TSTP Solution File: KLE086+1 by Bliksem---1.12

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Bliksem---1.12
% Problem  : KLE086+1 : TPTP v8.1.0. Released v4.0.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : bliksem %s

% Computer : n006.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 0s
% DateTime : Sun Jul 17 01:37:06 EDT 2022

% Result   : Theorem 0.71s 1.13s
% Output   : Refutation 0.71s
% Verified : 
% SZS Type : -

% Comments : 
%------------------------------------------------------------------------------
%----WARNING: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.03/0.13  % Problem  : KLE086+1 : TPTP v8.1.0. Released v4.0.0.
% 0.03/0.13  % Command  : bliksem %s
% 0.14/0.35  % Computer : n006.cluster.edu
% 0.14/0.35  % Model    : x86_64 x86_64
% 0.14/0.35  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.14/0.35  % Memory   : 8042.1875MB
% 0.14/0.35  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.14/0.35  % CPULimit : 300
% 0.14/0.35  % DateTime : Thu Jun 16 07:44:41 EDT 2022
% 0.14/0.35  % CPUTime  : 
% 0.71/1.13  *** allocated 10000 integers for termspace/termends
% 0.71/1.13  *** allocated 10000 integers for clauses
% 0.71/1.13  *** allocated 10000 integers for justifications
% 0.71/1.13  Bliksem 1.12
% 0.71/1.13  
% 0.71/1.13  
% 0.71/1.13  Automatic Strategy Selection
% 0.71/1.13  
% 0.71/1.13  
% 0.71/1.13  Clauses:
% 0.71/1.13  
% 0.71/1.13  { addition( X, Y ) = addition( Y, X ) }.
% 0.71/1.13  { addition( Z, addition( Y, X ) ) = addition( addition( Z, Y ), X ) }.
% 0.71/1.13  { addition( X, zero ) = X }.
% 0.71/1.13  { addition( X, X ) = X }.
% 0.71/1.13  { multiplication( X, multiplication( Y, Z ) ) = multiplication( 
% 0.71/1.13    multiplication( X, Y ), Z ) }.
% 0.71/1.13  { multiplication( X, one ) = X }.
% 0.71/1.13  { multiplication( one, X ) = X }.
% 0.71/1.13  { multiplication( X, addition( Y, Z ) ) = addition( multiplication( X, Y )
% 0.71/1.13    , multiplication( X, Z ) ) }.
% 0.71/1.13  { multiplication( addition( X, Y ), Z ) = addition( multiplication( X, Z )
% 0.71/1.13    , multiplication( Y, Z ) ) }.
% 0.71/1.13  { multiplication( X, zero ) = zero }.
% 0.71/1.13  { multiplication( zero, X ) = zero }.
% 0.71/1.13  { ! leq( X, Y ), addition( X, Y ) = Y }.
% 0.71/1.13  { ! addition( X, Y ) = Y, leq( X, Y ) }.
% 0.71/1.13  { multiplication( antidomain( X ), X ) = zero }.
% 0.71/1.13  { addition( antidomain( multiplication( X, Y ) ), antidomain( 
% 0.71/1.13    multiplication( X, antidomain( antidomain( Y ) ) ) ) ) = antidomain( 
% 0.71/1.13    multiplication( X, antidomain( antidomain( Y ) ) ) ) }.
% 0.71/1.13  { addition( antidomain( antidomain( X ) ), antidomain( X ) ) = one }.
% 0.71/1.13  { domain( X ) = antidomain( antidomain( X ) ) }.
% 0.71/1.13  { multiplication( X, coantidomain( X ) ) = zero }.
% 0.71/1.13  { addition( coantidomain( multiplication( X, Y ) ), coantidomain( 
% 0.71/1.13    multiplication( coantidomain( coantidomain( X ) ), Y ) ) ) = coantidomain
% 0.71/1.13    ( multiplication( coantidomain( coantidomain( X ) ), Y ) ) }.
% 0.71/1.13  { addition( coantidomain( coantidomain( X ) ), coantidomain( X ) ) = one }
% 0.71/1.13    .
% 0.71/1.13  { codomain( X ) = coantidomain( coantidomain( X ) ) }.
% 0.71/1.13  { ! domain( zero ) = zero }.
