TSTP Solution File: KLE066+1 by Bliksem---1.12

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Bliksem---1.12
% Problem  : KLE066+1 : TPTP v8.1.0. Released v4.0.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : bliksem %s

% Computer : n023.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 0s
% DateTime : Sun Jul 17 01:36:59 EDT 2022

% Result   : Theorem 0.82s 1.18s
% Output   : Refutation 0.82s
% Verified : 
% SZS Type : -

% Comments : 
%------------------------------------------------------------------------------
%----WARNING: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.07/0.14  % Problem  : KLE066+1 : TPTP v8.1.0. Released v4.0.0.
% 0.07/0.15  % Command  : bliksem %s
% 0.15/0.36  % Computer : n023.cluster.edu
% 0.15/0.36  % Model    : x86_64 x86_64
% 0.15/0.36  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.15/0.36  % Memory   : 8042.1875MB
% 0.15/0.36  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.15/0.36  % CPULimit : 300
% 0.15/0.36  % DateTime : Thu Jun 16 15:33:35 EDT 2022
% 0.15/0.37  % CPUTime  : 
% 0.82/1.18  *** allocated 10000 integers for termspace/termends
% 0.82/1.18  *** allocated 10000 integers for clauses
% 0.82/1.18  *** allocated 10000 integers for justifications
% 0.82/1.18  Bliksem 1.12
% 0.82/1.18  
% 0.82/1.18  
% 0.82/1.18  Automatic Strategy Selection
% 0.82/1.18  
% 0.82/1.18  
% 0.82/1.18  Clauses:
% 0.82/1.18  
% 0.82/1.18  { addition( X, Y ) = addition( Y, X ) }.
% 0.82/1.18  { addition( Z, addition( Y, X ) ) = addition( addition( Z, Y ), X ) }.
% 0.82/1.18  { addition( X, zero ) = X }.
% 0.82/1.18  { addition( X, X ) = X }.
% 0.82/1.18  { multiplication( X, multiplication( Y, Z ) ) = multiplication( 
% 0.82/1.18    multiplication( X, Y ), Z ) }.
% 0.82/1.18  { multiplication( X, one ) = X }.
% 0.82/1.18  { multiplication( one, X ) = X }.
% 0.82/1.18  { multiplication( X, addition( Y, Z ) ) = addition( multiplication( X, Y )
% 0.82/1.18    , multiplication( X, Z ) ) }.
% 0.82/1.18  { multiplication( addition( X, Y ), Z ) = addition( multiplication( X, Z )
% 0.82/1.18    , multiplication( Y, Z ) ) }.
% 0.82/1.18  { multiplication( X, zero ) = zero }.
% 0.82/1.18  { multiplication( zero, X ) = zero }.
% 0.82/1.18  { ! leq( X, Y ), addition( X, Y ) = Y }.
% 0.82/1.18  { ! addition( X, Y ) = Y, leq( X, Y ) }.
% 0.82/1.18  { addition( X, multiplication( domain( X ), X ) ) = multiplication( domain
% 0.82/1.18    ( X ), X ) }.
% 0.82/1.18  { domain( multiplication( X, Y ) ) = domain( multiplication( X, domain( Y )
% 0.82/1.18     ) ) }.
% 0.82/1.18  { addition( domain( X ), one ) = one }.
% 0.82/1.18  { domain( zero ) = zero }.
% 0.82/1.18  { domain( addition( X, Y ) ) = addition( domain( X ), domain( Y ) ) }.
% 0.82/1.18  { multiplication( skol1, domain( skol2 ) ) = zero }.
% 0.82/1.18  { ! multiplication( skol1, skol2 ) = zero }.
