TSTP Solution File: KLE089+1 by Otter---3.3

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Otter---3.3
% Problem  : KLE089+1 : TPTP v8.1.0. Released v4.0.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : otter-tptp-script %s

% Computer : n012.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Wed Jul 27 13:00:42 EDT 2022

% Result   : Theorem 2.04s 2.27s
% Output   : Refutation 2.04s
% Verified : 
% SZS Type : Refutation
%            Derivation depth      :    4
%            Number of leaves      :    6
% Syntax   : Number of clauses     :   11 (  11 unt;   0 nHn;   6 RR)
%            Number of literals    :   11 (  10 equ;   2 neg)
%            Maximal clause size   :    1 (   1 avg)
%            Maximal term depth    :    5 (   2 avg)
%            Number of predicates  :    2 (   0 usr;   1 prp; 0-2 aty)
%            Number of functors    :    7 (   7 usr;   3 con; 0-2 aty)
%            Number of variables   :    7 (   0 sgn)

% Comments : 
%------------------------------------------------------------------------------
cnf(3,axiom,
    multiplication(domain(dollar_c2),dollar_c1) != zero,
    file('KLE089+1.p',unknown),
    [] ).

cnf(10,axiom,
    addition(A,zero) = A,
    file('KLE089+1.p',unknown),
    [] ).

cnf(22,axiom,
    multiplication(addition(A,B),C) = addition(multiplication(A,C),multiplication(B,C)),
    file('KLE089+1.p',unknown),
    [] ).

cnf(29,axiom,
    multiplication(antidomain(A),A) = zero,
    file('KLE089+1.p',unknown),
    [] ).

cnf(35,axiom,
    domain(A) = antidomain(antidomain(A)),
    file('KLE089+1.p',unknown),
    [] ).

cnf(44,axiom,
    addition(domain(dollar_c2),antidomain(dollar_c1)) = antidomain(dollar_c1),
    file('KLE089+1.p',unknown),
    [] ).

cnf(45,plain,
    addition(antidomain(antidomain(dollar_c2)),antidomain(dollar_c1)) = antidomain(dollar_c1),
    inference(demod,[status(thm),theory(equality)],[inference(copy,[status(thm)],[44]),35]),
    [iquote('copy,44,demod,35')] ).

cnf(47,plain,
    multiplication(antidomain(antidomain(dollar_c2)),dollar_c1) != zero,
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[3]),35]),
    [iquote('back_demod,3,demod,35')] ).

cnf(258,plain,
    addition(multiplication(antidomain(antidomain(dollar_c2)),A),multiplication(antidomain(dollar_c1),A)) = multiplication(antidomain(dollar_c1),A),
    inference(flip,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[45,22])]),
    [iquote('para_from,45.1.1,22.1.1.1,flip.1')] ).

cnf(1124,plain,
    multiplication(antidomain(antidomain(dollar_c2)),dollar_c1) = zero,
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[258,29]),10,29]),
    [iquote('para_into,258.1.1.2,28.1.1,demod,10,29')] ).

cnf(1126,plain,
    $false,
    inference(binary,[status(thm)],[1124,47]),
    [iquote('binary,1124.1,47.1')] ).