% 0.71/1.13  
% 0.71/1.13  percentage equality = 0.916667, percentage horn = 1.000000
% 0.71/1.13  This is a pure equality problem
% 0.71/1.13  
% 0.71/1.13  
% 0.71/1.13  
% 0.71/1.13  Options Used:
% 0.71/1.13  
% 0.71/1.13  useres =            1
% 0.71/1.13  useparamod =        1
% 0.71/1.13  useeqrefl =         1
% 0.71/1.13  useeqfact =         1
% 0.71/1.13  usefactor =         1
% 0.71/1.13  usesimpsplitting =  0
% 0.71/1.13  usesimpdemod =      5
% 0.71/1.13  usesimpres =        3
% 0.71/1.13  
% 0.71/1.13  resimpinuse      =  1000
% 0.71/1.13  resimpclauses =     20000
% 0.71/1.13  substype =          eqrewr
% 0.71/1.13  backwardsubs =      1
% 0.71/1.13  selectoldest =      5
% 0.71/1.13  
% 0.71/1.13  litorderings [0] =  split
% 0.71/1.13  litorderings [1] =  extend the termordering, first sorting on arguments
% 0.71/1.13  
% 0.71/1.13  termordering =      kbo
% 0.71/1.13  
% 0.71/1.13  litapriori =        0
% 0.71/1.13  termapriori =       1
% 0.71/1.13  litaposteriori =    0
% 0.71/1.13  termaposteriori =   0
% 0.71/1.13  demodaposteriori =  0
% 0.71/1.13  ordereqreflfact =   0
% 0.71/1.13  
% 0.71/1.13  litselect =         negord
% 0.71/1.13  
% 0.71/1.13  maxweight =         15
% 0.71/1.13  maxdepth =          30000
% 0.71/1.13  maxlength =         115
% 0.71/1.13  maxnrvars =         195
% 0.71/1.13  excuselevel =       1
% 0.71/1.13  increasemaxweight = 1
% 0.71/1.13  
% 0.71/1.13  maxselected =       10000000
% 0.71/1.13  maxnrclauses =      10000000
% 0.71/1.13  
% 0.71/1.13  showgenerated =    0
% 0.71/1.13  showkept =         0
% 0.71/1.13  showselected =     0
% 0.71/1.13  showdeleted =      0
% 0.71/1.13  showresimp =       1
% 0.71/1.13  showstatus =       2000
% 0.71/1.13  
% 0.71/1.13  prologoutput =     0
% 0.71/1.13  nrgoals =          5000000
% 0.71/1.13  totalproof =       1
% 0.71/1.13  
% 0.71/1.13  Symbols occurring in the translation:
% 0.71/1.13  
% 0.71/1.13  {}  [0, 0]      (w:1, o:2, a:1, s:1, b:0), 
% 0.71/1.13  .  [1, 2]      (w:1, o:22, a:1, s:1, b:0), 
% 0.71/1.13  !  [4, 1]      (w:0, o:13, a:1, s:1, b:0), 
% 0.71/1.13  =  [13, 2]      (w:1, o:0, a:0, s:1, b:0), 
% 0.71/1.13  ==>  [14, 2]      (w:1, o:0, a:0, s:1, b:0), 
% 0.71/1.13  addition  [37, 2]      (w:1, o:46, a:1, s:1, b:0), 
% 0.71/1.13  zero  [39, 0]      (w:1, o:9, a:1, s:1, b:0), 
% 0.71/1.13  multiplication  [40, 2]      (w:1, o:48, a:1, s:1, b:0), 
% 0.71/1.13  one  [41, 0]      (w:1, o:10, a:1, s:1, b:0), 
% 0.71/1.13  leq  [42, 2]      (w:1, o:47, a:1, s:1, b:0), 
% 0.71/1.13  antidomain  [44, 1]      (w:1, o:18, a:1, s:1, b:0), 
% 0.71/1.13  domain  [46, 1]      (w:1, o:21, a:1, s:1, b:0), 
% 0.71/1.13  coantidomain  [47, 1]      (w:1, o:19, a:1, s:1, b:0), 
% 0.71/1.13  codomain  [48, 1]      (w:1, o:20, a:1, s:1, b:0).
% 0.71/1.13  
% 0.71/1.13  
% 0.71/1.13  Starting Search:
% 0.71/1.13  
% 0.71/1.13  *** allocated 15000 integers for clauses
% 0.71/1.13  *** allocated 22500 integers for clauses
% 0.71/1.13  *** allocated 33750 integers for clauses
% 0.71/1.13  
% 0.71/1.13  Bliksems!, er is een bewijs:
% 0.71/1.13  % SZS status Theorem
% 0.71/1.13  % SZS output start Refutation
% 0.71/1.13  
% 0.71/1.13  (2) {G0,W5,D3,L1,V1,M1} I { addition( X, zero ) ==> X }.
