TSTP Solution File: KLE083+1 by Otter---3.3

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Otter---3.3
% Problem  : KLE083+1 : TPTP v8.1.0. Released v4.0.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : otter-tptp-script %s

% Computer : n013.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Wed Jul 27 13:00:41 EDT 2022

% Result   : Theorem 2.08s 2.29s
% Output   : Refutation 2.08s
% Verified : 
% SZS Type : Refutation
%            Derivation depth      :    3
%            Number of leaves      :    7
% Syntax   : Number of clauses     :   12 (  12 unt;   0 nHn;   4 RR)
%            Number of literals    :   12 (  11 equ;   3 neg)
%            Maximal clause size   :    1 (   1 avg)
%            Maximal term depth    :    5 (   2 avg)
%            Number of predicates  :    2 (   0 usr;   1 prp; 0-2 aty)
%            Number of functors    :    7 (   7 usr;   3 con; 0-2 aty)
%            Number of variables   :   11 (   0 sgn)

% Comments : 
%------------------------------------------------------------------------------
cnf(3,axiom,
    dollar_c1 != multiplication(domain(dollar_c1),dollar_c1),
    file('KLE083+1.p',unknown),
    [] ).

cnf(4,plain,
    multiplication(domain(dollar_c1),dollar_c1) != dollar_c1,
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[3])]),
    [iquote('copy,3,flip.1')] ).

cnf(11,axiom,
    addition(A,zero) = A,
    file('KLE083+1.p',unknown),
    [] ).

cnf(20,axiom,
    multiplication(one,A) = A,
    file('KLE083+1.p',unknown),
    [] ).

cnf(23,axiom,
    multiplication(addition(A,B),C) = addition(multiplication(A,C),multiplication(B,C)),
    file('KLE083+1.p',unknown),
    [] ).

cnf(29,axiom,
    multiplication(antidomain(A),A) = zero,
    file('KLE083+1.p',unknown),
    [] ).

cnf(33,axiom,
    addition(antidomain(antidomain(A)),antidomain(A)) = one,
    file('KLE083+1.p',unknown),
    [] ).

cnf(36,axiom,
    domain(A) = antidomain(antidomain(A)),
    file('KLE083+1.p',unknown),
    [] ).

cnf(45,plain,
    multiplication(antidomain(antidomain(dollar_c1)),dollar_c1) != dollar_c1,
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[4]),36]),
    [iquote('back_demod,4,demod,36')] ).

cnf(175,plain,
    addition(multiplication(antidomain(antidomain(A)),B),multiplication(antidomain(A),B)) = B,
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[33,23]),20])]),
    [iquote('para_from,33.1.1,23.1.1.1,demod,20,flip.1')] ).

cnf(976,plain,
    multiplication(antidomain(antidomain(A)),A) = A,
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[175,29]),11]),
    [iquote('para_into,175.1.1.2,29.1.1,demod,11')] ).

cnf(978,plain,
    $false,
    inference(binary,[status(thm)],[976,45]),
    [iquote('binary,976.1,45.1')] ).