%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.03/0.12  % Problem  : KLE089+1 : TPTP v8.1.0. Released v4.0.0.
% 0.03/0.12  % Command  : otter-tptp-script %s
% 0.12/0.33  % Computer : n012.cluster.edu
% 0.12/0.33  % Model    : x86_64 x86_64
% 0.12/0.33  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.12/0.33  % Memory   : 8042.1875MB
% 0.12/0.33  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.12/0.33  % CPULimit : 300
% 0.12/0.33  % WCLimit  : 300
% 0.12/0.33  % DateTime : Wed Jul 27 06:27:05 EDT 2022
% 0.12/0.33  % CPUTime  : 
% 1.80/1.98  ----- Otter 3.3f, August 2004 -----
% 1.80/1.98  The process was started by sandbox on n012.cluster.edu,
% 1.80/1.98  Wed Jul 27 06:27:05 2022
% 1.80/1.98  The command was "./otter".  The process ID is 11623.
% 1.80/1.98  
% 1.80/1.98  set(prolog_style_variables).
% 1.80/1.98  set(auto).
% 1.80/1.98     dependent: set(auto1).
% 1.80/1.98     dependent: set(process_input).
% 1.80/1.98     dependent: clear(print_kept).
% 1.80/1.98     dependent: clear(print_new_demod).
% 1.80/1.98     dependent: clear(print_back_demod).
% 1.80/1.98     dependent: clear(print_back_sub).
% 1.80/1.98     dependent: set(control_memory).
% 1.80/1.98     dependent: assign(max_mem, 12000).
% 1.80/1.98     dependent: assign(pick_given_ratio, 4).
% 1.80/1.98     dependent: assign(stats_level, 1).
% 1.80/1.98     dependent: assign(max_seconds, 10800).
% 1.80/1.98  clear(print_given).
% 1.80/1.98  
% 1.80/1.98  formula_list(usable).
% 1.80/1.98  all A (A=A).
% 1.80/1.98  all A B (addition(A,B)=addition(B,A)).
% 1.80/1.98  all C B A (addition(A,addition(B,C))=addition(addition(A,B),C)).
% 1.80/1.98  all A (addition(A,zero)=A).
% 1.80/1.98  all A (addition(A,A)=A).
% 1.80/1.98  all A B C (multiplication(A,multiplication(B,C))=multiplication(multiplication(A,B),C)).
% 1.80/1.98  all A (multiplication(A,one)=A).
% 1.80/1.98  all A (multiplication(one,A)=A).
% 1.80/1.98  all A B C (multiplication(A,addition(B,C))=addition(multiplication(A,B),multiplication(A,C))).
% 1.80/1.98  all A B C (multiplication(addition(A,B),C)=addition(multiplication(A,C),multiplication(B,C))).
% 1.80/1.98  all A (multiplication(A,zero)=zero).
% 1.80/1.98  all A (multiplication(zero,A)=zero).
% 1.80/1.98  all A B (le_q(A,B)<->addition(A,B)=B).
% 1.80/1.98  all X0 (multiplication(antidomain(X0),X0)=zero).
% 1.80/1.98  all X0 X1 (addition(antidomain(multiplication(X0,X1)),antidomain(multiplication(X0,antidomain(antidomain(X1)))))=antidomain(multiplication(X0,antidomain(antidomain(X1))))).
% 1.80/1.98  all X0 (addition(antidomain(antidomain(X0)),antidomain(X0))=one).
% 1.80/1.98  all X0 (domain(X0)=antidomain(antidomain(X0))).
% 1.80/1.98  all X0 (multiplication(X0,coantidomain(X0))=zero).
% 1.80/1.98  all X0 X1 (addition(coantidomain(multiplication(X0,X1)),coantidomain(multiplication(coantidomain(coantidomain(X0)),X1)))=coantidomain(multiplication(coantidomain(coantidomain(X0)),X1))).
% 1.80/1.98  all X0 (addition(coantidomain(coantidomain(X0)),coantidomain(X0))=one).
% 1.80/1.98  all X0 (codomain(X0)=coantidomain(coantidomain(X0))).
% 1.80/1.98  -(all X0 X1 (addition(domain(X0),antidomain(X1))=antidomain(X1)->multiplication(domain(X0),X1)=zero)).
% 1.80/1.98  end_of_list.
% 1.80/1.98  
% 1.80/1.98  -------> usable clausifies to:
% 1.80/1.98  
% 1.80/1.98  list(usable).
% 1.80/1.98  0 [] A=A.
% 1.80/1.98  0 [] addition(A,B)=addition(B,A).
% 1.80/1.98  0 [] addition(A,addition(B,C))=addition(addition(A,B),C).