% 0.71/1.13  (5) {G0,W5,D3,L1,V1,M1} I { multiplication( X, one ) ==> X }.
% 0.71/1.13  (13) {G0,W6,D4,L1,V1,M1} I { multiplication( antidomain( X ), X ) ==> zero
% 0.71/1.13     }.
% 0.71/1.13  (15) {G0,W8,D5,L1,V1,M1} I { addition( antidomain( antidomain( X ) ), 
% 0.71/1.13    antidomain( X ) ) ==> one }.
% 0.71/1.13  (16) {G0,W6,D4,L1,V1,M1} I { antidomain( antidomain( X ) ) ==> domain( X )
% 0.71/1.13     }.
% 0.71/1.13  (21) {G0,W4,D3,L1,V0,M1} I { ! domain( zero ) ==> zero }.
% 0.71/1.13  (35) {G1,W7,D4,L1,V1,M1} P(16,13) { multiplication( domain( X ), antidomain
% 0.71/1.13    ( X ) ) ==> zero }.
% 0.71/1.13  (36) {G1,W4,D3,L1,V0,M1} P(13,5) { antidomain( one ) ==> zero }.
% 0.71/1.13  (37) {G2,W5,D3,L1,V0,M1} P(36,16) { domain( one ) ==> antidomain( zero )
% 0.71/1.13     }.
% 0.71/1.13  (149) {G1,W7,D4,L1,V1,M1} S(15);d(16) { addition( domain( X ), antidomain( 
% 0.71/1.13    X ) ) ==> one }.
% 0.71/1.13  (398) {G3,W4,D3,L1,V0,M1} P(37,149);d(36);d(2) { antidomain( zero ) ==> one
% 0.71/1.13     }.
% 0.71/1.13  (417) {G4,W0,D0,L0,V0,M0} P(398,35);d(5);r(21) {  }.
% 0.71/1.13  
% 0.71/1.13  
% 0.71/1.13  % SZS output end Refutation
% 0.71/1.13  found a proof!
% 0.71/1.13  
% 0.71/1.13  
% 0.71/1.13  Unprocessed initial clauses:
% 0.71/1.13  
% 0.71/1.13  (419) {G0,W7,D3,L1,V2,M1}  { addition( X, Y ) = addition( Y, X ) }.
% 0.71/1.13  (420) {G0,W11,D4,L1,V3,M1}  { addition( Z, addition( Y, X ) ) = addition( 
% 0.71/1.13    addition( Z, Y ), X ) }.
% 0.71/1.13  (421) {G0,W5,D3,L1,V1,M1}  { addition( X, zero ) = X }.
% 0.71/1.13  (422) {G0,W5,D3,L1,V1,M1}  { addition( X, X ) = X }.
% 0.71/1.13  (423) {G0,W11,D4,L1,V3,M1}  { multiplication( X, multiplication( Y, Z ) ) =
% 0.71/1.13     multiplication( multiplication( X, Y ), Z ) }.
% 0.71/1.13  (424) {G0,W5,D3,L1,V1,M1}  { multiplication( X, one ) = X }.
% 0.71/1.13  (425) {G0,W5,D3,L1,V1,M1}  { multiplication( one, X ) = X }.
% 0.71/1.13  (426) {G0,W13,D4,L1,V3,M1}  { multiplication( X, addition( Y, Z ) ) = 
% 0.71/1.13    addition( multiplication( X, Y ), multiplication( X, Z ) ) }.
% 0.71/1.13  (427) {G0,W13,D4,L1,V3,M1}  { multiplication( addition( X, Y ), Z ) = 
% 0.71/1.13    addition( multiplication( X, Z ), multiplication( Y, Z ) ) }.
% 0.71/1.13  (428) {G0,W5,D3,L1,V1,M1}  { multiplication( X, zero ) = zero }.
% 0.71/1.13  (429) {G0,W5,D3,L1,V1,M1}  { multiplication( zero, X ) = zero }.
% 0.71/1.13  (430) {G0,W8,D3,L2,V2,M2}  { ! leq( X, Y ), addition( X, Y ) = Y }.
% 0.71/1.13  (431) {G0,W8,D3,L2,V2,M2}  { ! addition( X, Y ) = Y, leq( X, Y ) }.
