TSTP Solution File: KLE066+1 by Otter---3.3

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Otter---3.3
% Problem  : KLE066+1 : TPTP v8.1.0. Released v4.0.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : otter-tptp-script %s

% Computer : n023.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Wed Jul 27 13:00:39 EDT 2022

% Result   : Theorem 2.06s 2.23s
% Output   : Refutation 2.06s
% Verified : 
% SZS Type : Refutation
%            Derivation depth      :    5
%            Number of leaves      :   10
% Syntax   : Number of clauses     :   17 (  17 unt;   0 nHn;   6 RR)
%            Number of literals    :   17 (  16 equ;   1 neg)
%            Maximal clause size   :    1 (   1 avg)
%            Maximal term depth    :    4 (   2 avg)
%            Number of predicates  :    2 (   0 usr;   1 prp; 0-2 aty)
%            Number of functors    :    7 (   7 usr;   4 con; 0-2 aty)
%            Number of variables   :   17 (   4 sgn)

% Comments : 
%------------------------------------------------------------------------------
cnf(3,axiom,
    multiplication(dollar_c2,dollar_c1) != zero,
    file('KLE066+1.p',unknown),
    [] ).

cnf(5,axiom,
    addition(A,B) = addition(B,A),
    file('KLE066+1.p',unknown),
    [] ).

cnf(19,axiom,
    multiplication(one,A) = A,
    file('KLE066+1.p',unknown),
    [] ).

cnf(22,axiom,
    multiplication(addition(A,B),C) = addition(multiplication(A,C),multiplication(B,C)),
    file('KLE066+1.p',unknown),
    [] ).

cnf(27,axiom,
    multiplication(zero,A) = zero,
    file('KLE066+1.p',unknown),
    [] ).

cnf(28,axiom,
    addition(A,multiplication(domain(A),A)) = multiplication(domain(A),A),
    file('KLE066+1.p',unknown),
    [] ).

cnf(30,axiom,
    domain(multiplication(A,B)) = domain(multiplication(A,domain(B))),
    file('KLE066+1.p',unknown),
    [] ).

cnf(31,plain,
    domain(multiplication(A,domain(B))) = domain(multiplication(A,B)),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[30])]),
    [iquote('copy,30,flip.1')] ).

cnf(33,axiom,
    addition(domain(A),one) = one,
    file('KLE066+1.p',unknown),
    [] ).

cnf(36,axiom,
    domain(zero) = zero,
    file('KLE066+1.p',unknown),
    [] ).

cnf(39,axiom,
    multiplication(dollar_c2,domain(dollar_c1)) = zero,
    file('KLE066+1.p',unknown),
    [] ).

cnf(62,plain,
    addition(one,domain(A)) = one,
    inference(para_into,[status(thm),theory(equality)],[33,5]),
    [iquote('para_into,33.1.1,5.1.1')] ).

cnf(103,plain,
    addition(A,multiplication(domain(B),A)) = A,
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[22,62]),19,19])]),
    [iquote('para_into,22.1.1.1,62.1.1,demod,19,19,flip.1')] ).

cnf(109,plain,
    multiplication(domain(A),A) = A,
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[28]),103])]),
    [iquote('back_demod,28,demod,103,flip.1')] ).

cnf(133,plain,
    domain(multiplication(dollar_c2,dollar_c1)) = zero,
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[31,39]),36])]),
    [iquote('para_into,31.1.1.1,39.1.1,demod,36,flip.1')] ).

cnf(143,plain,
    multiplication(dollar_c2,dollar_c1) = zero,
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[133,109]),27])]),
    [iquote('para_from,133.1.1,109.1.1.1,demod,27,flip.1')] ).

cnf(145,plain,
    $false,
    inference(binary,[status(thm)],[143,3]),
    [iquote('binary,143.1,3.1')] ).

