comments : 
%------------------------------------------------------------------------------
cnf(1,axiom,
    addition(antidomain(sK1_goals_X1),antidomain(sK2_goals_X0)) != antidomain(sK2_goals_X0),
    file('KLE090-10.p',unknown),
    [] ).

cnf(7,axiom,
    addition(A,B) = addition(B,A),
    file('KLE090-10.p',unknown),
    [] ).

cnf(8,axiom,
    addition(A,addition(B,C)) = addition(addition(A,B),C),
    file('KLE090-10.p',unknown),
    [] ).

cnf(9,plain,
    addition(addition(A,B),C) = addition(A,addition(B,C)),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[8])]),
    [iquote('copy,8,flip.1')] ).

cnf(12,axiom,
    addition(A,zero) = A,
    file('KLE090-10.p',unknown),
    [] ).

cnf(13,axiom,
    addition(A,A) = A,
    file('KLE090-10.p',unknown),
    [] ).

cnf(15,axiom,
    multiplication(A,multiplication(B,C)) = multiplication(multiplication(A,B),C),
    file('KLE090-10.p',unknown),
    [] ).

cnf(16,plain,
    multiplication(multiplication(A,B),C) = multiplication(A,multiplication(B,C)),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[15])]),
    [iquote('copy,15,flip.1')] ).

cnf(19,axiom,
    multiplication(A,one) = A,
    file('KLE090-10.p',unknown),
    [] ).

cnf(21,axiom,
    multiplication(one,A) = A,
    file('KLE090-10.p',unknown),
    [] ).

cnf(22,axiom,
    multiplication(A,addition(B,C)) = addition(multiplication(A,B),multiplication(A,C)),
    file('KLE090-10.p',unknown),
    [] ).

cnf(24,axiom,
    multiplication(addition(A,B),C) = addition(multiplication(A,C),multiplication(B,C)),
    file('KLE090-10.p',unknown),
    [] ).

cnf(35,axiom,
    multiplication(antidomain(A),A) = zero,
    file('KLE090-10.p',unknown),
    [] ).

cnf(36,axiom,
    addition(antidomain(multiplication(A,B)),antidomain(multiplication(A,antidomain(antidomain(B))))) = antidomain(multiplication(A,antidomain(antidomain(B)))),
    file('KLE090-10.p',unknown),
    [] ).

cnf(38,axiom,
    addition(antidomain(antidomain(A)),antidomain(A)) = one,
    file('KLE090-10.p',unknown),
    [] ).

cnf(42,axiom,
    multiplication(A,coantidomain(A)) = zero,
    file('KLE090-10.p',unknown),
    [] ).

cnf(44,axiom,
    addition(coantidomain(multiplication(A,B)),coantidomain(multiplication(coantidomain(coantidomain(A)),B))) = coantidomain(multiplication(coantidomain(coantidomain(A)),B)),
    file('KLE090-10.p',unknown),
    [] ).

cnf(46,axiom,
    addition(coantidomain(coantidomain(A)),coantidomain(A)) = one,
    file('KLE090-10.p',unknown),
    [] ).

cnf(50,axiom,
    addition(sK2_goals_X0,sK1_goals_X1) = sK1_goals_X1,
    file('KLE090-10.p',unknown),
    [] ).

cnf(53,plain,
    antidomain(one) = zero,
    inference(para_into,[status(thm),theory(equality)],[35,19]),
    [iquote('para_into,34.1.1,18.1.1')] ).

cnf(55,plain,
    coantidomain(one) = zero,
    inference(para_into,[status(thm),theory(equality)],[42,21]),
    [iquote('para_into,42.1.1,20.1.1')] ).

cnf(56,plain,
    addition(sK1_goals_X1,sK2_goals_X0) = sK1_goals_X1,
    inference(flip,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[7,50])]),
    [iquote('para_into,7.1.1,50.1.1,flip.1')] ).

cnf(59,plain,
    addition(zero,A) = A,
    inference(flip,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[7,12])]),
    [iquote('para_into,7.1.1,11.1.1,flip.1')] ).

cnf(60,plain,
    addition(antidomain(sK2_goals_X0),antidomain(sK1_goals_X1)) != antidomain(sK2_goals_X0),
    inference(para_from,[status(thm),theory(equality)],[7,1]),
    [iquote('para_from,7.1.1,1.1.1')] ).

cnf(62,plain,
    antidomain(zero) = one,
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[38,53]),53,12]),
    [iquote('para_into,38.1.1.1.1,52.1.1,demod,53,12')] ).