% 0.71/1.13  (432) {G0,W6,D4,L1,V1,M1}  { multiplication( antidomain( X ), X ) = zero
% 0.71/1.13     }.
% 0.71/1.13  (433) {G0,W18,D7,L1,V2,M1}  { addition( antidomain( multiplication( X, Y )
% 0.71/1.13     ), antidomain( multiplication( X, antidomain( antidomain( Y ) ) ) ) ) = 
% 0.71/1.13    antidomain( multiplication( X, antidomain( antidomain( Y ) ) ) ) }.
% 0.71/1.13  (434) {G0,W8,D5,L1,V1,M1}  { addition( antidomain( antidomain( X ) ), 
% 0.71/1.13    antidomain( X ) ) = one }.
% 0.71/1.13  (435) {G0,W6,D4,L1,V1,M1}  { domain( X ) = antidomain( antidomain( X ) )
% 0.71/1.13     }.
% 0.71/1.13  (436) {G0,W6,D4,L1,V1,M1}  { multiplication( X, coantidomain( X ) ) = zero
% 0.71/1.13     }.
% 0.71/1.13  (437) {G0,W18,D7,L1,V2,M1}  { addition( coantidomain( multiplication( X, Y
% 0.71/1.13     ) ), coantidomain( multiplication( coantidomain( coantidomain( X ) ), Y
% 0.71/1.13     ) ) ) = coantidomain( multiplication( coantidomain( coantidomain( X ) )
% 0.71/1.13    , Y ) ) }.
% 0.71/1.13  (438) {G0,W8,D5,L1,V1,M1}  { addition( coantidomain( coantidomain( X ) ), 
% 0.71/1.13    coantidomain( X ) ) = one }.
% 0.71/1.13  (439) {G0,W6,D4,L1,V1,M1}  { codomain( X ) = coantidomain( coantidomain( X
% 0.71/1.13     ) ) }.
% 0.71/1.13  (440) {G0,W4,D3,L1,V0,M1}  { ! domain( zero ) = zero }.
% 0.71/1.13  
% 0.71/1.13  
% 0.71/1.13  Total Proof:
% 0.71/1.13  
% 0.71/1.13  subsumption: (2) {G0,W5,D3,L1,V1,M1} I { addition( X, zero ) ==> X }.
% 0.71/1.13  parent0: (421) {G0,W5,D3,L1,V1,M1}  { addition( X, zero ) = X }.
% 0.71/1.13  substitution0:
% 0.71/1.13     X := X
% 0.71/1.13  end
% 0.71/1.13  permutation0:
% 0.71/1.13     0 ==> 0
% 0.71/1.13  end
% 0.71/1.13  
% 0.71/1.13  subsumption: (5) {G0,W5,D3,L1,V1,M1} I { multiplication( X, one ) ==> X }.
% 0.71/1.13  parent0: (424) {G0,W5,D3,L1,V1,M1}  { multiplication( X, one ) = X }.
% 0.71/1.13  substitution0:
% 0.71/1.13     X := X
% 0.71/1.13  end
% 0.71/1.13  permutation0:
% 0.71/1.13     0 ==> 0
% 0.71/1.13  end
% 0.71/1.13  
% 0.71/1.13  subsumption: (13) {G0,W6,D4,L1,V1,M1} I { multiplication( antidomain( X ), 
% 0.71/1.13    X ) ==> zero }.
% 0.71/1.13  parent0: (432) {G0,W6,D4,L1,V1,M1}  { multiplication( antidomain( X ), X ) 
% 0.71/1.13    = zero }.
% 0.71/1.13  substitution0:
% 0.71/1.13     X := X
% 0.71/1.13  end
% 0.71/1.13  permutation0:
% 0.71/1.13     0 ==> 0
% 0.71/1.13  end
% 0.71/1.13  
% 0.71/1.13  subsumption: (15) {G0,W8,D5,L1,V1,M1} I { addition( antidomain( antidomain
% 0.71/1.13    ( X ) ), antidomain( X ) ) ==> one }.
% 0.71/1.13  parent0: (434) {G0,W8,D5,L1,V1,M1}  { addition( antidomain( antidomain( X )
% 0.71/1.13     ), antidomain( X ) ) = one }.
% 0.71/1.13  substitution0:
% 0.71/1.13     X := X
% 0.71/1.13  end
% 0.71/1.13  permutation0:
% 0.71/1.13     0 ==> 0
% 0.71/1.13  end
% 0.71/1.13  
% 0.71/1.13  eqswap: (491) {G0,W6,D4,L1,V1,M1}  { antidomain( antidomain( X ) ) = domain
% 0.71/1.13    ( X ) }.