% 0.82/1.18  
% 0.82/1.18  percentage equality = 0.909091, percentage horn = 1.000000
% 0.82/1.18  This is a pure equality problem
% 0.82/1.18  
% 0.82/1.18  
% 0.82/1.18  
% 0.82/1.18  Options Used:
% 0.82/1.18  
% 0.82/1.18  useres =            1
% 0.82/1.18  useparamod =        1
% 0.82/1.18  useeqrefl =         1
% 0.82/1.18  useeqfact =         1
% 0.82/1.18  usefactor =         1
% 0.82/1.18  usesimpsplitting =  0
% 0.82/1.18  usesimpdemod =      5
% 0.82/1.18  usesimpres =        3
% 0.82/1.18  
% 0.82/1.18  resimpinuse      =  1000
% 0.82/1.18  resimpclauses =     20000
% 0.82/1.18  substype =          eqrewr
% 0.82/1.18  backwardsubs =      1
% 0.82/1.18  selectoldest =      5
% 0.82/1.18  
% 0.82/1.18  litorderings [0] =  split
% 0.82/1.18  litorderings [1] =  extend the termordering, first sorting on arguments
% 0.82/1.18  
% 0.82/1.18  termordering =      kbo
% 0.82/1.18  
% 0.82/1.18  litapriori =        0
% 0.82/1.18  termapriori =       1
% 0.82/1.18  litaposteriori =    0
% 0.82/1.18  termaposteriori =   0
% 0.82/1.18  demodaposteriori =  0
% 0.82/1.18  ordereqreflfact =   0
% 0.82/1.18  
% 0.82/1.18  litselect =         negord
% 0.82/1.18  
% 0.82/1.18  maxweight =         15
% 0.82/1.18  maxdepth =          30000
% 0.82/1.18  maxlength =         115
% 0.82/1.18  maxnrvars =         195
% 0.82/1.18  excuselevel =       1
% 0.82/1.18  increasemaxweight = 1
% 0.82/1.18  
% 0.82/1.18  maxselected =       10000000
% 0.82/1.18  maxnrclauses =      10000000
% 0.82/1.18  
% 0.82/1.18  showgenerated =    0
% 0.82/1.18  showkept =         0
% 0.82/1.18  showselected =     0
% 0.82/1.18  showdeleted =      0
% 0.82/1.18  showresimp =       1
% 0.82/1.18  showstatus =       2000
% 0.82/1.18  
% 0.82/1.18  prologoutput =     0
% 0.82/1.18  nrgoals =          5000000
% 0.82/1.18  totalproof =       1
% 0.82/1.18  
% 0.82/1.18  Symbols occurring in the translation:
% 0.82/1.18  
% 0.82/1.18  {}  [0, 0]      (w:1, o:2, a:1, s:1, b:0), 
% 0.82/1.18  .  [1, 2]      (w:1, o:21, a:1, s:1, b:0), 
% 0.82/1.18  !  [4, 1]      (w:0, o:15, a:1, s:1, b:0), 
% 0.82/1.18  =  [13, 2]      (w:1, o:0, a:0, s:1, b:0), 
% 0.82/1.18  ==>  [14, 2]      (w:1, o:0, a:0, s:1, b:0), 
% 0.82/1.18  addition  [37, 2]      (w:1, o:45, a:1, s:1, b:0), 
% 0.82/1.18  zero  [39, 0]      (w:1, o:9, a:1, s:1, b:0), 
% 0.82/1.18  multiplication  [40, 2]      (w:1, o:47, a:1, s:1, b:0), 
% 0.82/1.18  one  [41, 0]      (w:1, o:10, a:1, s:1, b:0), 
% 0.82/1.18  leq  [42, 2]      (w:1, o:46, a:1, s:1, b:0), 
% 0.82/1.18  domain  [44, 1]      (w:1, o:20, a:1, s:1, b:0), 
% 0.82/1.18  skol1  [46, 0]      (w:1, o:13, a:1, s:1, b:1), 
% 0.82/1.18  skol2  [47, 0]      (w:1, o:14, a:1, s:1, b:1).
% 0.82/1.18  
% 0.82/1.18  
% 0.82/1.18  Starting Search:
% 0.82/1.18  
% 0.82/1.18  *** allocated 15000 integers for clauses
% 0.82/1.18  *** allocated 22500 integers for clauses
% 0.82/1.18  *** allocated 33750 integers for clauses
% 0.82/1.18  
% 0.82/1.18  Bliksems!, er is een bewijs:
% 0.82/1.18  % SZS status Theorem
% 0.82/1.18  % SZS output start Refutation
% 0.82/1.18  
% 0.82/1.18  (2) {G0,W5,D3,L1,V1,M1} I { addition( X, zero ) ==> X }.
% 0.82/1.18  (4) {G0,W11,D4,L1,V3,M1} I { multiplication( X, multiplication( Y, Z ) ) 
% 0.82/1.18    ==> multiplication( multiplication( X, Y ), Z ) }.
% 0.82/1.18  (10) {G0,W5,D3,L1,V1,M1} I { multiplication( zero, X ) ==> zero }.
% 0.82/1.18  (11) {G0,W8,D3,L2,V2,M2} I { ! leq( X, Y ), addition( X, Y ) ==> Y }.
% 0.82/1.18  (12) {G0,W8,D3,L2,V2,M2} I { ! addition( X, Y ) ==> Y, leq( X, Y ) }.
% 0.82/1.18  (13) {G0,W11,D5,L1,V1,M1} I { addition( X, multiplication( domain( X ), X )
% 0.82/1.18     ) ==> multiplication( domain( X ), X ) }.
% 0.82/1.18  (14) {G0,W10,D5,L1,V2,M1} I { domain( multiplication( X, domain( Y ) ) ) 
% 0.82/1.18    ==> domain( multiplication( X, Y ) ) }.