% 1.80/1.98  0 [] addition(A,zero)=A.
% 1.80/1.98  0 [] addition(A,A)=A.
% 1.80/1.98  0 [] multiplication(A,multiplication(B,C))=multiplication(multiplication(A,B),C).
% 1.80/1.98  0 [] multiplication(A,one)=A.
% 1.80/1.98  0 [] multiplication(one,A)=A.
% 1.80/1.98  0 [] multiplication(A,addition(B,C))=addition(multiplication(A,B),multiplication(A,C)).
% 1.80/1.98  0 [] multiplication(addition(A,B),C)=addition(multiplication(A,C),multiplication(B,C)).
% 1.80/1.98  0 [] multiplication(A,zero)=zero.
% 1.80/1.98  0 [] multiplication(zero,A)=zero.
% 1.80/1.98  0 [] -le_q(A,B)|addition(A,B)=B.
% 1.80/1.98  0 [] le_q(A,B)|addition(A,B)!=B.
% 1.80/1.98  0 [] multiplication(antidomain(X0),X0)=zero.
% 1.80/1.98  0 [] addition(antidomain(multiplication(X0,X1)),antidomain(multiplication(X0,antidomain(antidomain(X1)))))=antidomain(multiplication(X0,antidomain(antidomain(X1)))).
% 1.80/1.98  0 [] addition(antidomain(antidomain(X0)),antidomain(X0))=one.
% 1.80/1.98  0 [] domain(X0)=antidomain(antidomain(X0)).
% 1.80/1.98  0 [] multiplication(X0,coantidomain(X0))=zero.
% 1.80/1.98  0 [] addition(coantidomain(multiplication(X0,X1)),coantidomain(multiplication(coantidomain(coantidomain(X0)),X1)))=coantidomain(multiplication(coantidomain(coantidomain(X0)),X1)).
% 1.80/1.98  0 [] addition(coantidomain(coantidomain(X0)),coantidomain(X0))=one.
% 1.80/1.98  0 [] codomain(X0)=coantidomain(coantidomain(X0)).
% 1.80/1.98  0 [] addition(domain($c2),antidomain($c1))=antidomain($c1).
% 1.80/1.98  0 [] multiplication(domain($c2),$c1)!=zero.
% 1.80/1.98  end_of_list.
% 1.80/1.98  
% 1.80/1.98  SCAN INPUT: prop=0, horn=1, equality=1, symmetry=0, max_lits=2.
% 1.80/1.98  
% 1.80/1.98  This is a Horn set with equality.  The strategy will be
% 1.80/1.98  Knuth-Bendix and hyper_res, with positive clauses in
% 1.80/1.98  sos and nonpositive clauses in usable.
% 1.80/1.98  
% 1.80/1.98     dependent: set(knuth_bendix).
% 1.80/1.98     dependent: set(anl_eq).
% 1.80/1.98     dependent: set(para_from).
% 1.80/1.98     dependent: set(para_into).
% 1.80/1.98     dependent: clear(para_from_right).
% 1.80/1.98     dependent: clear(para_into_right).
% 1.80/1.98     dependent: set(para_from_vars).
% 1.80/1.98     dependent: set(eq_units_both_ways).
% 1.80/1.98     dependent: set(dynamic_demod_all).
% 1.80/1.98     dependent: set(dynamic_demod).
% 1.80/1.98     dependent: set(order_eq).
% 1.80/1.98     dependent: set(back_demod).
% 1.80/1.98     dependent: set(lrpo).
% 1.80/1.98     dependent: set(hyper_res).
% 1.80/1.98     dependent: clear(order_hyper).
% 1.80/1.98  
% 1.80/1.98  ------------> process usable:
% 1.80/1.98  ** KEPT (pick-wt=8): 1 [] -le_q(A,B)|addition(A,B)=B.
% 1.80/1.98  ** KEPT (pick-wt=8): 2 [] le_q(A,B)|addition(A,B)!=B.
% 1.80/1.98  ** KEPT (pick-wt=6): 3 [] multiplication(domain($c2),$c1)!=zero.
% 1.80/1.98  
% 1.80/1.98  ------------> process sos:
% 1.80/1.98  ** KEPT (pick-wt=3): 4 [] A=A.
% 1.80/1.98  ** KEPT (pick-wt=7): 5 [] addition(A,B)=addition(B,A).
% 1.80/1.98  ** KEPT (pick-wt=11): 7 [copy,6,flip.1] addition(addition(A,B),C)=addition(A,addition(B,C)).
% 1.80/1.98  ---> New Demodulator: 8 [new_demod,7] addition(addition(A,B),C)=addition(A,addition(B,C)).
% 1.80/1.98  ** KEPT (pick-wt=5): 9 [] addition(A,zero)=A.
% 1.80/1.98  ---> New Demodulator: 10 [new_demod,9] addition(A,zero)=A.
% 1.80/1.98  ** KEPT (pick-wt=5): 11 [] addition(A,A)=A.
% 1.80/1.98  ---> New Demodulator: 12 [new_demod,11] addition(A,A)=A.