% 0.71/1.13  parent0[0]: (435) {G0,W6,D4,L1,V1,M1}  { domain( X ) = antidomain( 
% 0.71/1.13    antidomain( X ) ) }.
% 0.71/1.13  substitution0:
% 0.71/1.13     X := X
% 0.71/1.13  end
% 0.71/1.13  
% 0.71/1.13  subsumption: (16) {G0,W6,D4,L1,V1,M1} I { antidomain( antidomain( X ) ) ==>
% 0.71/1.13     domain( X ) }.
% 0.71/1.13  parent0: (491) {G0,W6,D4,L1,V1,M1}  { antidomain( antidomain( X ) ) = 
% 0.71/1.13    domain( X ) }.
% 0.71/1.13  substitution0:
% 0.71/1.13     X := X
% 0.71/1.13  end
% 0.71/1.13  permutation0:
% 0.71/1.13     0 ==> 0
% 0.71/1.13  end
% 0.71/1.13  
% 0.71/1.13  subsumption: (21) {G0,W4,D3,L1,V0,M1} I { ! domain( zero ) ==> zero }.
% 0.71/1.13  parent0: (440) {G0,W4,D3,L1,V0,M1}  { ! domain( zero ) = zero }.
% 0.71/1.13  substitution0:
% 0.71/1.13  end
% 0.71/1.13  permutation0:
% 0.71/1.13     0 ==> 0
% 0.71/1.13  end
% 0.71/1.13  
% 0.71/1.13  eqswap: (514) {G0,W6,D4,L1,V1,M1}  { zero ==> multiplication( antidomain( X
% 0.71/1.13     ), X ) }.
% 0.71/1.13  parent0[0]: (13) {G0,W6,D4,L1,V1,M1} I { multiplication( antidomain( X ), X
% 0.71/1.13     ) ==> zero }.
% 0.71/1.13  substitution0:
% 0.71/1.13     X := X
% 0.71/1.13  end
% 0.71/1.13  
% 0.71/1.13  paramod: (515) {G1,W7,D4,L1,V1,M1}  { zero ==> multiplication( domain( X )
% 0.71/1.13    , antidomain( X ) ) }.
% 0.71/1.13  parent0[0]: (16) {G0,W6,D4,L1,V1,M1} I { antidomain( antidomain( X ) ) ==> 
% 0.71/1.13    domain( X ) }.
% 0.71/1.13  parent1[0; 3]: (514) {G0,W6,D4,L1,V1,M1}  { zero ==> multiplication( 
% 0.71/1.13    antidomain( X ), X ) }.
% 0.71/1.13  substitution0:
% 0.71/1.13     X := X
% 0.71/1.13  end
% 0.71/1.13  substitution1:
% 0.71/1.13     X := antidomain( X )
% 0.71/1.13  end
% 0.71/1.13  
% 0.71/1.13  eqswap: (516) {G1,W7,D4,L1,V1,M1}  { multiplication( domain( X ), 
% 0.71/1.13    antidomain( X ) ) ==> zero }.
% 0.71/1.13  parent0[0]: (515) {G1,W7,D4,L1,V1,M1}  { zero ==> multiplication( domain( X
% 0.71/1.13     ), antidomain( X ) ) }.
% 0.71/1.13  substitution0:
% 0.71/1.13     X := X
% 0.71/1.13  end
% 0.71/1.13  
% 0.71/1.13  subsumption: (35) {G1,W7,D4,L1,V1,M1} P(16,13) { multiplication( domain( X
% 0.71/1.13     ), antidomain( X ) ) ==> zero }.
% 0.71/1.13  parent0: (516) {G1,W7,D4,L1,V1,M1}  { multiplication( domain( X ), 
% 0.71/1.13    antidomain( X ) ) ==> zero }.
% 0.71/1.13  substitution0:
% 0.71/1.13     X := X
% 0.71/1.13  end
% 0.71/1.13  permutation0:
% 0.71/1.13     0 ==> 0
% 0.71/1.13  end
% 0.71/1.13  
% 0.71/1.13  eqswap: (517) {G0,W6,D4,L1,V1,M1}  { zero ==> multiplication( antidomain( X
% 0.71/1.13     ), X ) }.
% 0.71/1.13  parent0[0]: (13) {G0,W6,D4,L1,V1,M1} I { multiplication( antidomain( X ), X
% 0.71/1.13     ) ==> zero }.
