TSTP Solution File: KLE088+1 by Twee---2.4.2

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Twee---2.4.2
% Problem  : KLE088+1 : TPTP v8.1.2. Released v4.0.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : parallel-twee %s --tstp --conditional-encoding if --smaller --drop-non-horn --give-up-on-saturation --explain-encoding --formal-proof

% Computer : n032.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Thu Aug 31 05:35:50 EDT 2023

% Result   : Theorem 0.16s 0.47s
% Output   : Proof 0.16s
% Verified : 
% SZS Type : -

% Comments : 
%------------------------------------------------------------------------------
%----WARNING: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.06/0.11  % Problem  : KLE088+1 : TPTP v8.1.2. Released v4.0.0.
% 0.06/0.12  % Command  : parallel-twee %s --tstp --conditional-encoding if --smaller --drop-non-horn --give-up-on-saturation --explain-encoding --formal-proof
% 0.10/0.31  % Computer : n032.cluster.edu
% 0.10/0.31  % Model    : x86_64 x86_64
% 0.10/0.31  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.10/0.31  % Memory   : 8042.1875MB
% 0.10/0.31  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.10/0.31  % CPULimit : 300
% 0.10/0.31  % WCLimit  : 300
% 0.10/0.31  % DateTime : Tue Aug 29 11:13:46 EDT 2023
% 0.10/0.31  % CPUTime  : 
% 0.16/0.47  Command-line arguments: --kbo-weight0 --lhs-weight 5 --flip-ordering --normalise-queue-percent 10 --cp-renormalise-threshold 10 --goal-heuristic
% 0.16/0.47  
% 0.16/0.47  % SZS status Theorem
% 0.16/0.47  
% 0.16/0.48  % SZS output start Proof
% 0.16/0.48  Take the following subset of the input axioms:
% 0.16/0.48    fof(additive_associativity, axiom, ![A, B, C]: addition(A, addition(B, C))=addition(addition(A, B), C)).
% 0.16/0.48    fof(additive_commutativity, axiom, ![A2, B2]: addition(A2, B2)=addition(B2, A2)).
% 0.16/0.48    fof(additive_idempotence, axiom, ![A2]: addition(A2, A2)=A2).
% 0.16/0.48    fof(additive_identity, axiom, ![A2]: addition(A2, zero)=A2).
% 0.16/0.48    fof(domain1, axiom, ![X0]: multiplication(antidomain(X0), X0)=zero).
% 0.16/0.48    fof(domain2, axiom, ![X1, X0_2]: addition(antidomain(multiplication(X0_2, X1)), antidomain(multiplication(X0_2, antidomain(antidomain(X1)))))=antidomain(multiplication(X0_2, antidomain(antidomain(X1))))).
% 0.16/0.48    fof(domain3, axiom, ![X0_2]: addition(antidomain(antidomain(X0_2)), antidomain(X0_2))=one).
% 0.16/0.48    fof(domain4, axiom, ![X0_2]: domain(X0_2)=antidomain(antidomain(X0_2))).
% 0.16/0.48    fof(goals, conjecture, ![X0_2, X1_2]: (multiplication(domain(X0_2), X1_2)=zero => addition(domain(X0_2), antidomain(X1_2))=antidomain(X1_2))).
% 0.16/0.48    fof(left_distributivity, axiom, ![A2, B2, C2]: multiplication(addition(A2, B2), C2)=addition(multiplication(A2, C2), multiplication(B2, C2))).
% 0.16/0.48    fof(multiplicative_left_identity, axiom, ![A2]: multiplication(one, A2)=A2).
% 0.16/0.48    fof(multiplicative_right_identity, axiom, ![A2]: multiplication(A2, one)=A2).
% 0.16/0.48    fof(right_distributivity, axiom, ![A2, B2, C2]: multiplication(A2, addition(B2, C2))=addition(multiplication(A2, B2), multiplication(A2, C2))).
% 0.16/0.48  
% 0.16/0.48  Now clausify the problem and encode Horn clauses using encoding 3 of
% 0.16/0.48  http://www.cse.chalmers.se/~nicsma/papers/horn.pdf.
% 0.16/0.48  We repeatedly replace C & s=t => u=v by the two clauses:
% 0.16/0.48    fresh(y, y, x1...xn) = u
% 0.16/0.48    C => fresh(s, t, x1...xn) = v
% 0.16/0.48  where fresh is a fresh function symbol and x1..xn are the free
% 0.16/0.48  variables of u and v.
% 0.16/0.48  A predicate p(X) is encoded as p(X)=true (this is sound, because the
% 0.16/0.48  input problem has no model of domain size 1).