%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.03/0.12  % Problem  : KLE083+1 : TPTP v8.1.0. Released v4.0.0.
% 0.03/0.12  % Command  : otter-tptp-script %s
% 0.12/0.33  % Computer : n013.cluster.edu
% 0.12/0.33  % Model    : x86_64 x86_64
% 0.12/0.33  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.12/0.33  % Memory   : 8042.1875MB
% 0.12/0.33  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.12/0.33  % CPULimit : 300
% 0.12/0.33  % WCLimit  : 300
% 0.12/0.33  % DateTime : Wed Jul 27 06:28:45 EDT 2022
% 0.12/0.33  % CPUTime  : 
% 1.93/2.11  ----- Otter 3.3f, August 2004 -----
% 1.93/2.11  The process was started by sandbox2 on n013.cluster.edu,
% 1.93/2.11  Wed Jul 27 06:28:45 2022
% 1.93/2.11  The command was "./otter".  The process ID is 945.
% 1.93/2.11  
% 1.93/2.11  set(prolog_style_variables).
% 1.93/2.11  set(auto).
% 1.93/2.11     dependent: set(auto1).
% 1.93/2.11     dependent: set(process_input).
% 1.93/2.11     dependent: clear(print_kept).
% 1.93/2.11     dependent: clear(print_new_demod).
% 1.93/2.11     dependent: clear(print_back_demod).
% 1.93/2.11     dependent: clear(print_back_sub).
% 1.93/2.11     dependent: set(control_memory).
% 1.93/2.11     dependent: assign(max_mem, 12000).
% 1.93/2.11     dependent: assign(pick_given_ratio, 4).
% 1.93/2.11     dependent: assign(stats_level, 1).
% 1.93/2.11     dependent: assign(max_seconds, 10800).
% 1.93/2.11  clear(print_given).
% 1.93/2.11  
% 1.93/2.11  formula_list(usable).
% 1.93/2.11  all A (A=A).
% 1.93/2.11  all A B (addition(A,B)=addition(B,A)).
% 1.93/2.11  all C B A (addition(A,addition(B,C))=addition(addition(A,B),C)).
% 1.93/2.11  all A (addition(A,zero)=A).
% 1.93/2.11  all A (addition(A,A)=A).
% 1.93/2.11  all A B C (multiplication(A,multiplication(B,C))=multiplication(multiplication(A,B),C)).
% 1.93/2.11  all A (multiplication(A,one)=A).
% 1.93/2.11  all A (multiplication(one,A)=A).
% 1.93/2.11  all A B C (multiplication(A,addition(B,C))=addition(multiplication(A,B),multiplication(A,C))).
% 1.93/2.11  all A B C (multiplication(addition(A,B),C)=addition(multiplication(A,C),multiplication(B,C))).
% 1.93/2.11  all A (multiplication(A,zero)=zero).
% 1.93/2.11  all A (multiplication(zero,A)=zero).
% 1.93/2.11  all A B (le_q(A,B)<->addition(A,B)=B).
% 1.93/2.11  all X0 (multiplication(antidomain(X0),X0)=zero).
% 1.93/2.11  all X0 X1 (addition(antidomain(multiplication(X0,X1)),antidomain(multiplication(X0,antidomain(antidomain(X1)))))=antidomain(multiplication(X0,antidomain(antidomain(X1))))).
% 1.93/2.11  all X0 (addition(antidomain(antidomain(X0)),antidomain(X0))=one).
% 1.93/2.11  all X0 (domain(X0)=antidomain(antidomain(X0))).
% 1.93/2.11  all X0 (multiplication(X0,coantidomain(X0))=zero).
% 1.93/2.11  all X0 X1 (addition(coantidomain(multiplication(X0,X1)),coantidomain(multiplication(coantidomain(coantidomain(X0)),X1)))=coantidomain(multiplication(coantidomain(coantidomain(X0)),X1))).
% 1.93/2.11  all X0 (addition(coantidomain(coantidomain(X0)),coantidomain(X0))=one).
% 1.93/2.11  all X0 (codomain(X0)=coantidomain(coantidomain(X0))).
% 1.93/2.11  -(all X0 (X0=multiplication(domain(X0),X0))).
% 1.93/2.11  end_of_list.
% 1.93/2.11  
% 1.93/2.11  -------> usable clausifies to:
% 1.93/2.11  
% 1.93/2.11  list(usable).
% 1.93/2.11  0 [] A=A.