% 0.82/1.18  (16) {G0,W4,D3,L1,V0,M1} I { domain( zero ) ==> zero }.
% 0.82/1.18  (18) {G0,W6,D4,L1,V0,M1} I { multiplication( skol1, domain( skol2 ) ) ==> 
% 0.82/1.18    zero }.
% 0.82/1.18  (19) {G0,W5,D3,L1,V0,M1} I { ! multiplication( skol1, skol2 ) ==> zero }.
% 0.82/1.18  (53) {G1,W6,D2,L2,V1,M2} P(11,2) { zero = X, ! leq( X, zero ) }.
% 0.82/1.18  (89) {G1,W6,D4,L1,V1,M1} R(13,12) { leq( X, multiplication( domain( X ), X
% 0.82/1.18     ) ) }.
% 0.82/1.18  (114) {G2,W5,D3,L1,V0,M1} P(53,19);q { ! leq( multiplication( skol1, skol2
% 0.82/1.18     ), zero ) }.
% 0.82/1.18  (130) {G1,W6,D4,L1,V0,M1} P(18,14);d(16) { domain( multiplication( skol1, 
% 0.82/1.18    skol2 ) ) ==> zero }.
% 0.82/1.18  (342) {G3,W0,D0,L0,V0,M0} P(130,89);d(4);d(10);d(10);r(114) {  }.
% 0.82/1.18  
% 0.82/1.18  
% 0.82/1.18  % SZS output end Refutation
% 0.82/1.18  found a proof!
% 0.82/1.18  
% 0.82/1.18  
% 0.82/1.18  Unprocessed initial clauses:
% 0.82/1.18  
% 0.82/1.18  (344) {G0,W7,D3,L1,V2,M1}  { addition( X, Y ) = addition( Y, X ) }.
% 0.82/1.18  (345) {G0,W11,D4,L1,V3,M1}  { addition( Z, addition( Y, X ) ) = addition( 
% 0.82/1.18    addition( Z, Y ), X ) }.
% 0.82/1.18  (346) {G0,W5,D3,L1,V1,M1}  { addition( X, zero ) = X }.
% 0.82/1.18  (347) {G0,W5,D3,L1,V1,M1}  { addition( X, X ) = X }.
% 0.82/1.18  (348) {G0,W11,D4,L1,V3,M1}  { multiplication( X, multiplication( Y, Z ) ) =
% 0.82/1.18     multiplication( multiplication( X, Y ), Z ) }.
% 0.82/1.18  (349) {G0,W5,D3,L1,V1,M1}  { multiplication( X, one ) = X }.
% 0.82/1.18  (350) {G0,W5,D3,L1,V1,M1}  { multiplication( one, X ) = X }.
% 0.82/1.18  (351) {G0,W13,D4,L1,V3,M1}  { multiplication( X, addition( Y, Z ) ) = 
% 0.82/1.18    addition( multiplication( X, Y ), multiplication( X, Z ) ) }.
% 0.82/1.18  (352) {G0,W13,D4,L1,V3,M1}  { multiplication( addition( X, Y ), Z ) = 
% 0.82/1.18    addition( multiplication( X, Z ), multiplication( Y, Z ) ) }.
% 0.82/1.18  (353) {G0,W5,D3,L1,V1,M1}  { multiplication( X, zero ) = zero }.
% 0.82/1.18  (354) {G0,W5,D3,L1,V1,M1}  { multiplication( zero, X ) = zero }.
% 0.82/1.18  (355) {G0,W8,D3,L2,V2,M2}  { ! leq( X, Y ), addition( X, Y ) = Y }.
% 0.82/1.18  (356) {G0,W8,D3,L2,V2,M2}  { ! addition( X, Y ) = Y, leq( X, Y ) }.
% 0.82/1.18  (357) {G0,W11,D5,L1,V1,M1}  { addition( X, multiplication( domain( X ), X )
% 0.82/1.18     ) = multiplication( domain( X ), X ) }.
% 0.82/1.18  (358) {G0,W10,D5,L1,V2,M1}  { domain( multiplication( X, Y ) ) = domain( 
% 0.82/1.18    multiplication( X, domain( Y ) ) ) }.
% 0.82/1.18  (359) {G0,W6,D4,L1,V1,M1}  { addition( domain( X ), one ) = one }.
% 0.82/1.18  (360) {G0,W4,D3,L1,V0,M1}  { domain( zero ) = zero }.
% 0.82/1.18  (361) {G0,W10,D4,L1,V2,M1}  { domain( addition( X, Y ) ) = addition( domain
% 0.82/1.18    ( X ), domain( Y ) ) }.
% 0.82/1.18  (362) {G0,W6,D4,L1,V0,M1}  { multiplication( skol1, domain( skol2 ) ) = 
% 0.82/1.18    zero }.