% 0.16/0.48  
% 0.16/0.48  The encoding turns the above axioms into the following unit equations and goals:
% 0.16/0.48  
% 0.16/0.48  Axiom 1 (multiplicative_right_identity): multiplication(X, one) = X.
% 0.16/0.48  Axiom 2 (multiplicative_left_identity): multiplication(one, X) = X.
% 0.16/0.48  Axiom 3 (additive_idempotence): addition(X, X) = X.
% 0.16/0.48  Axiom 4 (additive_commutativity): addition(X, Y) = addition(Y, X).
% 0.16/0.48  Axiom 5 (additive_identity): addition(X, zero) = X.
% 0.16/0.48  Axiom 6 (domain1): multiplication(antidomain(X), X) = zero.
% 0.16/0.48  Axiom 7 (goals): multiplication(domain(x0), x1) = zero.
% 0.16/0.48  Axiom 8 (additive_associativity): addition(X, addition(Y, Z)) = addition(addition(X, Y), Z).
% 0.16/0.48  Axiom 9 (domain4): domain(X) = antidomain(antidomain(X)).
% 0.16/0.48  Axiom 10 (right_distributivity): multiplication(X, addition(Y, Z)) = addition(multiplication(X, Y), multiplication(X, Z)).
% 0.16/0.48  Axiom 11 (left_distributivity): multiplication(addition(X, Y), Z) = addition(multiplication(X, Z), multiplication(Y, Z)).
% 0.16/0.48  Axiom 12 (domain3): addition(antidomain(antidomain(X)), antidomain(X)) = one.
% 0.16/0.48  Axiom 13 (domain2): addition(antidomain(multiplication(X, Y)), antidomain(multiplication(X, antidomain(antidomain(Y))))) = antidomain(multiplication(X, antidomain(antidomain(Y)))).
% 0.16/0.48  
% 0.16/0.48  Lemma 14: antidomain(one) = zero.
% 0.16/0.48  Proof:
% 0.16/0.48    antidomain(one)
% 0.16/0.48  = { by axiom 1 (multiplicative_right_identity) R->L }
% 0.16/0.48    multiplication(antidomain(one), one)
% 0.16/0.48  = { by axiom 6 (domain1) }
% 0.16/0.48    zero
% 0.16/0.48  
% 0.16/0.48  Lemma 15: addition(zero, X) = X.
% 0.16/0.48  Proof:
% 0.16/0.48    addition(zero, X)
% 0.16/0.48  = { by axiom 4 (additive_commutativity) R->L }
% 0.16/0.48    addition(X, zero)
% 0.16/0.48  = { by axiom 5 (additive_identity) }
% 0.16/0.48    X
% 0.16/0.48  
% 0.16/0.48  Lemma 16: addition(X, addition(X, Y)) = addition(X, Y).
% 0.16/0.48  Proof:
% 0.16/0.48    addition(X, addition(X, Y))
% 0.16/0.48  = { by axiom 8 (additive_associativity) }
% 0.16/0.48    addition(addition(X, X), Y)
% 0.16/0.48  = { by axiom 3 (additive_idempotence) }
% 0.16/0.48    addition(X, Y)
% 0.16/0.48  
% 0.16/0.48  Lemma 17: addition(antidomain(X), domain(X)) = one.
% 0.16/0.48  Proof:
% 0.16/0.48    addition(antidomain(X), domain(X))
% 0.16/0.48  = { by axiom 4 (additive_commutativity) R->L }
% 0.16/0.48    addition(domain(X), antidomain(X))
% 0.16/0.48  = { by axiom 9 (domain4) }
% 0.16/0.48    addition(antidomain(antidomain(X)), antidomain(X))
% 0.16/0.48  = { by axiom 12 (domain3) }
% 0.16/0.48    one
% 0.16/0.48  
% 0.16/0.48  Lemma 18: addition(domain(X), antidomain(X)) = one.
% 0.16/0.48  Proof:
% 0.16/0.48    addition(domain(X), antidomain(X))
% 0.16/0.48  = { by axiom 4 (additive_commutativity) R->L }
% 0.16/0.48    addition(antidomain(X), domain(X))
% 0.16/0.48  = { by lemma 17 }
% 0.16/0.48    one
% 0.16/0.48  
% 0.16/0.48  Lemma 19: addition(antidomain(X), antidomain(antidomain(X))) = one.
% 0.16/0.48  Proof:
% 0.16/0.48    addition(antidomain(X), antidomain(antidomain(X)))
% 0.16/0.48  = { by axiom 9 (domain4) R->L }
% 0.16/0.48    addition(antidomain(X), domain(X))
% 0.16/0.48  = { by lemma 17 }
% 0.16/0.48    one
% 0.16/0.48  
% 0.16/0.48  Lemma 20: multiplication(addition(X, antidomain(Y)), Y) = multiplication(X, Y).
