TSTP Solution File: KLE080+1 by Otter---3.3

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Otter---3.3
% Problem  : KLE080+1 : TPTP v8.1.0. Released v4.0.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : otter-tptp-script %s

% Computer : n024.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Wed Jul 27 13:00:41 EDT 2022

% Result   : Theorem 2.82s 3.10s
% Output   : Refutation 2.82s
% Verified : 
% SZS Type : Refutation
%            Derivation depth      :   13
%            Number of leaves      :   16
% Syntax   : Number of clauses     :   43 (  38 unt;   0 nHn;   9 RR)
%            Number of literals    :   48 (  40 equ;   7 neg)
%            Maximal clause size   :    2 (   1 avg)
%            Maximal term depth    :    5 (   2 avg)
%            Number of predicates  :    3 (   1 usr;   1 prp; 0-2 aty)
%            Number of functors    :    7 (   7 usr;   3 con; 0-2 aty)
%            Number of variables   :   58 (   5 sgn)

% Comments : 
%------------------------------------------------------------------------------
cnf(1,axiom,
    ( ~ le_q(A,B)
    | addition(A,B) = B ),
    file('KLE080+1.p',unknown),
    [] ).

cnf(2,axiom,
    ( le_q(A,B)
    | addition(A,B) != B ),
    file('KLE080+1.p',unknown),
    [] ).

cnf(3,axiom,
    antidomain(antidomain(dollar_c1)) != domain(dollar_c1),
    file('KLE080+1.p',unknown),
    [] ).

cnf(4,plain,
    domain(dollar_c1) != antidomain(antidomain(dollar_c1)),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[3])]),
    [iquote('copy,3,flip.1')] ).

cnf(6,axiom,
    addition(A,B) = addition(B,A),
    file('KLE080+1.p',unknown),
    [] ).

cnf(11,axiom,
    addition(A,zero) = A,
    file('KLE080+1.p',unknown),
    [] ).

cnf(18,axiom,
    multiplication(A,one) = A,
    file('KLE080+1.p',unknown),
    [] ).

cnf(20,axiom,
    multiplication(one,A) = A,
    file('KLE080+1.p',unknown),
    [] ).

cnf(21,axiom,
    multiplication(A,addition(B,C)) = addition(multiplication(A,B),multiplication(A,C)),
    file('KLE080+1.p',unknown),
    [] ).

cnf(23,axiom,
    multiplication(addition(A,B),C) = addition(multiplication(A,C),multiplication(B,C)),
    file('KLE080+1.p',unknown),
    [] ).

cnf(28,axiom,
    multiplication(zero,A) = zero,
    file('KLE080+1.p',unknown),
    [] ).

cnf(29,axiom,
    addition(A,multiplication(domain(A),A)) = multiplication(domain(A),A),
    file('KLE080+1.p',unknown),
    [] ).

cnf(31,axiom,
    domain(multiplication(A,B)) = domain(multiplication(A,domain(B))),
    file('KLE080+1.p',unknown),
    [] ).

cnf(32,plain,
    domain(multiplication(A,domain(B))) = domain(multiplication(A,B)),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[31])]),
    [iquote('copy,31,flip.1')] ).

cnf(34,axiom,
    addition(domain(A),one) = one,
    file('KLE080+1.p',unknown),
    [] ).

cnf(37,axiom,
    domain(zero) = zero,
    file('KLE080+1.p',unknown),
    [] ).

cnf(40,axiom,
    addition(domain(A),antidomain(A)) = one,
    file('KLE080+1.p',unknown),
    [] ).

cnf(43,axiom,
    multiplication(domain(A),antidomain(A)) = zero,
    file('KLE080+1.p',unknown),
    [] ).

cnf(50,plain,
    addition(zero,A) = A,
    inference(flip,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[6,11])]),
    [iquote('para_into,6.1.1,10.1.1,flip.1')] ).

cnf(52,plain,
    ( le_q(A,B)
    | addition(B,A) != B ),
    inference(para_from,[status(thm),theory(equality)],[6,2]),
    [iquote('para_from,6.1.1,2.2.1')] ).

cnf(65,plain,
    addition(one,domain(A)) = one,
    inference(para_into,[status(thm),theory(equality)],[34,6]),
    [iquote('para_into,34.1.1,6.1.1')] ).