cnf(64,plain,
    addition(antidomain(A),antidomain(antidomain(A))) = one,
    inference(para_into,[status(thm),theory(equality)],[38,7]),
    [iquote('para_into,38.1.1,7.1.1')] ).

cnf(71,plain,
    addition(A,addition(A,B)) = addition(A,B),
    inference(flip,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[9,13])]),
    [iquote('para_into,9.1.1.1,13.1.1,flip.1')] ).

cnf(79,plain,
    coantidomain(zero) = one,
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[46,55]),55,12]),
    [iquote('para_into,46.1.1.1.1,54.1.1,demod,55,12')] ).

cnf(81,plain,
    addition(coantidomain(A),coantidomain(coantidomain(A))) = one,
    inference(para_into,[status(thm),theory(equality)],[46,7]),
    [iquote('para_into,46.1.1,7.1.1')] ).

cnf(88,plain,
    multiplication(A,multiplication(B,coantidomain(multiplication(A,B)))) = zero,
    inference(flip,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[16,42])]),
    [iquote('para_into,16.1.1,42.1.1,flip.1')] ).

cnf(102,plain,
    addition(multiplication(A,sK1_goals_X1),multiplication(A,sK2_goals_X0)) = multiplication(A,sK1_goals_X1),
    inference(flip,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[22,56])]),
    [iquote('para_into,22.1.1.2,56.1.1,flip.1')] ).

cnf(108,plain,
    addition(multiplication(A,antidomain(antidomain(B))),multiplication(A,antidomain(B))) = A,
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[22,38]),19])]),
    [iquote('para_into,22.1.1.2,38.1.1,demod,19,flip.1')] ).

cnf(120,plain,
    addition(coantidomain(A),one) = one,
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[71,81]),81]),
    [iquote('para_into,71.1.1.2,80.1.1,demod,81')] ).

cnf(122,plain,
    addition(antidomain(A),one) = one,
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[71,64]),64]),
    [iquote('para_into,71.1.1.2,63.1.1,demod,64')] ).

cnf(129,plain,
    addition(one,coantidomain(A)) = one,
    inference(para_into,[status(thm),theory(equality)],[120,7]),
    [iquote('para_into,120.1.1,7.1.1')] ).

cnf(161,plain,
    addition(one,antidomain(A)) = one,
    inference(para_into,[status(thm),theory(equality)],[122,7]),
    [iquote('para_into,122.1.1,7.1.1')] ).

cnf(174,plain,
    addition(A,multiplication(antidomain(B),A)) = A,
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[161,24]),21,21])]),
    [iquote('para_from,160.1.1,24.1.1.1,demod,21,21,flip.1')] ).

cnf(348,plain,
    coantidomain(multiplication(coantidomain(coantidomain(antidomain(A))),A)) = one,
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[44,35]),79,129])]),
    [iquote('para_into,44.1.1.1.1,34.1.1,demod,79,129,flip.1')] ).

cnf(490,plain,
    multiplication(coantidomain(coantidomain(antidomain(A))),A) = zero,
    inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[348,88]),19]),
    [iquote('para_from,348.1.1,88.1.1.2.2,demod,19')] ).

cnf(528,plain,
    multiplication(antidomain(sK1_goals_X1),sK2_goals_X0) = zero,
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[102,35]),59,35]),
    [iquote('para_into,102.1.1.1,34.1.1,demod,59,35')] ).

cnf(534,plain,
    antidomain(multiplication(antidomain(sK1_goals_X1),antidomain(antidomain(sK2_goals_X0)))) = one,
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[528,36]),62,161])]),
    [iquote('para_from,528.1.1,36.1.1.1.1,demod,62,161,flip.1')] ).

cnf(562,plain,
    multiplication(antidomain(sK1_goals_X1),antidomain(antidomain(sK2_goals_X0))) = zero,
    inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[534,490]),55,79,21]),
    [iquote('para_from,534.1.1,490.1.1.1.1.1,demod,55,79,21')] ).

cnf(564,plain,
    multiplication(antidomain(sK1_goals_X1),antidomain(sK2_goals_X0)) = antidomain(sK1_goals_X1),
    inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[562,108]),59]),
    [iquote('para_from,562.1.1,108.1.1.1,demod,59')] ).

cnf(566,plain,
    addition(antidomain(sK2_goals_X0),antidomain(sK1_goals_X1)) = antidomain(sK2_goals_X0),
    inference(para_from,[status(thm),theory(equality)],[564,174]),
    [iquote('para_from,564.1.1,174.1.1.2')] ).

cnf(568,plain,
    $false,
    inference(binary,[status(thm)],[566,60]),
    [iquote('binary,566.1,60.1')] ).