% 0.71/1.13  substitution0:
% 0.71/1.13     X := X
% 0.71/1.13  end
% 0.71/1.13  
% 0.71/1.13  paramod: (519) {G1,W4,D3,L1,V0,M1}  { zero ==> antidomain( one ) }.
% 0.71/1.13  parent0[0]: (5) {G0,W5,D3,L1,V1,M1} I { multiplication( X, one ) ==> X }.
% 0.71/1.13  parent1[0; 2]: (517) {G0,W6,D4,L1,V1,M1}  { zero ==> multiplication( 
% 0.71/1.13    antidomain( X ), X ) }.
% 0.71/1.13  substitution0:
% 0.71/1.13     X := antidomain( one )
% 0.71/1.13  end
% 0.71/1.13  substitution1:
% 0.71/1.13     X := one
% 0.71/1.13  end
% 0.71/1.13  
% 0.71/1.13  eqswap: (520) {G1,W4,D3,L1,V0,M1}  { antidomain( one ) ==> zero }.
% 0.71/1.13  parent0[0]: (519) {G1,W4,D3,L1,V0,M1}  { zero ==> antidomain( one ) }.
% 0.71/1.13  substitution0:
% 0.71/1.13  end
% 0.71/1.13  
% 0.71/1.13  subsumption: (36) {G1,W4,D3,L1,V0,M1} P(13,5) { antidomain( one ) ==> zero
% 0.71/1.13     }.
% 0.71/1.13  parent0: (520) {G1,W4,D3,L1,V0,M1}  { antidomain( one ) ==> zero }.
% 0.71/1.13  substitution0:
% 0.71/1.13  end
% 0.71/1.13  permutation0:
% 0.71/1.13     0 ==> 0
% 0.71/1.13  end
% 0.71/1.13  
% 0.71/1.13  eqswap: (522) {G0,W6,D4,L1,V1,M1}  { domain( X ) ==> antidomain( antidomain
% 0.71/1.13    ( X ) ) }.
% 0.71/1.13  parent0[0]: (16) {G0,W6,D4,L1,V1,M1} I { antidomain( antidomain( X ) ) ==> 
% 0.71/1.13    domain( X ) }.
% 0.71/1.13  substitution0:
% 0.71/1.13     X := X
% 0.71/1.13  end
% 0.71/1.13  
% 0.71/1.13  paramod: (523) {G1,W5,D3,L1,V0,M1}  { domain( one ) ==> antidomain( zero )
% 0.71/1.13     }.
% 0.71/1.13  parent0[0]: (36) {G1,W4,D3,L1,V0,M1} P(13,5) { antidomain( one ) ==> zero
% 0.71/1.13     }.
% 0.71/1.13  parent1[0; 4]: (522) {G0,W6,D4,L1,V1,M1}  { domain( X ) ==> antidomain( 
% 0.71/1.13    antidomain( X ) ) }.
% 0.71/1.13  substitution0:
% 0.71/1.13  end
% 0.71/1.13  substitution1:
% 0.71/1.13     X := one
% 0.71/1.13  end
% 0.71/1.13  
% 0.71/1.13  subsumption: (37) {G2,W5,D3,L1,V0,M1} P(36,16) { domain( one ) ==> 
% 0.71/1.13    antidomain( zero ) }.
% 0.71/1.13  parent0: (523) {G1,W5,D3,L1,V0,M1}  { domain( one ) ==> antidomain( zero )
% 0.71/1.13     }.
% 0.71/1.13  substitution0:
% 0.71/1.13  end
% 0.71/1.13  permutation0:
% 0.71/1.13     0 ==> 0
% 0.71/1.13  end
% 0.71/1.13  
% 0.71/1.13  paramod: (527) {G1,W7,D4,L1,V1,M1}  { addition( domain( X ), antidomain( X
% 0.71/1.13     ) ) ==> one }.
% 0.71/1.13  parent0[0]: (16) {G0,W6,D4,L1,V1,M1} I { antidomain( antidomain( X ) ) ==> 
% 0.71/1.13    domain( X ) }.
% 0.71/1.13  parent1[0; 2]: (15) {G0,W8,D5,L1,V1,M1} I { addition( antidomain( 
% 0.71/1.13    antidomain( X ) ), antidomain( X ) ) ==> one }.
