TSTP Solution File: KLE040+1 by Otter---3.3

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Otter---3.3
% Problem  : KLE040+1 : TPTP v8.1.0. Released v4.0.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : otter-tptp-script %s

% Computer : n020.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Wed Jul 27 13:00:35 EDT 2022

% Result   : Theorem 2.96s 3.15s
% Output   : Refutation 2.96s
% Verified : 
% SZS Type : Refutation
%            Derivation depth      :   13
%            Number of leaves      :   10
% Syntax   : Number of clauses     :   32 (  22 unt;   0 nHn;  10 RR)
%            Number of literals    :   44 (  17 equ;  13 neg)
%            Maximal clause size   :    3 (   1 avg)
%            Maximal term depth    :    5 (   2 avg)
%            Number of predicates  :    3 (   1 usr;   1 prp; 0-2 aty)
%            Number of functors    :    5 (   5 usr;   2 con; 0-2 aty)
%            Number of variables   :   59 (   7 sgn)

% Comments : 
%------------------------------------------------------------------------------
cnf(1,axiom,
    ( ~ le_q(A,B)
    | addition(A,B) = B ),
    file('KLE040+1.p',unknown),
    [] ).

cnf(2,axiom,
    ( le_q(A,B)
    | addition(A,B) != B ),
    file('KLE040+1.p',unknown),
    [] ).

cnf(4,axiom,
    ( ~ le_q(addition(multiplication(A,B),C),A)
    | le_q(multiplication(C,star(B)),A) ),
    file('KLE040+1.p',unknown),
    [] ).

cnf(5,axiom,
    multiplication(star(dollar_c1),star(dollar_c1)) != star(dollar_c1),
    file('KLE040+1.p',unknown),
    [] ).

cnf(7,axiom,
    addition(A,B) = addition(B,A),
    file('KLE040+1.p',unknown),
    [] ).

cnf(8,axiom,
    addition(A,addition(B,C)) = addition(addition(A,B),C),
    file('KLE040+1.p',unknown),
    [] ).

cnf(10,plain,
    addition(addition(A,B),C) = addition(A,addition(B,C)),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[8])]),
    [iquote('copy,8,flip.1')] ).

cnf(13,axiom,
    addition(A,A) = A,
    file('KLE040+1.p',unknown),
    [] ).

cnf(19,axiom,
    multiplication(A,one) = A,
    file('KLE040+1.p',unknown),
    [] ).

cnf(22,axiom,
    multiplication(A,addition(B,C)) = addition(multiplication(A,B),multiplication(A,C)),
    file('KLE040+1.p',unknown),
    [] ).

cnf(31,axiom,
    le_q(addition(one,multiplication(star(A),A)),star(A)),
    file('KLE040+1.p',unknown),
    [] ).

cnf(38,plain,
    le_q(A,A),
    inference(hyper,[status(thm)],[13,2]),
    [iquote('hyper,13,2')] ).

cnf(43,plain,
    ( addition(A,B) = A
    | ~ le_q(B,A) ),
    inference(flip,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[7,1])]),
    [iquote('para_into,7.1.1,1.2.1,flip.1')] ).

cnf(44,plain,
    ( ~ le_q(addition(A,multiplication(B,C)),B)
    | le_q(multiplication(A,star(C)),B) ),
    inference(para_from,[status(thm),theory(equality)],[7,4]),
    [iquote('para_from,7.1.1,4.1.1')] ).

cnf(57,plain,
    addition(A,addition(A,B)) = addition(A,B),
    inference(flip,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[10,13])]),
    [iquote('para_into,9.1.1.1,13.1.1,flip.1')] ).

cnf(102,plain,
    ( addition(multiplication(A,B),multiplication(A,C)) = multiplication(A,C)
    | ~ le_q(B,C) ),
    inference(flip,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[22,1])]),
    [iquote('para_into,22.1.1.2,1.2.1,flip.1')] ).

cnf(110,plain,
    ( A = B
    | ~ le_q(A,B)
    | ~ le_q(B,A) ),
    inference(para_into,[status(thm),theory(equality)],[43,1]),
    [iquote('para_into,43.1.1,1.2.1')] ).

cnf(189,plain,
    addition(one,addition(multiplication(star(A),A),star(A))) = star(A),
    inference(demod,[status(thm),theory(equality)],[inference(hyper,[status(thm)],[31,1]),10]),
    [iquote('hyper,31,1,demod,10')] ).