%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.03/0.11  % Problem  : KLE090-10 : TPTP v8.1.0. Released v7.3.0.
% 0.03/0.12  % Command  : otter-tptp-script %s
% 0.12/0.33  % Computer : n020.cluster.edu
% 0.12/0.33  % Model    : x86_64 x86_64
% 0.12/0.33  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.12/0.33  % Memory   : 8042.1875MB
% 0.12/0.33  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.12/0.33  % CPULimit : 300
% 0.12/0.33  % WCLimit  : 300
% 0.12/0.33  % DateTime : Wed Jul 27 06:33:53 EDT 2022
% 0.12/0.33  % CPUTime  : 
% 1.92/2.12  ----- Otter 3.3f, August 2004 -----
% 1.92/2.12  The process was started by sandbox on n020.cluster.edu,
% 1.92/2.12  Wed Jul 27 06:33:53 2022
% 1.92/2.12  The command was "./otter".  The process ID is 23675.
% 1.92/2.12  
% 1.92/2.12  set(prolog_style_variables).
% 1.92/2.12  set(auto).
% 1.92/2.12     dependent: set(auto1).
% 1.92/2.12     dependent: set(process_input).
% 1.92/2.12     dependent: clear(print_kept).
% 1.92/2.12     dependent: clear(print_new_demod).
% 1.92/2.12     dependent: clear(print_back_demod).
% 1.92/2.12     dependent: clear(print_back_sub).
% 1.92/2.12     dependent: set(control_memory).
% 1.92/2.12     dependent: assign(max_mem, 12000).
% 1.92/2.12     dependent: assign(pick_given_ratio, 4).
% 1.92/2.12     dependent: assign(stats_level, 1).
% 1.92/2.12     dependent: assign(max_seconds, 10800).
% 1.92/2.12  clear(print_given).
% 1.92/2.12  
% 1.92/2.12  list(usable).
% 1.92/2.12  0 [] A=A.
% 1.92/2.12  0 [] ife_q2(A,A,B,C)=B.
% 1.92/2.12  0 [] ife_q(A,A,B,C)=B.
% 1.92/2.12  0 [] addition(A,B)=addition(B,A).
% 1.92/2.12  0 [] addition(A,addition(B,C))=addition(addition(A,B),C).
% 1.92/2.12  0 [] addition(A,zero)=A.
% 1.92/2.12  0 [] addition(A,A)=A.
% 1.92/2.12  0 [] multiplication(A,multiplication(B,C))=multiplication(multiplication(A,B),C).
% 1.92/2.12  0 [] multiplication(A,one)=A.
% 1.92/2.12  0 [] multiplication(one,A)=A.
% 1.92/2.12  0 [] multiplication(A,addition(B,C))=addition(multiplication(A,B),multiplication(A,C)).
% 1.92/2.12  0 [] multiplication(addition(A,B),C)=addition(multiplication(A,C),multiplication(B,C)).
% 1.92/2.12  0 [] multiplication(A,zero)=zero.
% 1.92/2.12  0 [] multiplication(zero,A)=zero.
% 1.92/2.12  0 [] ife_q(le_q(A,B),true,addition(A,B),B)=B.
% 1.92/2.12  0 [] ife_q2(addition(A,B),B,le_q(A,B),true)=true.
% 1.92/2.12  0 [] multiplication(antidomain(X0),X0)=zero.
% 1.92/2.12  0 [] addition(antidomain(multiplication(X0,X1)),antidomain(multiplication(X0,antidomain(antidomain(X1)))))=antidomain(multiplication(X0,antidomain(antidomain(X1)))).
% 1.92/2.12  0 [] addition(antidomain(antidomain(X0)),antidomain(X0))=one.
% 1.92/2.12  0 [] domain(X0)=antidomain(antidomain(X0)).
% 1.92/2.12  0 [] multiplication(X0,coantidomain(X0))=zero.
% 1.92/2.12  0 [] addition(coantidomain(multiplication(X0,X1)),coantidomain(multiplication(coantidomain(coantidomain(X0)),X1)))=coantidomain(multiplication(coantidomain(coantidomain(X0)),X1)).
% 1.92/2.12  0 [] addition(coantidomain(coantidomain(X0)),coantidomain(X0))=one.
% 1.92/2.12  0 [] codomain(X0)=coantidomain(coantidomain(X0)).