% 0.71/1.13  substitution0:
% 0.71/1.13     X := X
% 0.71/1.13  end
% 0.71/1.13  substitution1:
% 0.71/1.13     X := X
% 0.71/1.13  end
% 0.71/1.13  
% 0.71/1.13  subsumption: (149) {G1,W7,D4,L1,V1,M1} S(15);d(16) { addition( domain( X )
% 0.71/1.13    , antidomain( X ) ) ==> one }.
% 0.71/1.13  parent0: (527) {G1,W7,D4,L1,V1,M1}  { addition( domain( X ), antidomain( X
% 0.71/1.13     ) ) ==> one }.
% 0.71/1.13  substitution0:
% 0.71/1.13     X := X
% 0.71/1.13  end
% 0.71/1.13  permutation0:
% 0.71/1.13     0 ==> 0
% 0.71/1.13  end
% 0.71/1.13  
% 0.71/1.13  eqswap: (530) {G1,W7,D4,L1,V1,M1}  { one ==> addition( domain( X ), 
% 0.71/1.13    antidomain( X ) ) }.
% 0.71/1.13  parent0[0]: (149) {G1,W7,D4,L1,V1,M1} S(15);d(16) { addition( domain( X ), 
% 0.71/1.13    antidomain( X ) ) ==> one }.
% 0.71/1.13  substitution0:
% 0.71/1.13     X := X
% 0.71/1.13  end
% 0.71/1.13  
% 0.71/1.13  paramod: (533) {G2,W7,D4,L1,V0,M1}  { one ==> addition( antidomain( zero )
% 0.71/1.13    , antidomain( one ) ) }.
% 0.71/1.13  parent0[0]: (37) {G2,W5,D3,L1,V0,M1} P(36,16) { domain( one ) ==> 
% 0.71/1.13    antidomain( zero ) }.
% 0.71/1.13  parent1[0; 3]: (530) {G1,W7,D4,L1,V1,M1}  { one ==> addition( domain( X ), 
% 0.71/1.13    antidomain( X ) ) }.
% 0.71/1.13  substitution0:
% 0.71/1.13  end
% 0.71/1.13  substitution1:
% 0.71/1.13     X := one
% 0.71/1.13  end
% 0.71/1.13  
% 0.71/1.13  paramod: (534) {G2,W6,D4,L1,V0,M1}  { one ==> addition( antidomain( zero )
% 0.71/1.13    , zero ) }.
% 0.71/1.13  parent0[0]: (36) {G1,W4,D3,L1,V0,M1} P(13,5) { antidomain( one ) ==> zero
% 0.71/1.13     }.
% 0.71/1.13  parent1[0; 5]: (533) {G2,W7,D4,L1,V0,M1}  { one ==> addition( antidomain( 
% 0.71/1.13    zero ), antidomain( one ) ) }.
% 0.71/1.13  substitution0:
% 0.71/1.13  end
% 0.71/1.13  substitution1:
% 0.71/1.13  end
% 0.71/1.13  
% 0.71/1.13  paramod: (535) {G1,W4,D3,L1,V0,M1}  { one ==> antidomain( zero ) }.
% 0.71/1.13  parent0[0]: (2) {G0,W5,D3,L1,V1,M1} I { addition( X, zero ) ==> X }.
% 0.71/1.13  parent1[0; 2]: (534) {G2,W6,D4,L1,V0,M1}  { one ==> addition( antidomain( 
% 0.71/1.13    zero ), zero ) }.
% 0.71/1.13  substitution0:
% 0.71/1.13     X := antidomain( zero )
% 0.71/1.13  end
% 0.71/1.13  substitution1:
% 0.71/1.13  end
% 0.71/1.13  
% 0.71/1.13  eqswap: (536) {G1,W4,D3,L1,V0,M1}  { antidomain( zero ) ==> one }.
% 0.71/1.13  parent0[0]: (535) {G1,W4,D3,L1,V0,M1}  { one ==> antidomain( zero ) }.
% 0.71/1.13  substitution0:
% 0.71/1.13  end
% 0.71/1.13  
% 0.71/1.13  subsumption: (398) {G3,W4,D3,L1,V0,M1} P(37,149);d(36);d(2) { antidomain( 
% 0.71/1.13    zero ) ==> one }.
% 0.71/1.13  parent0: (536) {G1,W4,D3,L1,V0,M1}  { antidomain( zero ) ==> one }.