% 1.80/1.98  ** KEPT (pick-wt=11): 14 [copy,13,flip.1] multiplication(multiplication(A,B),C)=multiplication(A,multiplication(B,C)).
% 1.80/1.98  ---> New Demodulator: 15 [new_demod,14] multiplication(multiplication(A,B),C)=multiplication(A,multiplication(B,C)).
% 1.80/1.98  ** KEPT (pick-wt=5): 16 [] multiplication(A,one)=A.
% 1.80/1.98  ---> New Demodulator: 17 [new_demod,16] multiplication(A,one)=A.
% 1.80/1.98  ** KEPT (pick-wt=5): 18 [] multiplication(one,A)=A.
% 1.80/1.98  ---> New Demodulator: 19 [new_demod,18] multiplication(one,A)=A.
% 1.80/1.98  ** KEPT (pick-wt=13): 20 [] multiplication(A,addition(B,C))=addition(multiplication(A,B),multiplication(A,C)).
% 1.80/1.98  ---> New Demodulator: 21 [new_demod,20] multiplication(A,addition(B,C))=addition(multiplication(A,B),multiplication(A,C)).
% 1.80/1.98  ** KEPT (pick-wt=13): 22 [] multiplication(addition(A,B),C)=addition(multiplication(A,C),multiplication(B,C)).
% 1.80/1.98  ---> New Demodulator: 23 [new_demod,22] multiplication(addition(A,B),C)=addition(multiplication(A,C),multiplication(B,C)).
% 1.80/1.98  ** KEPT (pick-wt=5): 24 [] multiplication(A,zero)=zero.
% 1.80/1.98  ---> New Demodulator: 25 [new_demod,24] multiplication(A,zero)=zero.
% 1.80/1.98  ** KEPT (pick-wt=5): 26 [] multiplication(zero,A)=zero.
% 1.80/1.98  ---> New Demodulator: 27 [new_demod,26] multiplication(zero,A)=zero.
% 1.80/1.98  ** KEPT (pick-wt=6): 28 [] multiplication(antidomain(A),A)=zero.
% 1.80/1.98  ---> New Demodulator: 29 [new_demod,28] multiplication(antidomain(A),A)=zero.
% 1.80/1.98  ** KEPT (pick-wt=18): 30 [] addition(antidomain(multiplication(A,B)),antidomain(multiplication(A,antidomain(antidomain(B)))))=antidomain(multiplication(A,antidomain(antidomain(B)))).
% 1.80/1.98  ---> New Demodulator: 31 [new_demod,30] addition(antidomain(multiplication(A,B)),antidomain(multiplication(A,antidomain(antidomain(B)))))=antidomain(multiplication(A,antidomain(antidomain(B)))).
% 1.80/1.98  ** KEPT (pick-wt=8): 32 [] addition(antidomain(antidomain(A)),antidomain(A))=one.
% 1.80/1.98  ---> New Demodulator: 33 [new_demod,32] addition(antidomain(antidomain(A)),antidomain(A))=one.
% 1.80/1.98  ** KEPT (pick-wt=6): 34 [] domain(A)=antidomain(antidomain(A)).
% 1.80/1.98  ---> New Demodulator: 35 [new_demod,34] domain(A)=antidomain(antidomain(A)).
% 1.80/1.98  ** KEPT (pick-wt=6): 36 [] multiplication(A,coantidomain(A))=zero.
% 1.80/1.98  ---> New Demodulator: 37 [new_demod,36] multiplication(A,coantidomain(A))=zero.
% 1.80/1.98  ** KEPT (pick-wt=18): 38 [] addition(coantidomain(multiplication(A,B)),coantidomain(multiplication(coantidomain(coantidomain(A)),B)))=coantidomain(multiplication(coantidomain(coantidomain(A)),B)).
% 1.80/1.98  ---> New Demodulator: 39 [new_demod,38] addition(coantidomain(multiplication(A,B)),coantidomain(multiplication(coantidomain(coantidomain(A)),B)))=coantidomain(multiplication(coantidomain(coantidomain(A)),B)).
% 1.80/1.98  ** KEPT (pick-wt=8): 40 [] addition(coantidomain(coantidomain(A)),coantidomain(A))=one.
% 1.80/1.98  ---> New Demodulator: 41 [new_demod,40] addition(coantidomain(coantidomain(A)),coantidomain(A))=one.
% 1.80/1.98  ** KEPT (pick-wt=6): 42 [] codomain(A)=coantidomain(coantidomain(A)).
% 1.80/1.98  ---> New Demodulator: 43 [new_demod,42] codomain(A)=coantidomain(coantidomain(A)).
% 1.80/1.98  ** KEPT (pick-wt=9): 45 [copy,44,demod,35] addition(antidomain(antidomain($c2)),antidomain($c1))=antidomain($c1).