cnf(292,plain,
    ( ~ le_q(A,B)
    | le_q(multiplication(A,star(C)),B)
    | ~ le_q(multiplication(B,C),A) ),
    inference(para_into,[status(thm),theory(equality)],[44,43]),
    [iquote('para_into,44.1.1,43.1.1')] ).

cnf(485,plain,
    le_q(A,addition(A,B)),
    inference(hyper,[status(thm)],[57,2]),
    [iquote('hyper,57,2')] ).

cnf(511,plain,
    le_q(A,addition(B,A)),
    inference(para_into,[status(thm),theory(equality)],[485,7]),
    [iquote('para_into,485.1.2,7.1.1')] ).

cnf(513,plain,
    le_q(A,addition(B,addition(C,A))),
    inference(para_into,[status(thm),theory(equality)],[511,10]),
    [iquote('para_into,511.1.2,9.1.1')] ).

cnf(524,plain,
    ( le_q(A,B)
    | ~ le_q(addition(C,A),B) ),
    inference(para_into,[status(thm),theory(equality)],[513,43]),
    [iquote('para_into,513.1.2,43.1.1')] ).

cnf(620,plain,
    le_q(multiplication(star(A),A),star(A)),
    inference(hyper,[status(thm)],[524,31]),
    [iquote('hyper,524,31')] ).

cnf(631,plain,
    addition(multiplication(star(A),A),star(A)) = star(A),
    inference(hyper,[status(thm)],[620,1]),
    [iquote('hyper,620,1')] ).

cnf(634,plain,
    addition(one,star(A)) = star(A),
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[189]),631]),
    [iquote('back_demod,189,demod,631')] ).

cnf(650,plain,
    le_q(one,star(A)),
    inference(hyper,[status(thm)],[634,2]),
    [iquote('hyper,634,2')] ).

cnf(2303,plain,
    ( le_q(multiplication(A,B),multiplication(A,C))
    | ~ le_q(B,C) ),
    inference(para_from,[status(thm),theory(equality)],[102,485]),
    [iquote('para_from,102.1.1,485.1.2')] ).

cnf(3505,plain,
    le_q(A,multiplication(A,star(B))),
    inference(demod,[status(thm),theory(equality)],[inference(hyper,[status(thm)],[2303,650]),19]),
    [iquote('hyper,2303,650,demod,19')] ).

cnf(4017,plain,
    le_q(multiplication(star(A),star(A)),star(A)),
    inference(hyper,[status(thm)],[292,38,620]),
    [iquote('hyper,292,38,620')] ).

cnf(4022,plain,
    multiplication(star(A),star(A)) = star(A),
    inference(flip,[status(thm),theory(equality)],[inference(hyper,[status(thm)],[4017,110,3505])]),
    [iquote('hyper,4017,110,3505,flip.1')] ).

cnf(4024,plain,
    $false,
    inference(binary,[status(thm)],[4022,5]),
    [iquote('binary,4022.1,5.1')] ).