%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.03/0.12  % Problem  : KLE066+1 : TPTP v8.1.0. Released v4.0.0.
% 0.03/0.13  % Command  : otter-tptp-script %s
% 0.14/0.34  % Computer : n023.cluster.edu
% 0.14/0.34  % Model    : x86_64 x86_64
% 0.14/0.34  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.14/0.34  % Memory   : 8042.1875MB
% 0.14/0.34  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.14/0.34  % CPULimit : 300
% 0.14/0.34  % WCLimit  : 300
% 0.14/0.34  % DateTime : Wed Jul 27 06:53:33 EDT 2022
% 0.14/0.34  % CPUTime  : 
% 2.06/2.22  ----- Otter 3.3f, August 2004 -----
% 2.06/2.22  The process was started by sandbox on n023.cluster.edu,
% 2.06/2.22  Wed Jul 27 06:53:33 2022
% 2.06/2.22  The command was "./otter".  The process ID is 15249.
% 2.06/2.22  
% 2.06/2.22  set(prolog_style_variables).
% 2.06/2.22  set(auto).
% 2.06/2.22     dependent: set(auto1).
% 2.06/2.22     dependent: set(process_input).
% 2.06/2.22     dependent: clear(print_kept).
% 2.06/2.22     dependent: clear(print_new_demod).
% 2.06/2.22     dependent: clear(print_back_demod).
% 2.06/2.22     dependent: clear(print_back_sub).
% 2.06/2.22     dependent: set(control_memory).
% 2.06/2.22     dependent: assign(max_mem, 12000).
% 2.06/2.22     dependent: assign(pick_given_ratio, 4).
% 2.06/2.22     dependent: assign(stats_level, 1).
% 2.06/2.22     dependent: assign(max_seconds, 10800).
% 2.06/2.22  clear(print_given).
% 2.06/2.22  
% 2.06/2.22  formula_list(usable).
% 2.06/2.22  all A (A=A).
% 2.06/2.22  all A B (addition(A,B)=addition(B,A)).
% 2.06/2.22  all C B A (addition(A,addition(B,C))=addition(addition(A,B),C)).
% 2.06/2.22  all A (addition(A,zero)=A).
% 2.06/2.22  all A (addition(A,A)=A).
% 2.06/2.22  all A B C (multiplication(A,multiplication(B,C))=multiplication(multiplication(A,B),C)).
% 2.06/2.22  all A (multiplication(A,one)=A).
% 2.06/2.22  all A (multiplication(one,A)=A).
% 2.06/2.22  all A B C (multiplication(A,addition(B,C))=addition(multiplication(A,B),multiplication(A,C))).
% 2.06/2.22  all A B C (multiplication(addition(A,B),C)=addition(multiplication(A,C),multiplication(B,C))).
% 2.06/2.22  all A (multiplication(A,zero)=zero).
% 2.06/2.22  all A (multiplication(zero,A)=zero).
% 2.06/2.22  all A B (le_q(A,B)<->addition(A,B)=B).
% 2.06/2.22  all X0 (addition(X0,multiplication(domain(X0),X0))=multiplication(domain(X0),X0)).
% 2.06/2.22  all X0 X1 (domain(multiplication(X0,X1))=domain(multiplication(X0,domain(X1)))).
% 2.06/2.22  all X0 (addition(domain(X0),one)=one).
% 2.06/2.22  domain(zero)=zero.
% 2.06/2.22  all X0 X1 (domain(addition(X0,X1))=addition(domain(X0),domain(X1))).
% 2.06/2.22  -(all X0 X1 (multiplication(X0,domain(X1))=zero->multiplication(X0,X1)=zero)).
% 2.06/2.22  end_of_list.
% 2.06/2.22  
% 2.06/2.22  -------> usable clausifies to:
% 2.06/2.22  
% 2.06/2.22  list(usable).
% 2.06/2.22  0 [] A=A.
% 2.06/2.22  0 [] addition(A,B)=addition(B,A).
% 2.06/2.22  0 [] addition(A,addition(B,C))=addition(addition(A,B),C).
% 2.06/2.22  0 [] addition(A,zero)=A.
% 2.06/2.22  0 [] addition(A,A)=A.
% 2.06/2.22  0 [] multiplication(A,multiplication(B,C))=multiplication(multiplication(A,B),C).
% 2.06/2.22  0 [] multiplication(A,one)=A.
% 2.06/2.22  0 [] multiplication(one,A)=A.
% 2.06/2.22  0 [] multiplication(A,addition(B,C))=addition(multiplication(A,B),multiplication(A,C)).
% 2.06/2.22  0 [] multiplication(addition(A,B),C)=addition(multiplication(A,C),multiplication(B,C)).
% 2.06/2.22  0 [] multiplication(A,zero)=zero.
% 2.06/2.22  0 [] multiplication(zero,A)=zero.
% 2.06/2.22  0 [] -le_q(A,B)|addition(A,B)=B.
% 2.06/2.22  0 [] le_q(A,B)|addition(A,B)!=B.
% 2.06/2.22  0 [] addition(X0,multiplication(domain(X0),X0))=multiplication(domain(X0),X0).
% 2.06/2.22  0 [] domain(multiplication(X0,X1))=domain(multiplication(X0,domain(X1))).
% 2.06/2.22  0 [] addition(domain(X0),one)=one.
% 2.06/2.22  0 [] domain(zero)=zero.
% 2.06/2.22  0 [] domain(addition(X0,X1))=addition(domain(X0),domain(X1)).
% 2.06/2.22  0 [] multiplication($c2,domain($c1))=zero.
% 2.06/2.22  0 [] multiplication($c2,$c1)!=zero.
% 2.06/2.22  end_of_list.
% 2.06/2.22  
% 2.06/2.22  SCAN INPUT: prop=0, horn=1, equality=1, symmetry=0, max_lits=2.
% 2.06/2.22  
% 2.06/2.22  This is a Horn set with equality.  The strategy will be
% 2.06/2.22  Knuth-Bendix and hyper_res, with positive clauses in
% 2.06/2.22  sos and nonpositive clauses in usable.
% 2.06/2.22  
% 2.06/2.22     dependent: set(knuth_bendix).
% 2.06/2.22     dependent: set(anl_eq).
% 2.06/2.22     dependent: set(para_from).
% 2.06/2.22     dependent: set(para_into).
% 2.06/2.22     dependent: clear(para_from_right).
% 2.06/2.22     dependent: clear(para_into_right).
% 2.06/2.22     dependent: set(para_from_vars).
% 2.06/2.22     dependent: set(eq_units_both_ways).
% 2.06/2.22     dependent: set(dynamic_demod_all).
% 2.06/2.22     dependent: set(dynamic_demod).
% 2.06/2.22     dependent: set(order_eq).
% 2.06/2.22     dependent: set(back_demod).
% 2.06/2.22     dependent: set(lrpo).
% 2.06/2.22     dependent: set(hyper_res).
% 2.06/2.22     dependent: clear(order_hyper).
% 2.06/2.22  
% 2.06/2.22  ------------> process usable:
% 2.06/2.22  ** KEPT (pick-wt=8): 1 [] -le_q(A,B)|addition(A,B)=B.
% 2.06/2.22  ** KEPT (pick-wt=8): 2 [] le_q(A,B)|addition(A,B)!=B.
% 2.06/2.22  ** KEPT (pick-wt=5): 3 [] multiplication($c2,$c1)!=zero.
% 2.06/2.22  
% 2.06/2.22  ------------> process sos:
% 2.06/2.22  ** KEPT (pick-wt=3): 4 [] A=A.
% 2.06/2.22  ** KEPT (pick-wt=7): 5 [] addition(A,B)=addition(B,A).
% 2.06/2.22  ** KEPT (pick-wt=11): 7 [copy,6,flip.1] addition(addition(A,B),C)=addition(A,addition(B,C)).