cnf(92,plain,
    ( addition(multiplication(A,B),multiplication(A,C)) = multiplication(A,C)
    | ~ le_q(B,C) ),
    inference(flip,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[21,1])]),
    [iquote('para_into,21.1.1.2,1.2.1,flip.1')] ).

cnf(109,plain,
    addition(A,multiplication(domain(B),A)) = A,
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[23,65]),20,20])]),
    [iquote('para_into,23.1.1.1,65.1.1,demod,20,20,flip.1')] ).

cnf(116,plain,
    multiplication(domain(A),A) = A,
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[29]),109])]),
    [iquote('back_demod,29,demod,109,flip.1')] ).

cnf(128,plain,
    antidomain(zero) = one,
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[40,37]),50]),
    [iquote('para_into,40.1.1.1,36.1.1,demod,50')] ).

cnf(130,plain,
    addition(antidomain(A),domain(A)) = one,
    inference(para_into,[status(thm),theory(equality)],[40,6]),
    [iquote('para_into,40.1.1,6.1.1')] ).

cnf(133,plain,
    addition(multiplication(A,domain(B)),multiplication(A,antidomain(B))) = A,
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[40,21]),18])]),
    [iquote('para_from,40.1.1,21.1.1.2,demod,18,flip.1')] ).

cnf(148,plain,
    multiplication(domain(multiplication(A,B)),multiplication(A,domain(B))) = multiplication(A,domain(B)),
    inference(para_from,[status(thm),theory(equality)],[32,116]),
    [iquote('para_from,32.1.1,115.1.1.1')] ).

cnf(187,plain,
    multiplication(domain(multiplication(A,B)),antidomain(multiplication(A,domain(B)))) = zero,
    inference(para_into,[status(thm),theory(equality)],[43,32]),
    [iquote('para_into,42.1.1.1,32.1.1')] ).

cnf(232,plain,
    addition(multiplication(A,antidomain(B)),multiplication(A,domain(B))) = A,
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[130,21]),18])]),
    [iquote('para_from,130.1.1,21.1.1.2,demod,18,flip.1')] ).

cnf(236,plain,
    addition(multiplication(antidomain(A),B),multiplication(domain(A),B)) = B,
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[130,23]),20])]),
    [iquote('para_from,130.1.1,23.1.1.1,demod,20,flip.1')] ).

cnf(616,plain,
    le_q(multiplication(domain(A),B),B),
    inference(hyper,[status(thm)],[109,52]),
    [iquote('hyper,108,52')] ).

cnf(1631,plain,
    ( multiplication(domain(A),B) = zero
    | ~ le_q(B,antidomain(A)) ),
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[92,43]),11,43]),
    [iquote('para_into,92.1.1.2,42.1.1,demod,11,43')] ).

cnf(2252,plain,
    multiplication(domain(A),domain(antidomain(A))) = zero,
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[148,43]),37,28])]),
    [iquote('para_into,148.1.1.1.1,42.1.1,demod,37,28,flip.1')] ).

cnf(2258,plain,
    multiplication(domain(A),antidomain(antidomain(A))) = domain(A),
    inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[2252,133]),50]),
    [iquote('para_from,2252.1.1,133.1.1.1,demod,50')] ).

cnf(2409,plain,
    le_q(domain(A),antidomain(antidomain(A))),
    inference(para_from,[status(thm),theory(equality)],[2258,616]),
    [iquote('para_from,2258.1.1,616.1.1')] ).

cnf(2553,plain,
    multiplication(domain(antidomain(A)),domain(A)) = zero,
    inference(hyper,[status(thm)],[1631,2409]),
    [iquote('hyper,1631,2409')] ).

cnf(2556,plain,
    multiplication(antidomain(antidomain(A)),domain(A)) = domain(A),
    inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[2553,236]),11]),
    [iquote('para_from,2553.1.1,236.1.1.2,demod,11')] ).

cnf(2558,plain,
    domain(antidomain(A)) = antidomain(A),
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[2553,232]),116,11])]),
    [iquote('para_from,2553.1.1,232.1.1.2,demod,116,11,flip.1')] ).

cnf(2559,plain,
    domain(multiplication(antidomain(A),A)) = zero,
    inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[2553,187]),2558,128,18]),
    [iquote('para_from,2553.1.1,187.1.1.2.1,demod,2558,128,18')] ).