%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.09/0.11  % Problem  : KLE040+1 : TPTP v8.1.0. Released v4.0.0.
% 0.09/0.12  % Command  : otter-tptp-script %s
% 0.13/0.33  % Computer : n020.cluster.edu
% 0.13/0.33  % Model    : x86_64 x86_64
% 0.13/0.33  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.13/0.33  % Memory   : 8042.1875MB
% 0.13/0.33  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.13/0.33  % CPULimit : 300
% 0.13/0.33  % WCLimit  : 300
% 0.13/0.33  % DateTime : Wed Jul 27 06:34:53 EDT 2022
% 0.13/0.33  % CPUTime  : 
% 1.96/2.12  ----- Otter 3.3f, August 2004 -----
% 1.96/2.12  The process was started by sandbox on n020.cluster.edu,
% 1.96/2.12  Wed Jul 27 06:34:53 2022
% 1.96/2.12  The command was "./otter".  The process ID is 27247.
% 1.96/2.12  
% 1.96/2.12  set(prolog_style_variables).
% 1.96/2.12  set(auto).
% 1.96/2.12     dependent: set(auto1).
% 1.96/2.12     dependent: set(process_input).
% 1.96/2.12     dependent: clear(print_kept).
% 1.96/2.12     dependent: clear(print_new_demod).
% 1.96/2.12     dependent: clear(print_back_demod).
% 1.96/2.12     dependent: clear(print_back_sub).
% 1.96/2.12     dependent: set(control_memory).
% 1.96/2.12     dependent: assign(max_mem, 12000).
% 1.96/2.12     dependent: assign(pick_given_ratio, 4).
% 1.96/2.12     dependent: assign(stats_level, 1).
% 1.96/2.12     dependent: assign(max_seconds, 10800).
% 1.96/2.12  clear(print_given).
% 1.96/2.12  
% 1.96/2.12  formula_list(usable).
% 1.96/2.12  all A (A=A).
% 1.96/2.12  all A B (addition(A,B)=addition(B,A)).
% 1.96/2.12  all C B A (addition(A,addition(B,C))=addition(addition(A,B),C)).
% 1.96/2.12  all A (addition(A,zero)=A).
% 1.96/2.12  all A (addition(A,A)=A).
% 1.96/2.12  all A B C (multiplication(A,multiplication(B,C))=multiplication(multiplication(A,B),C)).
% 1.96/2.12  all A (multiplication(A,one)=A).
% 1.96/2.12  all A (multiplication(one,A)=A).
% 1.96/2.12  all A B C (multiplication(A,addition(B,C))=addition(multiplication(A,B),multiplication(A,C))).
% 1.96/2.12  all A B C (multiplication(addition(A,B),C)=addition(multiplication(A,C),multiplication(B,C))).
% 1.96/2.12  all A (multiplication(A,zero)=zero).
% 1.96/2.12  all A (multiplication(zero,A)=zero).
% 1.96/2.12  all A B (le_q(A,B)<->addition(A,B)=B).
% 1.96/2.12  all A le_q(addition(one,multiplication(A,star(A))),star(A)).
% 1.96/2.12  all A le_q(addition(one,multiplication(star(A),A)),star(A)).
% 1.96/2.12  all A B C (le_q(addition(multiplication(A,B),C),B)->le_q(multiplication(star(A),C),B)).
% 1.96/2.12  all A B C (le_q(addition(multiplication(A,B),C),A)->le_q(multiplication(C,star(B)),A)).
% 1.96/2.12  -(all X0 (multiplication(star(X0),star(X0))=star(X0))).
% 1.96/2.12  end_of_list.
% 1.96/2.12  
% 1.96/2.12  -------> usable clausifies to:
% 1.96/2.12  
% 1.96/2.12  list(usable).
% 1.96/2.12  0 [] A=A.
% 1.96/2.12  0 [] addition(A,B)=addition(B,A).
% 1.96/2.12  0 [] addition(A,addition(B,C))=addition(addition(A,B),C).
% 1.96/2.12  0 [] addition(A,zero)=A.
% 1.96/2.12  0 [] addition(A,A)=A.
% 1.96/2.12  0 [] multiplication(A,multiplication(B,C))=multiplication(multiplication(A,B),C).
% 1.96/2.12  0 [] multiplication(A,one)=A.
% 1.96/2.12  0 [] multiplication(one,A)=A.
% 1.96/2.12  0 [] multiplication(A,addition(B,C))=addition(multiplication(A,B),multiplication(A,C)).
% 1.96/2.12  0 [] multiplication(addition(A,B),C)=addition(multiplication(A,C),multiplication(B,C)).