% 2.06/2.22  ---> New Demodulator: 8 [new_demod,7] addition(addition(A,B),C)=addition(A,addition(B,C)).
% 2.06/2.22  ** KEPT (pick-wt=5): 9 [] addition(A,zero)=A.
% 2.06/2.22  ---> New Demodulator: 10 [new_demod,9] addition(A,zero)=A.
% 2.06/2.22  ** KEPT (pick-wt=5): 11 [] addition(A,A)=A.
% 2.06/2.22  ---> New Demodulator: 12 [new_demod,11] addition(A,A)=A.
% 2.06/2.22  ** KEPT (pick-wt=11): 14 [copy,13,flip.1] multiplication(multiplication(A,B),C)=multiplication(A,multiplication(B,C)).
% 2.06/2.23  ---> New Demodulator: 15 [new_demod,14] multiplication(multiplication(A,B),C)=multiplication(A,multiplication(B,C)).
% 2.06/2.23  ** KEPT (pick-wt=5): 16 [] multiplication(A,one)=A.
% 2.06/2.23  ---> New Demodulator: 17 [new_demod,16] multiplication(A,one)=A.
% 2.06/2.23  ** KEPT (pick-wt=5): 18 [] multiplication(one,A)=A.
% 2.06/2.23  ---> New Demodulator: 19 [new_demod,18] multiplication(one,A)=A.
% 2.06/2.23  ** KEPT (pick-wt=13): 20 [] multiplication(A,addition(B,C))=addition(multiplication(A,B),multiplication(A,C)).
% 2.06/2.23  ---> New Demodulator: 21 [new_demod,20] multiplication(A,addition(B,C))=addition(multiplication(A,B),multiplication(A,C)).
% 2.06/2.23  ** KEPT (pick-wt=13): 22 [] multiplication(addition(A,B),C)=addition(multiplication(A,C),multiplication(B,C)).
% 2.06/2.23  ---> New Demodulator: 23 [new_demod,22] multiplication(addition(A,B),C)=addition(multiplication(A,C),multiplication(B,C)).
% 2.06/2.23  ** KEPT (pick-wt=5): 24 [] multiplication(A,zero)=zero.
% 2.06/2.23  ---> New Demodulator: 25 [new_demod,24] multiplication(A,zero)=zero.
% 2.06/2.23  ** KEPT (pick-wt=5): 26 [] multiplication(zero,A)=zero.
% 2.06/2.23  ---> New Demodulator: 27 [new_demod,26] multiplication(zero,A)=zero.
% 2.06/2.23  ** KEPT (pick-wt=11): 28 [] addition(A,multiplication(domain(A),A))=multiplication(domain(A),A).
% 2.06/2.23  ---> New Demodulator: 29 [new_demod,28] addition(A,multiplication(domain(A),A))=multiplication(domain(A),A).
% 2.06/2.23  ** KEPT (pick-wt=10): 31 [copy,30,flip.1] domain(multiplication(A,domain(B)))=domain(multiplication(A,B)).
% 2.06/2.23  ---> New Demodulator: 32 [new_demod,31] domain(multiplication(A,domain(B)))=domain(multiplication(A,B)).
% 2.06/2.23  ** KEPT (pick-wt=6): 33 [] addition(domain(A),one)=one.
% 2.06/2.23  ---> New Demodulator: 34 [new_demod,33] addition(domain(A),one)=one.
% 2.06/2.23  ** KEPT (pick-wt=4): 35 [] domain(zero)=zero.
% 2.06/2.23  ---> New Demodulator: 36 [new_demod,35] domain(zero)=zero.
% 2.06/2.23  ** KEPT (pick-wt=10): 37 [] domain(addition(A,B))=addition(domain(A),domain(B)).
% 2.06/2.23  ---> New Demodulator: 38 [new_demod,37] domain(addition(A,B))=addition(domain(A),domain(B)).
% 2.06/2.23  ** KEPT (pick-wt=6): 39 [] multiplication($c2,domain($c1))=zero.