% 0.82/1.18  (363) {G0,W5,D3,L1,V0,M1}  { ! multiplication( skol1, skol2 ) = zero }.
% 0.82/1.18  
% 0.82/1.18  
% 0.82/1.18  Total Proof:
% 0.82/1.18  
% 0.82/1.18  subsumption: (2) {G0,W5,D3,L1,V1,M1} I { addition( X, zero ) ==> X }.
% 0.82/1.18  parent0: (346) {G0,W5,D3,L1,V1,M1}  { addition( X, zero ) = X }.
% 0.82/1.18  substitution0:
% 0.82/1.18     X := X
% 0.82/1.18  end
% 0.82/1.18  permutation0:
% 0.82/1.18     0 ==> 0
% 0.82/1.18  end
% 0.82/1.18  
% 0.82/1.18  subsumption: (4) {G0,W11,D4,L1,V3,M1} I { multiplication( X, multiplication
% 0.82/1.18    ( Y, Z ) ) ==> multiplication( multiplication( X, Y ), Z ) }.
% 0.82/1.18  parent0: (348) {G0,W11,D4,L1,V3,M1}  { multiplication( X, multiplication( Y
% 0.82/1.18    , Z ) ) = multiplication( multiplication( X, Y ), Z ) }.
% 0.82/1.18  substitution0:
% 0.82/1.18     X := X
% 0.82/1.18     Y := Y
% 0.82/1.18     Z := Z
% 0.82/1.18  end
% 0.82/1.18  permutation0:
% 0.82/1.18     0 ==> 0
% 0.82/1.18  end
% 0.82/1.18  
% 0.82/1.18  subsumption: (10) {G0,W5,D3,L1,V1,M1} I { multiplication( zero, X ) ==> 
% 0.82/1.18    zero }.
% 0.82/1.18  parent0: (354) {G0,W5,D3,L1,V1,M1}  { multiplication( zero, X ) = zero }.
% 0.82/1.18  substitution0:
% 0.82/1.18     X := X
% 0.82/1.18  end
% 0.82/1.18  permutation0:
% 0.82/1.18     0 ==> 0
% 0.82/1.18  end
% 0.82/1.18  
% 0.82/1.18  subsumption: (11) {G0,W8,D3,L2,V2,M2} I { ! leq( X, Y ), addition( X, Y ) 
% 0.82/1.18    ==> Y }.
% 0.82/1.18  parent0: (355) {G0,W8,D3,L2,V2,M2}  { ! leq( X, Y ), addition( X, Y ) = Y
% 0.82/1.18     }.
% 0.82/1.18  substitution0:
% 0.82/1.18     X := X
% 0.82/1.18     Y := Y
% 0.82/1.18  end
% 0.82/1.18  permutation0:
% 0.82/1.18     0 ==> 0
% 0.82/1.18     1 ==> 1
% 0.82/1.18  end
% 0.82/1.18  
% 0.82/1.18  subsumption: (12) {G0,W8,D3,L2,V2,M2} I { ! addition( X, Y ) ==> Y, leq( X
% 0.82/1.18    , Y ) }.
% 0.82/1.18  parent0: (356) {G0,W8,D3,L2,V2,M2}  { ! addition( X, Y ) = Y, leq( X, Y )
% 0.82/1.18     }.
% 0.82/1.18  substitution0:
% 0.82/1.18     X := X
% 0.82/1.18     Y := Y
% 0.82/1.18  end
% 0.82/1.18  permutation0:
% 0.82/1.18     0 ==> 0
% 0.82/1.18     1 ==> 1
% 0.82/1.18  end
% 0.82/1.18  
% 0.82/1.18  subsumption: (13) {G0,W11,D5,L1,V1,M1} I { addition( X, multiplication( 
% 0.82/1.18    domain( X ), X ) ) ==> multiplication( domain( X ), X ) }.
% 0.82/1.18  parent0: (357) {G0,W11,D5,L1,V1,M1}  { addition( X, multiplication( domain
% 0.82/1.18    ( X ), X ) ) = multiplication( domain( X ), X ) }.
% 0.82/1.18  substitution0:
% 0.82/1.18     X := X
% 0.82/1.18  end
% 0.82/1.18  permutation0:
% 0.82/1.18     0 ==> 0
% 0.82/1.18  end
% 0.82/1.18  
% 0.82/1.18  eqswap: (429) {G0,W10,D5,L1,V2,M1}  { domain( multiplication( X, domain( Y
% 0.82/1.18     ) ) ) = domain( multiplication( X, Y ) ) }.
% 0.82/1.18  parent0[0]: (358) {G0,W10,D5,L1,V2,M1}  { domain( multiplication( X, Y ) ) 
% 0.82/1.18    = domain( multiplication( X, domain( Y ) ) ) }.