cnf(2611,plain,
    multiplication(antidomain(A),A) = zero,
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[2559,116]),28])]),
    [iquote('para_from,2559.1.1,115.1.1.1,demod,28,flip.1')] ).

cnf(2615,plain,
    domain(A) = antidomain(antidomain(A)),
    inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[2611,232]),2556,50]),
    [iquote('para_from,2611.1.1,232.1.1.1,demod,2556,50')] ).

cnf(2617,plain,
    $false,
    inference(binary,[status(thm)],[2615,4]),
    [iquote('binary,2615.1,4.1')] ).

%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.11/0.12  % Problem  : KLE080+1 : TPTP v8.1.0. Released v4.0.0.
% 0.11/0.12  % Command  : otter-tptp-script %s
% 0.12/0.33  % Computer : n024.cluster.edu
% 0.12/0.33  % Model    : x86_64 x86_64
% 0.12/0.33  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.12/0.33  % Memory   : 8042.1875MB
% 0.12/0.33  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.12/0.33  % CPULimit : 300
% 0.12/0.33  % WCLimit  : 300
% 0.12/0.33  % DateTime : Wed Jul 27 06:30:40 EDT 2022
% 0.12/0.33  % CPUTime  : 
% 1.71/1.94  ----- Otter 3.3f, August 2004 -----
% 1.71/1.94  The process was started by sandbox2 on n024.cluster.edu,
% 1.71/1.94  Wed Jul 27 06:30:40 2022
% 1.71/1.94  The command was "./otter".  The process ID is 2738.
% 1.71/1.94  
% 1.71/1.94  set(prolog_style_variables).
% 1.71/1.94  set(auto).
% 1.71/1.94     dependent: set(auto1).
% 1.71/1.94     dependent: set(process_input).
% 1.71/1.94     dependent: clear(print_kept).
% 1.71/1.94     dependent: clear(print_new_demod).
% 1.71/1.94     dependent: clear(print_back_demod).
% 1.71/1.94     dependent: clear(print_back_sub).
% 1.71/1.94     dependent: set(control_memory).
% 1.71/1.94     dependent: assign(max_mem, 12000).
% 1.71/1.94     dependent: assign(pick_given_ratio, 4).
% 1.71/1.94     dependent: assign(stats_level, 1).
% 1.71/1.94     dependent: assign(max_seconds, 10800).
% 1.71/1.94  clear(print_given).
% 1.71/1.94  
% 1.71/1.94  formula_list(usable).
% 1.71/1.94  all A (A=A).
% 1.71/1.94  all A B (addition(A,B)=addition(B,A)).
% 1.71/1.94  all C B A (addition(A,addition(B,C))=addition(addition(A,B),C)).
% 1.71/1.94  all A (addition(A,zero)=A).
% 1.71/1.94  all A (addition(A,A)=A).
% 1.71/1.94  all A B C (multiplication(A,multiplication(B,C))=multiplication(multiplication(A,B),C)).
% 1.71/1.94  all A (multiplication(A,one)=A).
% 1.71/1.94  all A (multiplication(one,A)=A).
% 1.71/1.94  all A B C (multiplication(A,addition(B,C))=addition(multiplication(A,B),multiplication(A,C))).
% 1.71/1.94  all A B C (multiplication(addition(A,B),C)=addition(multiplication(A,C),multiplication(B,C))).
% 1.71/1.94  all A (multiplication(A,zero)=zero).
% 1.71/1.94  all A (multiplication(zero,A)=zero).
% 1.71/1.94  all A B (le_q(A,B)<->addition(A,B)=B).
% 1.71/1.94  all X0 (addition(X0,multiplication(domain(X0),X0))=multiplication(domain(X0),X0)).
% 1.71/1.94  all X0 X1 (domain(multiplication(X0,X1))=domain(multiplication(X0,domain(X1)))).
% 1.71/1.94  all X0 (addition(domain(X0),one)=one).
% 1.71/1.94  domain(zero)=zero.