% 2.06/2.23  ---> New Demodulator: 40 [new_demod,39] multiplication($c2,domain($c1))=zero.
% 2.06/2.23    Following clause subsumed by 4 during input processing: 0 [copy,4,flip.1] A=A.
% 2.06/2.23    Following clause subsumed by 5 during input processing: 0 [copy,5,flip.1] addition(A,B)=addition(B,A).
% 2.06/2.23  >>>> Starting back demodulation with 8.
% 2.06/2.23  >>>> Starting back demodulation with 10.
% 2.06/2.23  >>>> Starting back demodulation with 12.
% 2.06/2.23  >>>> Starting back demodulation with 15.
% 2.06/2.23  >>>> Starting back demodulation with 17.
% 2.06/2.23  >>>> Starting back demodulation with 19.
% 2.06/2.23  >>>> Starting back demodulation with 21.
% 2.06/2.23  >>>> Starting back demodulation with 23.
% 2.06/2.23  >>>> Starting back demodulation with 25.
% 2.06/2.23  >>>> Starting back demodulation with 27.
% 2.06/2.23  >>>> Starting back demodulation with 29.
% 2.06/2.23  >>>> Starting back demodulation with 32.
% 2.06/2.23  >>>> Starting back demodulation with 34.
% 2.06/2.23  >>>> Starting back demodulation with 36.
% 2.06/2.23  >>>> Starting back demodulation with 38.
% 2.06/2.23  >>>> Starting back demodulation with 40.
% 2.06/2.23  
% 2.06/2.23  ======= end of input processing =======
% 2.06/2.23  
% 2.06/2.23  =========== start of search ===========
% 2.06/2.23  
% 2.06/2.23  -------- PROOF -------- 
% 2.06/2.23  
% 2.06/2.23  ----> UNIT CONFLICT at   0.00 sec ----> 145 [binary,143.1,3.1] $F.
% 2.06/2.23  
% 2.06/2.23  Length of proof is 6.  Level of proof is 4.
% 2.06/2.23  
% 2.06/2.23  ---------------- PROOF ----------------
% 2.06/2.23  % SZS status Theorem
% 2.06/2.23  % SZS output start Refutation
% See solution above
% 2.06/2.23  ------------ end of proof -------------
% 2.06/2.23  
% 2.06/2.23  
% 2.06/2.23  Search stopped by max_proofs option.
% 2.06/2.23  
% 2.06/2.23  
% 2.06/2.23  Search stopped by max_proofs option.
% 2.06/2.23  
% 2.06/2.23  ============ end of search ============
% 2.06/2.23  
% 2.06/2.23  -------------- statistics -------------
% 2.06/2.23  clauses given                 35
% 2.06/2.23  clauses generated            362
% 2.06/2.23  clauses kept                 104
% 2.06/2.23  clauses forward subsumed     288
% 2.06/2.23  clauses back subsumed         10
% 2.06/2.23  Kbytes malloced             1953
% 2.06/2.23  
% 2.06/2.23  ----------- times (seconds) -----------
% 2.06/2.23  user CPU time          0.00          (0 hr, 0 min, 0 sec)
% 2.06/2.23  system CPU time        0.00          (0 hr, 0 min, 0 sec)
% 2.06/2.23  wall-clock time        2             (0 hr, 0 min, 2 sec)
% 2.06/2.23  
% 2.06/2.23  That finishes the proof of the theorem.
% 2.06/2.23  
% 2.06/2.23  Process 15249 finished Wed Jul 27 06:53:35 2022
% 2.06/2.23  Otter interrupted
% 2.06/2.23  PROOF FOUND
%------------------------------------------------------------------------------