% 0.82/1.18  substitution0:
% 0.82/1.18     X := X
% 0.82/1.18     Y := Y
% 0.82/1.18  end
% 0.82/1.18  
% 0.82/1.18  subsumption: (14) {G0,W10,D5,L1,V2,M1} I { domain( multiplication( X, 
% 0.82/1.19    domain( Y ) ) ) ==> domain( multiplication( X, Y ) ) }.
% 0.82/1.19  parent0: (429) {G0,W10,D5,L1,V2,M1}  { domain( multiplication( X, domain( Y
% 0.82/1.19     ) ) ) = domain( multiplication( X, Y ) ) }.
% 0.82/1.19  substitution0:
% 0.82/1.19     X := X
% 0.82/1.19     Y := Y
% 0.82/1.19  end
% 0.82/1.19  permutation0:
% 0.82/1.19     0 ==> 0
% 0.82/1.19  end
% 0.82/1.19  
% 0.82/1.19  subsumption: (16) {G0,W4,D3,L1,V0,M1} I { domain( zero ) ==> zero }.
% 0.82/1.19  parent0: (360) {G0,W4,D3,L1,V0,M1}  { domain( zero ) = zero }.
% 0.82/1.19  substitution0:
% 0.82/1.19  end
% 0.82/1.19  permutation0:
% 0.82/1.19     0 ==> 0
% 0.82/1.19  end
% 0.82/1.19  
% 0.82/1.19  subsumption: (18) {G0,W6,D4,L1,V0,M1} I { multiplication( skol1, domain( 
% 0.82/1.19    skol2 ) ) ==> zero }.
% 0.82/1.19  parent0: (362) {G0,W6,D4,L1,V0,M1}  { multiplication( skol1, domain( skol2
% 0.82/1.19     ) ) = zero }.
% 0.82/1.19  substitution0:
% 0.82/1.19  end
% 0.82/1.19  permutation0:
% 0.82/1.19     0 ==> 0
% 0.82/1.19  end
% 0.82/1.19  
% 0.82/1.19  subsumption: (19) {G0,W5,D3,L1,V0,M1} I { ! multiplication( skol1, skol2 ) 
% 0.82/1.19    ==> zero }.
% 0.82/1.19  parent0: (363) {G0,W5,D3,L1,V0,M1}  { ! multiplication( skol1, skol2 ) = 
% 0.82/1.19    zero }.
% 0.82/1.19  substitution0:
% 0.82/1.19  end
% 0.82/1.19  permutation0:
% 0.82/1.19     0 ==> 0
% 0.82/1.19  end
% 0.82/1.19  
% 0.82/1.19  eqswap: (483) {G0,W8,D3,L2,V2,M2}  { Y ==> addition( X, Y ), ! leq( X, Y )
% 0.82/1.19     }.
% 0.82/1.19  parent0[1]: (11) {G0,W8,D3,L2,V2,M2} I { ! leq( X, Y ), addition( X, Y ) 
% 0.82/1.19    ==> Y }.
% 0.82/1.19  substitution0:
% 0.82/1.19     X := X
% 0.82/1.19     Y := Y
% 0.82/1.19  end
% 0.82/1.19  
% 0.82/1.19  paramod: (485) {G1,W6,D2,L2,V1,M2}  { zero ==> X, ! leq( X, zero ) }.
% 0.82/1.19  parent0[0]: (2) {G0,W5,D3,L1,V1,M1} I { addition( X, zero ) ==> X }.
% 0.82/1.19  parent1[0; 2]: (483) {G0,W8,D3,L2,V2,M2}  { Y ==> addition( X, Y ), ! leq( 
% 0.82/1.19    X, Y ) }.
% 0.82/1.19  substitution0:
% 0.82/1.19     X := X
% 0.82/1.19  end
% 0.82/1.19  substitution1:
% 0.82/1.19     X := X
% 0.82/1.19     Y := zero
% 0.82/1.19  end
% 0.82/1.19  
% 0.82/1.19  subsumption: (53) {G1,W6,D2,L2,V1,M2} P(11,2) { zero = X, ! leq( X, zero )
% 0.82/1.19     }.
% 0.82/1.19  parent0: (485) {G1,W6,D2,L2,V1,M2}  { zero ==> X, ! leq( X, zero ) }.
% 0.82/1.19  substitution0:
% 0.82/1.19     X := X
% 0.82/1.19  end
% 0.82/1.19  permutation0:
% 0.82/1.19     0 ==> 0
% 0.82/1.19     1 ==> 1
% 0.82/1.19  end
% 0.82/1.19  
% 0.82/1.19  eqswap: (487) {G0,W11,D5,L1,V1,M1}  { multiplication( domain( X ), X ) ==> 
% 0.82/1.19    addition( X, multiplication( domain( X ), X ) ) }.