% 0.16/0.48  Proof:
% 0.16/0.48    multiplication(addition(X, antidomain(Y)), Y)
% 0.16/0.48  = { by axiom 11 (left_distributivity) }
% 0.16/0.48    addition(multiplication(X, Y), multiplication(antidomain(Y), Y))
% 0.16/0.48  = { by axiom 6 (domain1) }
% 0.16/0.48    addition(multiplication(X, Y), zero)
% 0.16/0.48  = { by axiom 5 (additive_identity) }
% 0.16/0.48    multiplication(X, Y)
% 0.16/0.48  
% 0.16/0.48  Goal 1 (goals_1): addition(domain(x0), antidomain(x1)) = antidomain(x1).
% 0.16/0.48  Proof:
% 0.16/0.48    addition(domain(x0), antidomain(x1))
% 0.16/0.48  = { by axiom 1 (multiplicative_right_identity) R->L }
% 0.16/0.48    multiplication(addition(domain(x0), antidomain(x1)), one)
% 0.16/0.48  = { by lemma 19 R->L }
% 0.16/0.48    multiplication(addition(domain(x0), antidomain(x1)), addition(antidomain(x1), antidomain(antidomain(x1))))
% 0.16/0.48  = { by axiom 4 (additive_commutativity) R->L }
% 0.16/0.48    multiplication(addition(domain(x0), antidomain(x1)), addition(antidomain(antidomain(x1)), antidomain(x1)))
% 0.16/0.48  = { by axiom 10 (right_distributivity) }
% 0.16/0.48    addition(multiplication(addition(domain(x0), antidomain(x1)), antidomain(antidomain(x1))), multiplication(addition(domain(x0), antidomain(x1)), antidomain(x1)))
% 0.16/0.48  = { by axiom 2 (multiplicative_left_identity) R->L }
% 0.16/0.48    addition(multiplication(one, multiplication(addition(domain(x0), antidomain(x1)), antidomain(antidomain(x1)))), multiplication(addition(domain(x0), antidomain(x1)), antidomain(x1)))
% 0.16/0.48  = { by lemma 17 R->L }
% 0.16/0.48    addition(multiplication(addition(antidomain(multiplication(addition(domain(x0), antidomain(x1)), domain(x1))), domain(multiplication(addition(domain(x0), antidomain(x1)), domain(x1)))), multiplication(addition(domain(x0), antidomain(x1)), antidomain(antidomain(x1)))), multiplication(addition(domain(x0), antidomain(x1)), antidomain(x1)))
% 0.16/0.48  = { by lemma 16 R->L }
% 0.16/0.48    addition(multiplication(addition(antidomain(multiplication(addition(domain(x0), antidomain(x1)), domain(x1))), addition(antidomain(multiplication(addition(domain(x0), antidomain(x1)), domain(x1))), domain(multiplication(addition(domain(x0), antidomain(x1)), domain(x1))))), multiplication(addition(domain(x0), antidomain(x1)), antidomain(antidomain(x1)))), multiplication(addition(domain(x0), antidomain(x1)), antidomain(x1)))
% 0.16/0.48  = { by lemma 17 }
% 0.16/0.48    addition(multiplication(addition(antidomain(multiplication(addition(domain(x0), antidomain(x1)), domain(x1))), one), multiplication(addition(domain(x0), antidomain(x1)), antidomain(antidomain(x1)))), multiplication(addition(domain(x0), antidomain(x1)), antidomain(x1)))
% 0.16/0.48  = { by axiom 4 (additive_commutativity) }
% 0.16/0.48    addition(multiplication(addition(one, antidomain(multiplication(addition(domain(x0), antidomain(x1)), domain(x1)))), multiplication(addition(domain(x0), antidomain(x1)), antidomain(antidomain(x1)))), multiplication(addition(domain(x0), antidomain(x1)), antidomain(x1)))
% 0.16/0.48  = { by lemma 17 R->L }
% 0.16/0.48    addition(multiplication(addition(addition(antidomain(one), domain(one)), antidomain(multiplication(addition(domain(x0), antidomain(x1)), domain(x1)))), multiplication(addition(domain(x0), antidomain(x1)), antidomain(antidomain(x1)))), multiplication(addition(domain(x0), antidomain(x1)), antidomain(x1)))
% 0.16/0.48  = { by lemma 14 }
% 0.16/0.48    addition(multiplication(addition(addition(zero, domain(one)), antidomain(multiplication(addition(domain(x0), antidomain(x1)), domain(x1)))), multiplication(addition(domain(x0), antidomain(x1)), antidomain(antidomain(x1)))), multiplication(addition(domain(x0), antidomain(x1)), antidomain(x1)))
% 0.16/0.48  = { by lemma 15 }