% 0.71/1.13  substitution0:
% 0.71/1.13  end
% 0.71/1.13  permutation0:
% 0.71/1.13     0 ==> 0
% 0.71/1.13  end
% 0.71/1.13  
% 0.71/1.13  eqswap: (538) {G1,W7,D4,L1,V1,M1}  { zero ==> multiplication( domain( X ), 
% 0.71/1.13    antidomain( X ) ) }.
% 0.71/1.13  parent0[0]: (35) {G1,W7,D4,L1,V1,M1} P(16,13) { multiplication( domain( X )
% 0.71/1.13    , antidomain( X ) ) ==> zero }.
% 0.71/1.13  substitution0:
% 0.71/1.13     X := X
% 0.71/1.13  end
% 0.71/1.13  
% 0.71/1.13  eqswap: (540) {G0,W4,D3,L1,V0,M1}  { ! zero ==> domain( zero ) }.
% 0.71/1.13  parent0[0]: (21) {G0,W4,D3,L1,V0,M1} I { ! domain( zero ) ==> zero }.
% 0.71/1.13  substitution0:
% 0.71/1.13  end
% 0.71/1.13  
% 0.71/1.13  paramod: (541) {G2,W6,D4,L1,V0,M1}  { zero ==> multiplication( domain( zero
% 0.71/1.13     ), one ) }.
% 0.71/1.13  parent0[0]: (398) {G3,W4,D3,L1,V0,M1} P(37,149);d(36);d(2) { antidomain( 
% 0.71/1.13    zero ) ==> one }.
% 0.71/1.13  parent1[0; 5]: (538) {G1,W7,D4,L1,V1,M1}  { zero ==> multiplication( domain
% 0.71/1.13    ( X ), antidomain( X ) ) }.
% 0.71/1.13  substitution0:
% 0.71/1.13  end
% 0.71/1.13  substitution1:
% 0.71/1.13     X := zero
% 0.71/1.13  end
% 0.71/1.13  
% 0.71/1.13  paramod: (542) {G1,W4,D3,L1,V0,M1}  { zero ==> domain( zero ) }.
% 0.71/1.13  parent0[0]: (5) {G0,W5,D3,L1,V1,M1} I { multiplication( X, one ) ==> X }.
% 0.71/1.13  parent1[0; 2]: (541) {G2,W6,D4,L1,V0,M1}  { zero ==> multiplication( domain
% 0.71/1.13    ( zero ), one ) }.
% 0.71/1.13  substitution0:
% 0.71/1.13     X := domain( zero )
% 0.71/1.13  end
% 0.71/1.13  substitution1:
% 0.71/1.13  end
% 0.71/1.13  
% 0.71/1.13  resolution: (543) {G1,W0,D0,L0,V0,M0}  {  }.
% 0.71/1.13  parent0[0]: (540) {G0,W4,D3,L1,V0,M1}  { ! zero ==> domain( zero ) }.
% 0.71/1.13  parent1[0]: (542) {G1,W4,D3,L1,V0,M1}  { zero ==> domain( zero ) }.
% 0.71/1.13  substitution0:
% 0.71/1.13  end
% 0.71/1.13  substitution1:
% 0.71/1.13  end
% 0.71/1.13  
% 0.71/1.13  subsumption: (417) {G4,W0,D0,L0,V0,M0} P(398,35);d(5);r(21) {  }.
% 0.71/1.13  parent0: (543) {G1,W0,D0,L0,V0,M0}  {  }.
% 0.71/1.13  substitution0:
% 0.71/1.13  end
% 0.71/1.13  permutation0:
% 0.71/1.13  end
% 0.71/1.13  
% 0.71/1.13  Proof check complete!
% 0.71/1.13  
% 0.71/1.13  Memory use:
% 0.71/1.13  
% 0.71/1.13  space for terms:        4783
% 0.71/1.13  space for clauses:      30542
% 0.71/1.13  
% 0.71/1.13  
% 0.71/1.13  clauses generated:      2435
% 0.71/1.13  clauses kept:           418
% 0.71/1.13  clauses selected:       98
% 0.71/1.13  clauses deleted:        10
% 0.71/1.13  clauses inuse deleted:  0
% 0.71/1.13  
% 0.71/1.13  subsentry:          2466
% 0.71/1.13  literals s-matched: 1831
% 0.71/1.13  literals matched:   1831
% 0.71/1.13  full subsumption:   93
% 0.71/1.13  
% 0.71/1.13  checksum:           919928852
% 0.71/1.13  
% 0.71/1.13  
% 0.71/1.13  Bliksem ended
%------------------------------------------------------------------------------