% 0.82/1.19  parent0[0]: (13) {G0,W11,D5,L1,V1,M1} I { addition( X, multiplication( 
% 0.82/1.19    domain( X ), X ) ) ==> multiplication( domain( X ), X ) }.
% 0.82/1.19  substitution0:
% 0.82/1.19     X := X
% 0.82/1.19  end
% 0.82/1.19  
% 0.82/1.19  eqswap: (488) {G0,W8,D3,L2,V2,M2}  { ! Y ==> addition( X, Y ), leq( X, Y )
% 0.82/1.19     }.
% 0.82/1.19  parent0[0]: (12) {G0,W8,D3,L2,V2,M2} I { ! addition( X, Y ) ==> Y, leq( X, 
% 0.82/1.19    Y ) }.
% 0.82/1.19  substitution0:
% 0.82/1.19     X := X
% 0.82/1.19     Y := Y
% 0.82/1.19  end
% 0.82/1.19  
% 0.82/1.19  resolution: (489) {G1,W6,D4,L1,V1,M1}  { leq( X, multiplication( domain( X
% 0.82/1.19     ), X ) ) }.
% 0.82/1.19  parent0[0]: (488) {G0,W8,D3,L2,V2,M2}  { ! Y ==> addition( X, Y ), leq( X, 
% 0.82/1.19    Y ) }.
% 0.82/1.19  parent1[0]: (487) {G0,W11,D5,L1,V1,M1}  { multiplication( domain( X ), X ) 
% 0.82/1.19    ==> addition( X, multiplication( domain( X ), X ) ) }.
% 0.82/1.19  substitution0:
% 0.82/1.19     X := X
% 0.82/1.19     Y := multiplication( domain( X ), X )
% 0.82/1.19  end
% 0.82/1.19  substitution1:
% 0.82/1.19     X := X
% 0.82/1.19  end
% 0.82/1.19  
% 0.82/1.19  subsumption: (89) {G1,W6,D4,L1,V1,M1} R(13,12) { leq( X, multiplication( 
% 0.82/1.19    domain( X ), X ) ) }.
% 0.82/1.19  parent0: (489) {G1,W6,D4,L1,V1,M1}  { leq( X, multiplication( domain( X ), 
% 0.82/1.19    X ) ) }.
% 0.82/1.19  substitution0:
% 0.82/1.19     X := X
% 0.82/1.19  end
% 0.82/1.19  permutation0:
% 0.82/1.19     0 ==> 0
% 0.82/1.19  end
% 0.82/1.19  
% 0.82/1.19  eqswap: (490) {G1,W6,D2,L2,V1,M2}  { X = zero, ! leq( X, zero ) }.
% 0.82/1.19  parent0[0]: (53) {G1,W6,D2,L2,V1,M2} P(11,2) { zero = X, ! leq( X, zero )
% 0.82/1.19     }.
% 0.82/1.19  substitution0:
% 0.82/1.19     X := X
% 0.82/1.19  end
% 0.82/1.19  
% 0.82/1.19  eqswap: (491) {G0,W5,D3,L1,V0,M1}  { ! zero ==> multiplication( skol1, 
% 0.82/1.19    skol2 ) }.
% 0.82/1.19  parent0[0]: (19) {G0,W5,D3,L1,V0,M1} I { ! multiplication( skol1, skol2 ) 
% 0.82/1.19    ==> zero }.
% 0.82/1.19  substitution0:
% 0.82/1.19  end
% 0.82/1.19  
% 0.82/1.19  paramod: (493) {G1,W8,D3,L2,V0,M2}  { ! zero ==> zero, ! leq( 
% 0.82/1.19    multiplication( skol1, skol2 ), zero ) }.
% 0.82/1.19  parent0[0]: (490) {G1,W6,D2,L2,V1,M2}  { X = zero, ! leq( X, zero ) }.
% 0.82/1.19  parent1[0; 3]: (491) {G0,W5,D3,L1,V0,M1}  { ! zero ==> multiplication( 
% 0.82/1.19    skol1, skol2 ) }.
% 0.82/1.19  substitution0:
% 0.82/1.19     X := multiplication( skol1, skol2 )
% 0.82/1.19  end
% 0.82/1.19  substitution1:
% 0.82/1.19  end
% 0.82/1.19  
% 0.82/1.19  eqrefl: (547) {G0,W5,D3,L1,V0,M1}  { ! leq( multiplication( skol1, skol2 )
% 0.82/1.19    , zero ) }.
% 0.82/1.19  parent0[0]: (493) {G1,W8,D3,L2,V0,M2}  { ! zero ==> zero, ! leq( 
% 0.82/1.19    multiplication( skol1, skol2 ), zero ) }.