% 1.92/2.12  0 [] addition(sK2_goals_X0,sK1_goals_X1)=sK1_goals_X1.
% 1.92/2.12  0 [] addition(antidomain(sK1_goals_X1),antidomain(sK2_goals_X0))!=antidomain(sK2_goals_X0).
% 1.92/2.12  end_of_list.
% 1.92/2.12  
% 1.92/2.12  SCAN INPUT: prop=0, horn=1, equality=1, symmetry=0, max_lits=1.
% 1.92/2.12  
% 1.92/2.12  All clauses are units, and equality is present; the
% 1.92/2.12  strategy will be Knuth-Bendix with positive clauses in sos.
% 1.92/2.12  
% 1.92/2.12     dependent: set(knuth_bendix).
% 1.92/2.12     dependent: set(anl_eq).
% 1.92/2.12     dependent: set(para_from).
% 1.92/2.12     dependent: set(para_into).
% 1.92/2.12     dependent: clear(para_from_right).
% 1.92/2.12     dependent: clear(para_into_right).
% 1.92/2.12     dependent: set(para_from_vars).
% 1.92/2.12     dependent: set(eq_units_both_ways).
% 1.92/2.12     dependent: set(dynamic_demod_all).
% 1.92/2.12     dependent: set(dynamic_demod).
% 1.92/2.12     dependent: set(order_eq).
% 1.92/2.12     dependent: set(back_demod).
% 1.92/2.12     dependent: set(lrpo).
% 1.92/2.12  
% 1.92/2.12  ------------> process usable:
% 1.92/2.12  ** KEPT (pick-wt=8): 1 [] addition(antidomain(sK1_goals_X1),antidomain(sK2_goals_X0))!=antidomain(sK2_goals_X0).
% 1.92/2.12  
% 1.92/2.12  ------------> process sos:
% 1.92/2.12  ** KEPT (pick-wt=3): 2 [] A=A.
% 1.92/2.12  ** KEPT (pick-wt=7): 3 [] ife_q2(A,A,B,C)=B.
% 1.92/2.12  ---> New Demodulator: 4 [new_demod,3] ife_q2(A,A,B,C)=B.
% 1.92/2.12  ** KEPT (pick-wt=7): 5 [] ife_q(A,A,B,C)=B.
% 1.92/2.12  ---> New Demodulator: 6 [new_demod,5] ife_q(A,A,B,C)=B.
% 1.92/2.12  ** KEPT (pick-wt=7): 7 [] addition(A,B)=addition(B,A).
% 1.92/2.12  ** KEPT (pick-wt=11): 9 [copy,8,flip.1] addition(addition(A,B),C)=addition(A,addition(B,C)).
% 1.92/2.12  ---> New Demodulator: 10 [new_demod,9] addition(addition(A,B),C)=addition(A,addition(B,C)).
% 1.92/2.12  ** KEPT (pick-wt=5): 11 [] addition(A,zero)=A.
% 1.92/2.12  ---> New Demodulator: 12 [new_demod,11] addition(A,zero)=A.
% 1.92/2.12  ** KEPT (pick-wt=5): 13 [] addition(A,A)=A.
% 1.92/2.12  ---> New Demodulator: 14 [new_demod,13] addition(A,A)=A.
% 1.92/2.12  ** KEPT (pick-wt=11): 16 [copy,15,flip.1] multiplication(multiplication(A,B),C)=multiplication(A,multiplication(B,C)).
% 1.92/2.12  ---> New Demodulator: 17 [new_demod,16] multiplication(multiplication(A,B),C)=multiplication(A,multiplication(B,C)).
% 1.92/2.12  ** KEPT (pick-wt=5): 18 [] multiplication(A,one)=A.
% 1.92/2.12  ---> New Demodulator: 19 [new_demod,18] multiplication(A,one)=A.
% 1.92/2.12  ** KEPT (pick-wt=5): 20 [] multiplication(one,A)=A.
% 1.92/2.12  ---> New Demodulator: 21 [new_demod,20] multiplication(one,A)=A.
% 1.92/2.12  ** KEPT (pick-wt=13): 22 [] multiplication(A,addition(B,C))=addition(multiplication(A,B),multiplication(A,C)).
% 1.92/2.12  ---> New Demodulator: 23 [new_demod,22] multiplication(A,addition(B,C))=addition(multiplication(A,B),multiplication(A,C)).
% 1.92/2.12  ** KEPT (pick-wt=13): 24 [] multiplication(addition(A,B),C)=addition(multiplication(A,C),multiplication(B,C)).