% 1.80/1.98  ---> New Demodulator: 46 [new_demod,45] addition(antidomain(antidomain($c2)),antidomain($c1))=antidomain($c1).
% 1.80/1.98    Following clause subsumed by 4 during input processing: 0 [copy,4,flip.1] A=A.
% 1.80/1.98    Following clause subsumed by 5 during input processing: 0 [copy,5,flip.1] addition(A,B)=addition(B,A).
% 2.04/2.27  >>>> Starting back demodulation with 8.
% 2.04/2.27  >>>> Starting back demodulation with 10.
% 2.04/2.27  >>>> Starting back demodulation with 12.
% 2.04/2.27  >>>> Starting back demodulation with 15.
% 2.04/2.27  >>>> Starting back demodulation with 17.
% 2.04/2.27  >>>> Starting back demodulation with 19.
% 2.04/2.27  >>>> Starting back demodulation with 21.
% 2.04/2.27  >>>> Starting back demodulation with 23.
% 2.04/2.27  >>>> Starting back demodulation with 25.
% 2.04/2.27  >>>> Starting back demodulation with 27.
% 2.04/2.27  >>>> Starting back demodulation with 29.
% 2.04/2.27  >>>> Starting back demodulation with 31.
% 2.04/2.27  >>>> Starting back demodulation with 33.
% 2.04/2.27  >>>> Starting back demodulation with 35.
% 2.04/2.27      >> back demodulating 3 with 35.
% 2.04/2.27  >>>> Starting back demodulation with 37.
% 2.04/2.27  >>>> Starting back demodulation with 39.
% 2.04/2.27  >>>> Starting back demodulation with 41.
% 2.04/2.27  >>>> Starting back demodulation with 43.
% 2.04/2.27  >>>> Starting back demodulation with 46.
% 2.04/2.27  
% 2.04/2.27  ======= end of input processing =======
% 2.04/2.27  
% 2.04/2.27  =========== start of search ===========
% 2.04/2.27  
% 2.04/2.27  
% 2.04/2.27  Resetting weight limit to 9.
% 2.04/2.27  
% 2.04/2.27  
% 2.04/2.27  Resetting weight limit to 9.
% 2.04/2.27  
% 2.04/2.27  sos_size=530
% 2.04/2.27  
% 2.04/2.27  
% 2.04/2.27  Resetting weight limit to 8.
% 2.04/2.27  
% 2.04/2.27  
% 2.04/2.27  Resetting weight limit to 8.
% 2.04/2.27  
% 2.04/2.27  sos_size=559
% 2.04/2.27  
% 2.04/2.27  -------- PROOF -------- 
% 2.04/2.27  
% 2.04/2.27  ----> UNIT CONFLICT at   0.29 sec ----> 1126 [binary,1124.1,47.1] $F.
% 2.04/2.27  
% 2.04/2.27  Length of proof is 4.  Level of proof is 3.
% 2.04/2.27  
% 2.04/2.27  ---------------- PROOF ----------------
% 2.04/2.27  % SZS status Theorem
% 2.04/2.27  % SZS output start Refutation
% See solution above
% 2.04/2.27  ------------ end of proof -------------
% 2.04/2.27  
% 2.04/2.27  
% 2.04/2.27  Search stopped by max_proofs option.
% 2.04/2.27  
% 2.04/2.27  
% 2.04/2.27  Search stopped by max_proofs option.
% 2.04/2.27  
% 2.04/2.27  ============ end of search ============
% 2.04/2.27  
% 2.04/2.27  -------------- statistics -------------
% 2.04/2.27  clauses given                386
% 2.04/2.27  clauses generated          50719
% 2.04/2.27  clauses kept                 937
% 2.04/2.27  clauses forward subsumed   11231
% 2.04/2.27  clauses back subsumed         64
% 2.04/2.27  Kbytes malloced             5859
% 2.04/2.27  
% 2.04/2.27  ----------- times (seconds) -----------
% 2.04/2.27  user CPU time          0.29          (0 hr, 0 min, 0 sec)
% 2.04/2.27  system CPU time        0.01          (0 hr, 0 min, 0 sec)
% 2.04/2.27  wall-clock time        2             (0 hr, 0 min, 2 sec)
% 2.04/2.27  
% 2.04/2.27  That finishes the proof of the theorem.
% 2.04/2.27  
% 2.04/2.27  Process 11623 finished Wed Jul 27 06:27:07 2022
% 2.04/2.27  Otter interrupted
% 2.04/2.27  PROOF FOUND
%------------------------------------------------------------------------------