% 0.82/1.19  substitution0:
% 0.82/1.19  end
% 0.82/1.19  
% 0.82/1.19  subsumption: (114) {G2,W5,D3,L1,V0,M1} P(53,19);q { ! leq( multiplication( 
% 0.82/1.19    skol1, skol2 ), zero ) }.
% 0.82/1.19  parent0: (547) {G0,W5,D3,L1,V0,M1}  { ! leq( multiplication( skol1, skol2 )
% 0.82/1.19    , zero ) }.
% 0.82/1.19  substitution0:
% 0.82/1.19  end
% 0.82/1.19  permutation0:
% 0.82/1.19     0 ==> 0
% 0.82/1.19  end
% 0.82/1.19  
% 0.82/1.19  eqswap: (549) {G0,W10,D5,L1,V2,M1}  { domain( multiplication( X, Y ) ) ==> 
% 0.82/1.19    domain( multiplication( X, domain( Y ) ) ) }.
% 0.82/1.19  parent0[0]: (14) {G0,W10,D5,L1,V2,M1} I { domain( multiplication( X, domain
% 0.82/1.19    ( Y ) ) ) ==> domain( multiplication( X, Y ) ) }.
% 0.82/1.19  substitution0:
% 0.82/1.19     X := X
% 0.82/1.19     Y := Y
% 0.82/1.19  end
% 0.82/1.19  
% 0.82/1.19  paramod: (552) {G1,W7,D4,L1,V0,M1}  { domain( multiplication( skol1, skol2
% 0.82/1.19     ) ) ==> domain( zero ) }.
% 0.82/1.19  parent0[0]: (18) {G0,W6,D4,L1,V0,M1} I { multiplication( skol1, domain( 
% 0.82/1.19    skol2 ) ) ==> zero }.
% 0.82/1.19  parent1[0; 6]: (549) {G0,W10,D5,L1,V2,M1}  { domain( multiplication( X, Y )
% 0.82/1.19     ) ==> domain( multiplication( X, domain( Y ) ) ) }.
% 0.82/1.19  substitution0:
% 0.82/1.19  end
% 0.82/1.19  substitution1:
% 0.82/1.19     X := skol1
% 0.82/1.19     Y := skol2
% 0.82/1.19  end
% 0.82/1.19  
% 0.82/1.19  paramod: (553) {G1,W6,D4,L1,V0,M1}  { domain( multiplication( skol1, skol2
% 0.82/1.19     ) ) ==> zero }.
% 0.82/1.19  parent0[0]: (16) {G0,W4,D3,L1,V0,M1} I { domain( zero ) ==> zero }.
% 0.82/1.19  parent1[0; 5]: (552) {G1,W7,D4,L1,V0,M1}  { domain( multiplication( skol1, 
% 0.82/1.19    skol2 ) ) ==> domain( zero ) }.
% 0.82/1.19  substitution0:
% 0.82/1.19  end
% 0.82/1.19  substitution1:
% 0.82/1.19  end
% 0.82/1.19  
% 0.82/1.19  subsumption: (130) {G1,W6,D4,L1,V0,M1} P(18,14);d(16) { domain( 
% 0.82/1.19    multiplication( skol1, skol2 ) ) ==> zero }.
% 0.82/1.19  parent0: (553) {G1,W6,D4,L1,V0,M1}  { domain( multiplication( skol1, skol2
% 0.82/1.19     ) ) ==> zero }.
% 0.82/1.19  substitution0:
% 0.82/1.19  end
% 0.82/1.19  permutation0:
% 0.82/1.19     0 ==> 0
% 0.82/1.19  end
% 0.82/1.19  
% 0.82/1.19  paramod: (559) {G2,W9,D4,L1,V0,M1}  { leq( multiplication( skol1, skol2 ), 
% 0.82/1.19    multiplication( zero, multiplication( skol1, skol2 ) ) ) }.
% 0.82/1.19  parent0[0]: (130) {G1,W6,D4,L1,V0,M1} P(18,14);d(16) { domain( 
% 0.82/1.19    multiplication( skol1, skol2 ) ) ==> zero }.
% 0.82/1.19  parent1[0; 5]: (89) {G1,W6,D4,L1,V1,M1} R(13,12) { leq( X, multiplication( 
% 0.82/1.19    domain( X ), X ) ) }.
% 0.82/1.19  substitution0:
% 0.82/1.19  end
% 0.82/1.19  substitution1:
% 0.82/1.19     X := multiplication( skol1, skol2 )
% 0.82/1.19  end
% 0.82/1.19  
% 0.82/1.19  paramod: (560) {G1,W9,D4,L1,V0,M1}  { leq( multiplication( skol1, skol2 ), 
% 0.82/1.19    multiplication( multiplication( zero, skol1 ), skol2 ) ) }.