% 1.71/1.94  all X0 X1 (domain(addition(X0,X1))=addition(domain(X0),domain(X1))).
% 1.71/1.94  -(all X0 ((all X1 (addition(domain(X1),antidomain(X1))=one&multiplication(domain(X1),antidomain(X1))=zero))->antidomain(antidomain(X0))=domain(X0))).
% 1.71/1.94  end_of_list.
% 1.71/1.94  
% 1.71/1.94  -------> usable clausifies to:
% 1.71/1.94  
% 1.71/1.94  list(usable).
% 1.71/1.94  0 [] A=A.
% 1.71/1.94  0 [] addition(A,B)=addition(B,A).
% 1.71/1.94  0 [] addition(A,addition(B,C))=addition(addition(A,B),C).
% 1.71/1.94  0 [] addition(A,zero)=A.
% 1.71/1.94  0 [] addition(A,A)=A.
% 1.71/1.94  0 [] multiplication(A,multiplication(B,C))=multiplication(multiplication(A,B),C).
% 1.71/1.94  0 [] multiplication(A,one)=A.
% 1.71/1.94  0 [] multiplication(one,A)=A.
% 1.71/1.94  0 [] multiplication(A,addition(B,C))=addition(multiplication(A,B),multiplication(A,C)).
% 1.71/1.94  0 [] multiplication(addition(A,B),C)=addition(multiplication(A,C),multiplication(B,C)).
% 1.71/1.94  0 [] multiplication(A,zero)=zero.
% 1.71/1.94  0 [] multiplication(zero,A)=zero.
% 1.71/1.94  0 [] -le_q(A,B)|addition(A,B)=B.
% 1.71/1.94  0 [] le_q(A,B)|addition(A,B)!=B.
% 1.71/1.94  0 [] addition(X0,multiplication(domain(X0),X0))=multiplication(domain(X0),X0).
% 1.71/1.94  0 [] domain(multiplication(X0,X1))=domain(multiplication(X0,domain(X1))).
% 1.71/1.94  0 [] addition(domain(X0),one)=one.
% 1.71/1.94  0 [] domain(zero)=zero.
% 1.71/1.94  0 [] domain(addition(X0,X1))=addition(domain(X0),domain(X1)).
% 1.71/1.94  0 [] addition(domain(X1),antidomain(X1))=one.
% 1.71/1.94  0 [] multiplication(domain(X1),antidomain(X1))=zero.
% 1.71/1.94  0 [] antidomain(antidomain($c1))!=domain($c1).
% 1.71/1.94  end_of_list.
% 1.71/1.94  
% 1.71/1.94  SCAN INPUT: prop=0, horn=1, equality=1, symmetry=0, max_lits=2.
% 1.71/1.94  
% 1.71/1.94  This is a Horn set with equality.  The strategy will be
% 1.71/1.94  Knuth-Bendix and hyper_res, with positive clauses in
% 1.71/1.94  sos and nonpositive clauses in usable.
% 1.71/1.94  
% 1.71/1.94     dependent: set(knuth_bendix).
% 1.71/1.94     dependent: set(anl_eq).
% 1.71/1.94     dependent: set(para_from).
% 1.71/1.94     dependent: set(para_into).
% 1.71/1.94     dependent: clear(para_from_right).
% 1.71/1.94     dependent: clear(para_into_right).
% 1.71/1.94     dependent: set(para_from_vars).
% 1.71/1.94     dependent: set(eq_units_both_ways).
% 1.71/1.94     dependent: set(dynamic_demod_all).
% 1.71/1.94     dependent: set(dynamic_demod).
% 1.71/1.94     dependent: set(order_eq).
% 1.71/1.94     dependent: set(back_demod).
% 1.71/1.94     dependent: set(lrpo).
% 1.71/1.94     dependent: set(hyper_res).
% 1.71/1.94     dependent: clear(order_hyper).
% 1.71/1.94  
% 1.71/1.94  ------------> process usable:
% 1.71/1.94  ** KEPT (pick-wt=8): 1 [] -le_q(A,B)|addition(A,B)=B.
% 1.71/1.94  ** KEPT (pick-wt=8): 2 [] le_q(A,B)|addition(A,B)!=B.
% 1.71/1.94  ** KEPT (pick-wt=6): 4 [copy,3,flip.1] domain($c1)!=antidomain(antidomain($c1)).
% 1.71/1.94  
% 1.71/1.94  ------------> process sos:
% 1.71/1.94  ** KEPT (pick-wt=3): 5 [] A=A.
% 1.71/1.94  ** KEPT (pick-wt=7): 6 [] addition(A,B)=addition(B,A).