% 1.92/2.12  ---> New Demodulator: 25 [new_demod,24] multiplication(addition(A,B),C)=addition(multiplication(A,C),multiplication(B,C)).
% 1.92/2.12  ** KEPT (pick-wt=5): 26 [] multiplication(A,zero)=zero.
% 1.92/2.12  ---> New Demodulator: 27 [new_demod,26] multiplication(A,zero)=zero.
% 1.92/2.12  ** KEPT (pick-wt=5): 28 [] multiplication(zero,A)=zero.
% 1.92/2.12  ---> New Demodulator: 29 [new_demod,28] multiplication(zero,A)=zero.
% 1.92/2.12  ** KEPT (pick-wt=11): 30 [] ife_q(le_q(A,B),true,addition(A,B),B)=B.
% 1.92/2.12  ---> New Demodulator: 31 [new_demod,30] ife_q(le_q(A,B),true,addition(A,B),B)=B.
% 1.92/2.12  ** KEPT (pick-wt=11): 32 [] ife_q2(addition(A,B),B,le_q(A,B),true)=true.
% 1.92/2.12  ---> New Demodulator: 33 [new_demod,32] ife_q2(addition(A,B),B,le_q(A,B),true)=true.
% 1.92/2.12  ** KEPT (pick-wt=6): 34 [] multiplication(antidomain(A),A)=zero.
% 1.92/2.12  ---> New Demodulator: 35 [new_demod,34] multiplication(antidomain(A),A)=zero.
% 1.92/2.12  ** KEPT (pick-wt=18): 36 [] addition(antidomain(multiplication(A,B)),antidomain(multiplication(A,antidomain(antidomain(B)))))=antidomain(multiplication(A,antidomain(antidomain(B)))).
% 1.92/2.12  ---> New Demodulator: 37 [new_demod,36] addition(antidomain(multiplication(A,B)),antidomain(multiplication(A,antidomain(antidomain(B)))))=antidomain(multiplication(A,antidomain(antidomain(B)))).
% 1.92/2.12  ** KEPT (pick-wt=8): 38 [] addition(antidomain(antidomain(A)),antidomain(A))=one.
% 1.92/2.12  ---> New Demodulator: 39 [new_demod,38] addition(antidomain(antidomain(A)),antidomain(A))=one.
% 1.92/2.12  ** KEPT (pick-wt=6): 40 [] domain(A)=antidomain(antidomain(A)).
% 1.92/2.12  ---> New Demodulator: 41 [new_demod,40] domain(A)=antidomain(antidomain(A)).
% 1.92/2.12  ** KEPT (pick-wt=6): 42 [] multiplication(A,coantidomain(A))=zero.
% 1.92/2.12  ---> New Demodulator: 43 [new_demod,42] multiplication(A,coantidomain(A))=zero.
% 1.92/2.12  ** KEPT (pick-wt=18): 44 [] addition(coantidomain(multiplication(A,B)),coantidomain(multiplication(coantidomain(coantidomain(A)),B)))=coantidomain(multiplication(coantidomain(coantidomain(A)),B)).
% 1.92/2.12  ---> New Demodulator: 45 [new_demod,44] addition(coantidomain(multiplication(A,B)),coantidomain(multiplication(coantidomain(coantidomain(A)),B)))=coantidomain(multiplication(coantidomain(coantidomain(A)),B)).
% 1.92/2.12  ** KEPT (pick-wt=8): 46 [] addition(coantidomain(coantidomain(A)),coantidomain(A))=one.
% 1.92/2.12  ---> New Demodulator: 47 [new_demod,46] addition(coantidomain(coantidomain(A)),coantidomain(A))=one.
% 1.92/2.12  ** KEPT (pick-wt=6): 48 [] codomain(A)=coantidomain(coantidomain(A)).
% 1.92/2.12  ---> New Demodulator: 49 [new_demod,48] codomain(A)=coantidomain(coantidomain(A)).
% 1.92/2.12  ** KEPT (pick-wt=5): 50 [] addition(sK2_goals_X0,sK1_goals_X1)=sK1_goals_X1.
% 1.92/2.12  ---> New Demodulator: 51 [new_demod,50] addition(sK2_goals_X0,sK1_goals_X1)=sK1_goals_X1.
% 1.92/2.12    Following clause subsumed by 2 during input processing: 0 [copy,2,flip.1] A=A.
% 1.92/2.12  >>>> Starting back demodulation with 4.
% 1.92/2.12  >>>> Starting back demodulation with 6.