% 0.82/1.19  parent0[0]: (4) {G0,W11,D4,L1,V3,M1} I { multiplication( X, multiplication
% 0.82/1.19    ( Y, Z ) ) ==> multiplication( multiplication( X, Y ), Z ) }.
% 0.82/1.19  parent1[0; 4]: (559) {G2,W9,D4,L1,V0,M1}  { leq( multiplication( skol1, 
% 0.82/1.19    skol2 ), multiplication( zero, multiplication( skol1, skol2 ) ) ) }.
% 0.82/1.19  substitution0:
% 0.82/1.19     X := zero
% 0.82/1.19     Y := skol1
% 0.82/1.19     Z := skol2
% 0.82/1.19  end
% 0.82/1.19  substitution1:
% 0.82/1.19  end
% 0.82/1.19  
% 0.82/1.19  paramod: (561) {G1,W7,D3,L1,V0,M1}  { leq( multiplication( skol1, skol2 ), 
% 0.82/1.19    multiplication( zero, skol2 ) ) }.
% 0.82/1.19  parent0[0]: (10) {G0,W5,D3,L1,V1,M1} I { multiplication( zero, X ) ==> zero
% 0.82/1.19     }.
% 0.82/1.19  parent1[0; 5]: (560) {G1,W9,D4,L1,V0,M1}  { leq( multiplication( skol1, 
% 0.82/1.19    skol2 ), multiplication( multiplication( zero, skol1 ), skol2 ) ) }.
% 0.82/1.19  substitution0:
% 0.82/1.19     X := skol1
% 0.82/1.19  end
% 0.82/1.19  substitution1:
% 0.82/1.19  end
% 0.82/1.19  
% 0.82/1.19  paramod: (563) {G1,W5,D3,L1,V0,M1}  { leq( multiplication( skol1, skol2 ), 
% 0.82/1.19    zero ) }.
% 0.82/1.19  parent0[0]: (10) {G0,W5,D3,L1,V1,M1} I { multiplication( zero, X ) ==> zero
% 0.82/1.19     }.
% 0.82/1.19  parent1[0; 4]: (561) {G1,W7,D3,L1,V0,M1}  { leq( multiplication( skol1, 
% 0.82/1.19    skol2 ), multiplication( zero, skol2 ) ) }.
% 0.82/1.19  substitution0:
% 0.82/1.19     X := skol2
% 0.82/1.19  end
% 0.82/1.19  substitution1:
% 0.82/1.19  end
% 0.82/1.19  
% 0.82/1.19  resolution: (564) {G2,W0,D0,L0,V0,M0}  {  }.
% 0.82/1.19  parent0[0]: (114) {G2,W5,D3,L1,V0,M1} P(53,19);q { ! leq( multiplication( 
% 0.82/1.19    skol1, skol2 ), zero ) }.
% 0.82/1.19  parent1[0]: (563) {G1,W5,D3,L1,V0,M1}  { leq( multiplication( skol1, skol2
% 0.82/1.19     ), zero ) }.
% 0.82/1.19  substitution0:
% 0.82/1.19  end
% 0.82/1.19  substitution1:
% 0.82/1.19  end
% 0.82/1.19  
% 0.82/1.19  subsumption: (342) {G3,W0,D0,L0,V0,M0} P(130,89);d(4);d(10);d(10);r(114) { 
% 0.82/1.19     }.
% 0.82/1.19  parent0: (564) {G2,W0,D0,L0,V0,M0}  {  }.
% 0.82/1.19  substitution0:
% 0.82/1.19  end
% 0.82/1.19  permutation0:
% 0.82/1.19  end
% 0.82/1.19  
% 0.82/1.19  Proof check complete!
% 0.82/1.19  
% 0.82/1.19  Memory use:
% 0.82/1.19  
% 0.82/1.19  space for terms:        3955
% 0.82/1.19  space for clauses:      23760
% 0.82/1.19  
% 0.82/1.19  
% 0.82/1.19  clauses generated:      2124
% 0.82/1.19  clauses kept:           343
% 0.82/1.19  clauses selected:       90
% 0.82/1.19  clauses deleted:        0
% 0.82/1.19  clauses inuse deleted:  0
% 0.82/1.19  
% 0.82/1.19  subsentry:          3005
% 0.82/1.19  literals s-matched: 2391
% 0.82/1.19  literals matched:   2390
% 0.82/1.19  full subsumption:   73
% 0.82/1.19  
% 0.82/1.19  checksum:           505196751
% 0.82/1.19  
% 0.82/1.19  
% 0.82/1.19  Bliksem ended
%------------------------------------------------------------------------------