% 1.96/2.12  0 [] multiplication(A,zero)=zero.
% 1.96/2.12  0 [] multiplication(zero,A)=zero.
% 1.96/2.12  0 [] -le_q(A,B)|addition(A,B)=B.
% 1.96/2.12  0 [] le_q(A,B)|addition(A,B)!=B.
% 1.96/2.12  0 [] le_q(addition(one,multiplication(A,star(A))),star(A)).
% 1.96/2.12  0 [] le_q(addition(one,multiplication(star(A),A)),star(A)).
% 1.96/2.12  0 [] -le_q(addition(multiplication(A,B),C),B)|le_q(multiplication(star(A),C),B).
% 1.96/2.12  0 [] -le_q(addition(multiplication(A,B),C),A)|le_q(multiplication(C,star(B)),A).
% 1.96/2.12  0 [] multiplication(star($c1),star($c1))!=star($c1).
% 1.96/2.12  end_of_list.
% 1.96/2.12  
% 1.96/2.12  SCAN INPUT: prop=0, horn=1, equality=1, symmetry=0, max_lits=2.
% 1.96/2.12  
% 1.96/2.12  This is a Horn set with equality.  The strategy will be
% 1.96/2.12  Knuth-Bendix and hyper_res, with positive clauses in
% 1.96/2.12  sos and nonpositive clauses in usable.
% 1.96/2.12  
% 1.96/2.12     dependent: set(knuth_bendix).
% 1.96/2.12     dependent: set(anl_eq).
% 1.96/2.12     dependent: set(para_from).
% 1.96/2.12     dependent: set(para_into).
% 1.96/2.12     dependent: clear(para_from_right).
% 1.96/2.12     dependent: clear(para_into_right).
% 1.96/2.12     dependent: set(para_from_vars).
% 1.96/2.12     dependent: set(eq_units_both_ways).
% 1.96/2.12     dependent: set(dynamic_demod_all).
% 1.96/2.12     dependent: set(dynamic_demod).
% 1.96/2.12     dependent: set(order_eq).
% 1.96/2.12     dependent: set(back_demod).
% 1.96/2.12     dependent: set(lrpo).
% 1.96/2.12     dependent: set(hyper_res).
% 1.96/2.12     dependent: clear(order_hyper).
% 1.96/2.12  
% 1.96/2.12  ------------> process usable:
% 1.96/2.12  ** KEPT (pick-wt=8): 1 [] -le_q(A,B)|addition(A,B)=B.
% 1.96/2.12  ** KEPT (pick-wt=8): 2 [] le_q(A,B)|addition(A,B)!=B.
% 1.96/2.12  ** KEPT (pick-wt=13): 3 [] -le_q(addition(multiplication(A,B),C),B)|le_q(multiplication(star(A),C),B).
% 1.96/2.12  ** KEPT (pick-wt=13): 4 [] -le_q(addition(multiplication(A,B),C),A)|le_q(multiplication(C,star(B)),A).
% 1.96/2.12  ** KEPT (pick-wt=8): 5 [] multiplication(star($c1),star($c1))!=star($c1).
% 1.96/2.12  
% 1.96/2.12  ------------> process sos:
% 1.96/2.12  ** KEPT (pick-wt=3): 6 [] A=A.
% 1.96/2.12  ** KEPT (pick-wt=7): 7 [] addition(A,B)=addition(B,A).
% 1.96/2.12  ** KEPT (pick-wt=11): 9 [copy,8,flip.1] addition(addition(A,B),C)=addition(A,addition(B,C)).
% 1.96/2.12  ---> New Demodulator: 10 [new_demod,9] addition(addition(A,B),C)=addition(A,addition(B,C)).
% 1.96/2.12  ** KEPT (pick-wt=5): 11 [] addition(A,zero)=A.
% 2.96/3.15  ---> New Demodulator: 12 [new_demod,11] addition(A,zero)=A.
% 2.96/3.15  ** KEPT (pick-wt=5): 13 [] addition(A,A)=A.
% 2.96/3.15  ---> New Demodulator: 14 [new_demod,13] addition(A,A)=A.
% 2.96/3.15  ** KEPT (pick-wt=11): 16 [copy,15,flip.1] multiplication(multiplication(A,B),C)=multiplication(A,multiplication(B,C)).
% 2.96/3.15  ---> New Demodulator: 17 [new_demod,16] multiplication(multiplication(A,B),C)=multiplication(A,multiplication(B,C)).
% 2.96/3.15  ** KEPT (pick-wt=5): 18 [] multiplication(A,one)=A.
% 2.96/3.15  ---> New Demodulator: 19 [new_demod,18] multiplication(A,one)=A.
% 2.96/3.15  ** KEPT (pick-wt=5): 20 [] multiplication(one,A)=A.
% 2.96/3.15  ---> New Demodulator: 21 [new_demod,20] multiplication(one,A)=A.