% 1.92/2.12    Following clause subsumed by 7 during input processing: 0 [copy,7,flip.1] addition(A,B)=addition(B,A).
% 1.92/2.12  >>>> Starting back demodulation with 10.
% 1.92/2.12  >>>> Starting back demodulation with 12.
% 1.92/2.12  >>>> Starting back demodulation with 14.
% 1.92/2.12  >>>> Starting back demodulation with 17.
% 1.92/2.12  >>>> Starting back demodulation with 19.
% 1.92/2.12  >>>> Starting back demodulation with 21.
% 1.92/2.12  >>>> Starting back demodulation with 23.
% 1.92/2.12  >>>> Starting back demodulation with 25.
% 1.92/2.12  >>>> Starting back demodulation with 27.
% 1.92/2.12  >>>> Starting back demodulation with 29.
% 1.92/2.12  >>>> Starting back demodulation with 31.
% 1.92/2.12  >>>> Starting back demodulation with 33.
% 1.92/2.12  >>>> Starting back demodulation with 35.
% 1.92/2.12  >>>> Starting back demodulation with 37.
% 1.92/2.12  >>>> Starting back demodulation with 39.
% 1.92/2.12  >>>> Starting back demodulation with 41.
% 1.92/2.12  >>>> Starting back demodulation with 43.
% 1.92/2.12  >>>> Starting back demodulation with 45.
% 1.92/2.12  >>>> Starting back demodulation with 47.
% 1.92/2.12  >>>> Starting back demodulation with 49.
% 1.92/2.12  >>>> Starting back demodulation with 51.
% 1.92/2.12  
% 1.92/2.12  ======= end of input processing =======
% 1.92/2.12  
% 1.92/2.12  =========== start of search ===========
% 2.00/2.16  
% 2.00/2.16  
% 2.00/2.16  Resetting weight limit to 9.
% 2.00/2.16  
% 2.00/2.16  
% 2.00/2.16  Resetting weight limit to 9.
% 2.00/2.16  
% 2.00/2.16  sos_size=150
% 2.00/2.16  
% 2.00/2.16  -------- PROOF -------- 
% 2.00/2.16  
% 2.00/2.16  ----> UNIT CONFLICT at   0.03 sec ----> 568 [binary,566.1,60.1] $F.
% 2.00/2.16  
% 2.00/2.16  Length of proof is 27.  Level of proof is 9.
% 2.00/2.16  
% 2.00/2.16  ---------------- PROOF ----------------
% 2.00/2.16  % SZS status Unsatisfiable
% 2.00/2.16  % SZS output start Refutation
% See solution above
% 2.00/2.16  ------------ end of proof -------------
% 2.00/2.16  
% 2.00/2.16  
% 2.00/2.16  Search stopped by max_proofs option.
% 2.00/2.16  
% 2.00/2.16  
% 2.00/2.16  Search stopped by max_proofs option.
% 2.00/2.16  
% 2.00/2.16  ============ end of search ============
% 2.00/2.16  
% 2.00/2.16  -------------- statistics -------------
% 2.00/2.16  clauses given                159
% 2.00/2.16  clauses generated           4495
% 2.00/2.16  clauses kept                 287
% 2.00/2.16  clauses forward subsumed    3262
% 2.00/2.16  clauses back subsumed          0
% 2.00/2.16  Kbytes malloced             4882
% 2.00/2.16  
% 2.00/2.16  ----------- times (seconds) -----------
% 2.00/2.16  user CPU time          0.03          (0 hr, 0 min, 0 sec)
% 2.00/2.16  system CPU time        0.01          (0 hr, 0 min, 0 sec)
% 2.00/2.16  wall-clock time        2             (0 hr, 0 min, 2 sec)
% 2.00/2.16  
% 2.00/2.16  That finishes the proof of the theorem.
% 2.00/2.16  
% 2.00/2.16  Process 23675 finished Wed Jul 27 06:33:55 2022
% 2.00/2.16  Otter interrupted
% 2.00/2.16  PROOF FOUND
%------------------------------------------------------------------------------