% 1.93/2.11  0 [] addition(A,B)=addition(B,A).
% 1.93/2.11  0 [] addition(A,addition(B,C))=addition(addition(A,B),C).
% 1.93/2.11  0 [] addition(A,zero)=A.
% 1.93/2.11  0 [] addition(A,A)=A.
% 1.93/2.11  0 [] multiplication(A,multiplication(B,C))=multiplication(multiplication(A,B),C).
% 1.93/2.11  0 [] multiplication(A,one)=A.
% 1.93/2.11  0 [] multiplication(one,A)=A.
% 1.93/2.11  0 [] multiplication(A,addition(B,C))=addition(multiplication(A,B),multiplication(A,C)).
% 1.93/2.11  0 [] multiplication(addition(A,B),C)=addition(multiplication(A,C),multiplication(B,C)).
% 1.93/2.11  0 [] multiplication(A,zero)=zero.
% 1.93/2.11  0 [] multiplication(zero,A)=zero.
% 1.93/2.11  0 [] -le_q(A,B)|addition(A,B)=B.
% 1.93/2.11  0 [] le_q(A,B)|addition(A,B)!=B.
% 1.93/2.11  0 [] multiplication(antidomain(X0),X0)=zero.
% 1.93/2.11  0 [] addition(antidomain(multiplication(X0,X1)),antidomain(multiplication(X0,antidomain(antidomain(X1)))))=antidomain(multiplication(X0,antidomain(antidomain(X1)))).
% 1.93/2.11  0 [] addition(antidomain(antidomain(X0)),antidomain(X0))=one.
% 1.93/2.11  0 [] domain(X0)=antidomain(antidomain(X0)).
% 1.93/2.11  0 [] multiplication(X0,coantidomain(X0))=zero.
% 1.93/2.11  0 [] addition(coantidomain(multiplication(X0,X1)),coantidomain(multiplication(coantidomain(coantidomain(X0)),X1)))=coantidomain(multiplication(coantidomain(coantidomain(X0)),X1)).
% 1.93/2.11  0 [] addition(coantidomain(coantidomain(X0)),coantidomain(X0))=one.
% 1.93/2.11  0 [] codomain(X0)=coantidomain(coantidomain(X0)).
% 1.93/2.11  0 [] $c1!=multiplication(domain($c1),$c1).
% 1.93/2.11  end_of_list.
% 1.93/2.11  
% 1.93/2.11  SCAN INPUT: prop=0, horn=1, equality=1, symmetry=0, max_lits=2.
% 1.93/2.11  
% 1.93/2.11  This is a Horn set with equality.  The strategy will be
% 1.93/2.11  Knuth-Bendix and hyper_res, with positive clauses in
% 1.93/2.11  sos and nonpositive clauses in usable.
% 1.93/2.11  
% 1.93/2.11     dependent: set(knuth_bendix).
% 1.93/2.11     dependent: set(anl_eq).
% 1.93/2.11     dependent: set(para_from).
% 1.93/2.11     dependent: set(para_into).
% 1.93/2.11     dependent: clear(para_from_right).
% 1.93/2.11     dependent: clear(para_into_right).
% 1.93/2.11     dependent: set(para_from_vars).
% 1.93/2.11     dependent: set(eq_units_both_ways).
% 1.93/2.11     dependent: set(dynamic_demod_all).
% 1.93/2.11     dependent: set(dynamic_demod).
% 1.93/2.11     dependent: set(order_eq).
% 1.93/2.11     dependent: set(back_demod).
% 1.93/2.11     dependent: set(lrpo).
% 1.93/2.11     dependent: set(hyper_res).
% 1.93/2.11     dependent: clear(order_hyper).
% 1.93/2.11  
% 1.93/2.11  ------------> process usable:
% 1.93/2.11  ** KEPT (pick-wt=8): 1 [] -le_q(A,B)|addition(A,B)=B.
% 1.93/2.11  ** KEPT (pick-wt=8): 2 [] le_q(A,B)|addition(A,B)!=B.
% 1.93/2.11  ** KEPT (pick-wt=6): 4 [copy,3,flip.1] multiplication(domain($c1),$c1)!=$c1.
% 1.93/2.11  
% 1.93/2.11  ------------> process sos:
% 1.93/2.11  ** KEPT (pick-wt=3): 5 [] A=A.
% 1.93/2.11  ** KEPT (pick-wt=7): 6 [] addition(A,B)=addition(B,A).
% 1.93/2.11  ** KEPT (pick-wt=11): 8 [copy,7,flip.1] addition(addition(A,B),C)=addition(A,addition(B,C)).
% 1.93/2.11  ---> New Demodulator: 9 [new_demod,8] addition(addition(A,B),C)=addition(A,addition(B,C)).
% 1.93/2.11  ** KEPT (pick-wt=5): 10 [] addition(A,zero)=A.