% 1.71/1.94  ** KEPT (pick-wt=11): 8 [copy,7,flip.1] addition(addition(A,B),C)=addition(A,addition(B,C)).
% 1.71/1.94  ---> New Demodulator: 9 [new_demod,8] addition(addition(A,B),C)=addition(A,addition(B,C)).
% 1.71/1.94  ** KEPT (pick-wt=5): 10 [] addition(A,zero)=A.
% 1.71/1.94  ---> New Demodulator: 11 [new_demod,10] addition(A,zero)=A.
% 2.82/3.10  ** KEPT (pick-wt=5): 12 [] addition(A,A)=A.
% 2.82/3.10  ---> New Demodulator: 13 [new_demod,12] addition(A,A)=A.
% 2.82/3.10  ** KEPT (pick-wt=11): 15 [copy,14,flip.1] multiplication(multiplication(A,B),C)=multiplication(A,multiplication(B,C)).
% 2.82/3.10  ---> New Demodulator: 16 [new_demod,15] multiplication(multiplication(A,B),C)=multiplication(A,multiplication(B,C)).
% 2.82/3.10  ** KEPT (pick-wt=5): 17 [] multiplication(A,one)=A.
% 2.82/3.10  ---> New Demodulator: 18 [new_demod,17] multiplication(A,one)=A.
% 2.82/3.10  ** KEPT (pick-wt=5): 19 [] multiplication(one,A)=A.
% 2.82/3.10  ---> New Demodulator: 20 [new_demod,19] multiplication(one,A)=A.
% 2.82/3.10  ** KEPT (pick-wt=13): 21 [] multiplication(A,addition(B,C))=addition(multiplication(A,B),multiplication(A,C)).
% 2.82/3.10  ---> New Demodulator: 22 [new_demod,21] multiplication(A,addition(B,C))=addition(multiplication(A,B),multiplication(A,C)).
% 2.82/3.10  ** KEPT (pick-wt=13): 23 [] multiplication(addition(A,B),C)=addition(multiplication(A,C),multiplication(B,C)).
% 2.82/3.10  ---> New Demodulator: 24 [new_demod,23] multiplication(addition(A,B),C)=addition(multiplication(A,C),multiplication(B,C)).
% 2.82/3.10  ** KEPT (pick-wt=5): 25 [] multiplication(A,zero)=zero.
% 2.82/3.10  ---> New Demodulator: 26 [new_demod,25] multiplication(A,zero)=zero.
% 2.82/3.10  ** KEPT (pick-wt=5): 27 [] multiplication(zero,A)=zero.
% 2.82/3.10  ---> New Demodulator: 28 [new_demod,27] multiplication(zero,A)=zero.
% 2.82/3.10  ** KEPT (pick-wt=11): 29 [] addition(A,multiplication(domain(A),A))=multiplication(domain(A),A).
% 2.82/3.10  ---> New Demodulator: 30 [new_demod,29] addition(A,multiplication(domain(A),A))=multiplication(domain(A),A).
% 2.82/3.10  ** KEPT (pick-wt=10): 32 [copy,31,flip.1] domain(multiplication(A,domain(B)))=domain(multiplication(A,B)).
% 2.82/3.10  ---> New Demodulator: 33 [new_demod,32] domain(multiplication(A,domain(B)))=domain(multiplication(A,B)).
% 2.82/3.10  ** KEPT (pick-wt=6): 34 [] addition(domain(A),one)=one.
% 2.82/3.10  ---> New Demodulator: 35 [new_demod,34] addition(domain(A),one)=one.
% 2.82/3.10  ** KEPT (pick-wt=4): 36 [] domain(zero)=zero.
% 2.82/3.10  ---> New Demodulator: 37 [new_demod,36] domain(zero)=zero.
% 2.82/3.10  ** KEPT (pick-wt=10): 38 [] domain(addition(A,B))=addition(domain(A),domain(B)).
% 2.82/3.10  ---> New Demodulator: 39 [new_demod,38] domain(addition(A,B))=addition(domain(A),domain(B)).
% 2.82/3.10  ** KEPT (pick-wt=7): 40 [] addition(domain(A),antidomain(A))=one.
% 2.82/3.10  ---> New Demodulator: 41 [new_demod,40] addition(domain(A),antidomain(A))=one.
% 2.82/3.10  ** KEPT (pick-wt=7): 42 [] multiplication(domain(A),antidomain(A))=zero.