% 0.16/0.48    addition(multiplication(addition(domain(one), antidomain(multiplication(addition(domain(x0), antidomain(x1)), domain(x1)))), multiplication(addition(domain(x0), antidomain(x1)), antidomain(antidomain(x1)))), multiplication(addition(domain(x0), antidomain(x1)), antidomain(x1)))
% 0.16/0.48  = { by axiom 9 (domain4) }
% 0.16/0.48    addition(multiplication(addition(antidomain(antidomain(one)), antidomain(multiplication(addition(domain(x0), antidomain(x1)), domain(x1)))), multiplication(addition(domain(x0), antidomain(x1)), antidomain(antidomain(x1)))), multiplication(addition(domain(x0), antidomain(x1)), antidomain(x1)))
% 0.16/0.48  = { by lemma 14 }
% 0.16/0.48    addition(multiplication(addition(antidomain(zero), antidomain(multiplication(addition(domain(x0), antidomain(x1)), domain(x1)))), multiplication(addition(domain(x0), antidomain(x1)), antidomain(antidomain(x1)))), multiplication(addition(domain(x0), antidomain(x1)), antidomain(x1)))
% 0.16/0.48  = { by axiom 7 (goals) R->L }
% 0.16/0.48    addition(multiplication(addition(antidomain(multiplication(domain(x0), x1)), antidomain(multiplication(addition(domain(x0), antidomain(x1)), domain(x1)))), multiplication(addition(domain(x0), antidomain(x1)), antidomain(antidomain(x1)))), multiplication(addition(domain(x0), antidomain(x1)), antidomain(x1)))
% 0.16/0.48  = { by lemma 20 R->L }
% 0.16/0.48    addition(multiplication(addition(antidomain(multiplication(addition(domain(x0), antidomain(x1)), x1)), antidomain(multiplication(addition(domain(x0), antidomain(x1)), domain(x1)))), multiplication(addition(domain(x0), antidomain(x1)), antidomain(antidomain(x1)))), multiplication(addition(domain(x0), antidomain(x1)), antidomain(x1)))
% 0.16/0.48  = { by axiom 9 (domain4) }
% 0.16/0.48    addition(multiplication(addition(antidomain(multiplication(addition(domain(x0), antidomain(x1)), x1)), antidomain(multiplication(addition(domain(x0), antidomain(x1)), antidomain(antidomain(x1))))), multiplication(addition(domain(x0), antidomain(x1)), antidomain(antidomain(x1)))), multiplication(addition(domain(x0), antidomain(x1)), antidomain(x1)))
% 0.16/0.48  = { by axiom 13 (domain2) }
% 0.16/0.48    addition(multiplication(antidomain(multiplication(addition(domain(x0), antidomain(x1)), antidomain(antidomain(x1)))), multiplication(addition(domain(x0), antidomain(x1)), antidomain(antidomain(x1)))), multiplication(addition(domain(x0), antidomain(x1)), antidomain(x1)))
% 0.16/0.48  = { by axiom 6 (domain1) }
% 0.16/0.48    addition(zero, multiplication(addition(domain(x0), antidomain(x1)), antidomain(x1)))
% 0.16/0.48  = { by lemma 15 }
% 0.16/0.48    multiplication(addition(domain(x0), antidomain(x1)), antidomain(x1))
% 0.16/0.48  = { by lemma 20 R->L }
% 0.16/0.48    multiplication(addition(addition(domain(x0), antidomain(x1)), antidomain(antidomain(x1))), antidomain(x1))
% 0.16/0.48  = { by axiom 8 (additive_associativity) R->L }
% 0.16/0.48    multiplication(addition(domain(x0), addition(antidomain(x1), antidomain(antidomain(x1)))), antidomain(x1))
% 0.16/0.48  = { by lemma 19 }
% 0.16/0.48    multiplication(addition(domain(x0), one), antidomain(x1))
% 0.16/0.48  = { by lemma 18 R->L }
% 0.16/0.48    multiplication(addition(domain(x0), addition(domain(x0), antidomain(x0))), antidomain(x1))
% 0.16/0.48  = { by lemma 16 }
% 0.16/0.48    multiplication(addition(domain(x0), antidomain(x0)), antidomain(x1))
% 0.16/0.48  = { by lemma 18 }
% 0.16/0.48    multiplication(one, antidomain(x1))
% 0.16/0.48  = { by axiom 2 (multiplicative_left_identity) }
% 0.16/0.48    antidomain(x1)
% 0.16/0.48  % SZS output end Proof
% 0.16/0.48  
% 0.16/0.48  RESULT: Theorem (the conjecture is true).
%------------------------------------------------------------------------------