% 1.93/2.11  ---> New Demodulator: 11 [new_demod,10] addition(A,zero)=A.
% 1.93/2.11  ** KEPT (pick-wt=5): 12 [] addition(A,A)=A.
% 1.93/2.11  ---> New Demodulator: 13 [new_demod,12] addition(A,A)=A.
% 1.93/2.11  ** KEPT (pick-wt=11): 15 [copy,14,flip.1] multiplication(multiplication(A,B),C)=multiplication(A,multiplication(B,C)).
% 1.93/2.11  ---> New Demodulator: 16 [new_demod,15] multiplication(multiplication(A,B),C)=multiplication(A,multiplication(B,C)).
% 1.93/2.11  ** KEPT (pick-wt=5): 17 [] multiplication(A,one)=A.
% 1.93/2.11  ---> New Demodulator: 18 [new_demod,17] multiplication(A,one)=A.
% 1.93/2.11  ** KEPT (pick-wt=5): 19 [] multiplication(one,A)=A.
% 1.93/2.11  ---> New Demodulator: 20 [new_demod,19] multiplication(one,A)=A.
% 1.93/2.11  ** KEPT (pick-wt=13): 21 [] multiplication(A,addition(B,C))=addition(multiplication(A,B),multiplication(A,C)).
% 1.93/2.11  ---> New Demodulator: 22 [new_demod,21] multiplication(A,addition(B,C))=addition(multiplication(A,B),multiplication(A,C)).
% 1.93/2.11  ** KEPT (pick-wt=13): 23 [] multiplication(addition(A,B),C)=addition(multiplication(A,C),multiplication(B,C)).
% 1.93/2.11  ---> New Demodulator: 24 [new_demod,23] multiplication(addition(A,B),C)=addition(multiplication(A,C),multiplication(B,C)).
% 1.93/2.11  ** KEPT (pick-wt=5): 25 [] multiplication(A,zero)=zero.
% 1.93/2.11  ---> New Demodulator: 26 [new_demod,25] multiplication(A,zero)=zero.
% 1.93/2.11  ** KEPT (pick-wt=5): 27 [] multiplication(zero,A)=zero.
% 1.93/2.11  ---> New Demodulator: 28 [new_demod,27] multiplication(zero,A)=zero.
% 1.93/2.11  ** KEPT (pick-wt=6): 29 [] multiplication(antidomain(A),A)=zero.
% 1.93/2.11  ---> New Demodulator: 30 [new_demod,29] multiplication(antidomain(A),A)=zero.
% 1.93/2.11  ** KEPT (pick-wt=18): 31 [] addition(antidomain(multiplication(A,B)),antidomain(multiplication(A,antidomain(antidomain(B)))))=antidomain(multiplication(A,antidomain(antidomain(B)))).
% 1.93/2.11  ---> New Demodulator: 32 [new_demod,31] addition(antidomain(multiplication(A,B)),antidomain(multiplication(A,antidomain(antidomain(B)))))=antidomain(multiplication(A,antidomain(antidomain(B)))).
% 1.93/2.11  ** KEPT (pick-wt=8): 33 [] addition(antidomain(antidomain(A)),antidomain(A))=one.
% 1.93/2.11  ---> New Demodulator: 34 [new_demod,33] addition(antidomain(antidomain(A)),antidomain(A))=one.
% 1.93/2.11  ** KEPT (pick-wt=6): 35 [] domain(A)=antidomain(antidomain(A)).
% 1.93/2.11  ---> New Demodulator: 36 [new_demod,35] domain(A)=antidomain(antidomain(A)).
% 1.93/2.11  ** KEPT (pick-wt=6): 37 [] multiplication(A,coantidomain(A))=zero.
% 1.93/2.11  ---> New Demodulator: 38 [new_demod,37] multiplication(A,coantidomain(A))=zero.
% 1.93/2.11  ** KEPT (pick-wt=18): 39 [] addition(coantidomain(multiplication(A,B)),coantidomain(multiplication(coantidomain(coantidomain(A)),B)))=coantidomain(multiplication(coantidomain(coantidomain(A)),B)).
% 1.93/2.11  ---> New Demodulator: 40 [new_demod,39] addition(coantidomain(multiplication(A,B)),coantidomain(multiplication(coantidomain(coantidomain(A)),B)))=coantidomain(multiplication(coantidomain(coantidomain(A)),B)).
% 1.93/2.11  ** KEPT (pick-wt=8): 41 [] addition(coantidomain(coantidomain(A)),coantidomain(A))=one.
% 1.93/2.11  ---> New Demodulator: 42 [new_demod,41] addition(coantidomain(coantidomain(A)),coantidomain(A))=one.