% 2.82/3.10  ---> New Demodulator: 43 [new_demod,42] multiplication(domain(A),antidomain(A))=zero.
% 2.82/3.10    Following clause subsumed by 5 during input processing: 0 [copy,5,flip.1] A=A.
% 2.82/3.10    Following clause subsumed by 6 during input processing: 0 [copy,6,flip.1] addition(A,B)=addition(B,A).
% 2.82/3.10  >>>> Starting back demodulation with 9.
% 2.82/3.10  >>>> Starting back demodulation with 11.
% 2.82/3.10  >>>> Starting back demodulation with 13.
% 2.82/3.10  >>>> Starting back demodulation with 16.
% 2.82/3.10  >>>> Starting back demodulation with 18.
% 2.82/3.10  >>>> Starting back demodulation with 20.
% 2.82/3.10  >>>> Starting back demodulation with 22.
% 2.82/3.10  >>>> Starting back demodulation with 24.
% 2.82/3.10  >>>> Starting back demodulation with 26.
% 2.82/3.10  >>>> Starting back demodulation with 28.
% 2.82/3.10  >>>> Starting back demodulation with 30.
% 2.82/3.10  >>>> Starting back demodulation with 33.
% 2.82/3.10  >>>> Starting back demodulation with 35.
% 2.82/3.10  >>>> Starting back demodulation with 37.
% 2.82/3.10  >>>> Starting back demodulation with 39.
% 2.82/3.10  >>>> Starting back demodulation with 41.
% 2.82/3.10  >>>> Starting back demodulation with 43.
% 2.82/3.10  
% 2.82/3.10  ======= end of input processing =======
% 2.82/3.10  
% 2.82/3.10  =========== start of search ===========
% 2.82/3.10  
% 2.82/3.10  
% 2.82/3.10  Resetting weight limit to 9.
% 2.82/3.10  
% 2.82/3.10  
% 2.82/3.10  Resetting weight limit to 9.
% 2.82/3.10  
% 2.82/3.10  sos_size=1653
% 2.82/3.10  
% 2.82/3.10  -------- PROOF -------- 
% 2.82/3.10  
% 2.82/3.10  ----> UNIT CONFLICT at   1.15 sec ----> 2617 [binary,2615.1,4.1] $F.
% 2.82/3.10  
% 2.82/3.10  Length of proof is 26.  Level of proof is 12.
% 2.82/3.10  
% 2.82/3.10  ---------------- PROOF ----------------
% 2.82/3.10  % SZS status Theorem
% 2.82/3.10  % SZS output start Refutation
% See solution above
% 2.82/3.10  ------------ end of proof -------------
% 2.82/3.10  
% 2.82/3.10  
% 2.82/3.10  Search stopped by max_proofs option.
% 2.82/3.10  
% 2.82/3.10  
% 2.82/3.10  Search stopped by max_proofs option.
% 2.82/3.10  
% 2.82/3.10  ============ end of search ============
% 2.82/3.10  
% 2.82/3.10  -------------- statistics -------------
% 2.82/3.10  clauses given                764
% 2.82/3.10  clauses generated         239248
% 2.82/3.10  clauses kept                2365
% 2.82/3.10  clauses forward subsumed   48077
% 2.82/3.10  clauses back subsumed        252
% 2.82/3.10  Kbytes malloced             5859
% 2.82/3.10  
% 2.82/3.10  ----------- times (seconds) -----------
% 2.82/3.10  user CPU time          1.15          (0 hr, 0 min, 1 sec)
% 2.82/3.10  system CPU time        0.01          (0 hr, 0 min, 0 sec)
% 2.82/3.10  wall-clock time        3             (0 hr, 0 min, 3 sec)
% 2.82/3.10  
% 2.82/3.10  That finishes the proof of the theorem.
% 2.82/3.10  
% 2.82/3.10  Process 2738 finished Wed Jul 27 06:30:43 2022
% 2.82/3.10  Otter interrupted
% 2.82/3.10  PROOF FOUND
%------------------------------------------------------------------------------