% 1.93/2.11  ** KEPT (pick-wt=6): 43 [] codomain(A)=coantidomain(coantidomain(A)).
% 1.93/2.11  ---> New Demodulator: 44 [new_demod,43] codomain(A)=coantidomain(coantidomain(A)).
% 1.93/2.11    Following clause subsumed by 5 during input processing: 0 [copy,5,flip.1] A=A.
% 1.93/2.11    Following clause subsumed by 6 during input processing: 0 [copy,6,flip.1] addition(A,B)=addition(B,A).
% 1.93/2.11  >>>> Starting back demodulation with 9.
% 1.93/2.11  >>>> Starting back demodulation with 11.
% 1.93/2.11  >>>> Starting back demodulation with 13.
% 1.93/2.11  >>>> Starting back demodulation with 16.
% 1.93/2.11  >>>> Starting back demodulation with 18.
% 1.93/2.11  >>>> Starting back demodulation with 20.
% 1.93/2.11  >>>> Starting back demodulation with 22.
% 2.08/2.29  >>>> Starting back demodulation with 24.
% 2.08/2.29  >>>> Starting back demodulation with 26.
% 2.08/2.29  >>>> Starting back demodulation with 28.
% 2.08/2.29  >>>> Starting back demodulation with 30.
% 2.08/2.29  >>>> Starting back demodulation with 32.
% 2.08/2.29  >>>> Starting back demodulation with 34.
% 2.08/2.29  >>>> Starting back demodulation with 36.
% 2.08/2.29      >> back demodulating 4 with 36.
% 2.08/2.29  >>>> Starting back demodulation with 38.
% 2.08/2.29  >>>> Starting back demodulation with 40.
% 2.08/2.29  >>>> Starting back demodulation with 42.
% 2.08/2.29  >>>> Starting back demodulation with 44.
% 2.08/2.29  
% 2.08/2.29  ======= end of input processing =======
% 2.08/2.29  
% 2.08/2.29  =========== start of search ===========
% 2.08/2.29  
% 2.08/2.29  
% 2.08/2.29  Resetting weight limit to 8.
% 2.08/2.29  
% 2.08/2.29  
% 2.08/2.29  Resetting weight limit to 8.
% 2.08/2.29  
% 2.08/2.29  sos_size=496
% 2.08/2.29  
% 2.08/2.29  -------- PROOF -------- 
% 2.08/2.29  
% 2.08/2.29  ----> UNIT CONFLICT at   0.17 sec ----> 978 [binary,976.1,45.1] $F.
% 2.08/2.29  
% 2.08/2.29  Length of proof is 4.  Level of proof is 2.
% 2.08/2.29  
% 2.08/2.29  ---------------- PROOF ----------------
% 2.08/2.29  % SZS status Theorem
% 2.08/2.29  % SZS output start Refutation
% See solution above
% 2.08/2.29  ------------ end of proof -------------
% 2.08/2.29  
% 2.08/2.29  
% 2.08/2.29  Search stopped by max_proofs option.
% 2.08/2.29  
% 2.08/2.29  
% 2.08/2.29  Search stopped by max_proofs option.
% 2.08/2.29  
% 2.08/2.29  ============ end of search ============
% 2.08/2.29  
% 2.08/2.29  -------------- statistics -------------
% 2.08/2.29  clauses given                251
% 2.08/2.29  clauses generated          24282
% 2.08/2.29  clauses kept                 792
% 2.08/2.29  clauses forward subsumed    7236
% 2.08/2.29  clauses back subsumed         44
% 2.08/2.29  Kbytes malloced             5859
% 2.08/2.29  
% 2.08/2.29  ----------- times (seconds) -----------
% 2.08/2.29  user CPU time          0.17          (0 hr, 0 min, 0 sec)
% 2.08/2.29  system CPU time        0.01          (0 hr, 0 min, 0 sec)
% 2.08/2.29  wall-clock time        2             (0 hr, 0 min, 2 sec)
% 2.08/2.29  
% 2.08/2.29  That finishes the proof of the theorem.
% 2.08/2.29  
% 2.08/2.29  Process 945 finished Wed Jul 27 06:28:47 2022
% 2.08/2.29  Otter interrupted
% 2.08/2.29  PROOF FOUND
%------------------------------------------------------------------------------