% 2.96/3.15  ** KEPT (pick-wt=13): 22 [] multiplication(A,addition(B,C))=addition(multiplication(A,B),multiplication(A,C)).
% 2.96/3.15  ---> New Demodulator: 23 [new_demod,22] multiplication(A,addition(B,C))=addition(multiplication(A,B),multiplication(A,C)).
% 2.96/3.15  ** KEPT (pick-wt=13): 24 [] multiplication(addition(A,B),C)=addition(multiplication(A,C),multiplication(B,C)).
% 2.96/3.15  ---> New Demodulator: 25 [new_demod,24] multiplication(addition(A,B),C)=addition(multiplication(A,C),multiplication(B,C)).
% 2.96/3.15  ** KEPT (pick-wt=5): 26 [] multiplication(A,zero)=zero.
% 2.96/3.15  ---> New Demodulator: 27 [new_demod,26] multiplication(A,zero)=zero.
% 2.96/3.15  ** KEPT (pick-wt=5): 28 [] multiplication(zero,A)=zero.
% 2.96/3.15  ---> New Demodulator: 29 [new_demod,28] multiplication(zero,A)=zero.
% 2.96/3.15  ** KEPT (pick-wt=9): 30 [] le_q(addition(one,multiplication(A,star(A))),star(A)).
% 2.96/3.15  ** KEPT (pick-wt=9): 31 [] le_q(addition(one,multiplication(star(A),A)),star(A)).
% 2.96/3.15    Following clause subsumed by 6 during input processing: 0 [copy,6,flip.1] A=A.
% 2.96/3.15    Following clause subsumed by 7 during input processing: 0 [copy,7,flip.1] addition(A,B)=addition(B,A).
% 2.96/3.15  >>>> Starting back demodulation with 10.
% 2.96/3.15  >>>> Starting back demodulation with 12.
% 2.96/3.15  >>>> Starting back demodulation with 14.
% 2.96/3.15  >>>> Starting back demodulation with 17.
% 2.96/3.15  >>>> Starting back demodulation with 19.
% 2.96/3.15  >>>> Starting back demodulation with 21.
% 2.96/3.15  >>>> Starting back demodulation with 23.
% 2.96/3.15  >>>> Starting back demodulation with 25.
% 2.96/3.15  >>>> Starting back demodulation with 27.
% 2.96/3.15  >>>> Starting back demodulation with 29.
% 2.96/3.15  
% 2.96/3.15  ======= end of input processing =======
% 2.96/3.15  
% 2.96/3.15  =========== start of search ===========
% 2.96/3.15  
% 2.96/3.15  
% 2.96/3.15  Resetting weight limit to 11.
% 2.96/3.15  
% 2.96/3.15  
% 2.96/3.15  Resetting weight limit to 11.
% 2.96/3.15  
% 2.96/3.15  sos_size=2270
% 2.96/3.15  
% 2.96/3.15  
% 2.96/3.15  Resetting weight limit to 9.
% 2.96/3.15  
% 2.96/3.15  
% 2.96/3.15  Resetting weight limit to 9.
% 2.96/3.15  
% 2.96/3.15  sos_size=2523
% 2.96/3.15  
% 2.96/3.15  -------- PROOF -------- 
% 2.96/3.15  
% 2.96/3.15  ----> UNIT CONFLICT at   1.03 sec ----> 4024 [binary,4022.1,5.1] $F.
% 2.96/3.15  
% 2.96/3.15  Length of proof is 21.  Level of proof is 12.
% 2.96/3.15  
% 2.96/3.15  ---------------- PROOF ----------------
% 2.96/3.15  % SZS status Theorem
% 2.96/3.15  % SZS output start Refutation
% See solution above
% 2.96/3.16  ------------ end of proof -------------
% 2.96/3.16  
% 2.96/3.16  
% 2.96/3.16  Search stopped by max_proofs option.
% 2.96/3.16  
% 2.96/3.16  
% 2.96/3.16  Search stopped by max_proofs option.
% 2.96/3.16  
% 2.96/3.16  ============ end of search ============
% 2.96/3.16  
% 2.96/3.16  -------------- statistics -------------
% 2.96/3.16  clauses given                457
% 2.96/3.16  clauses generated          53966
% 2.96/3.16  clauses kept                3899
% 2.96/3.16  clauses forward subsumed   19189
% 2.96/3.16  clauses back subsumed        847
% 2.96/3.16  Kbytes malloced             5859
% 2.96/3.16  
% 2.96/3.16  ----------- times (seconds) -----------
% 2.96/3.16  user CPU time          1.03          (0 hr, 0 min, 1 sec)
% 2.96/3.16  system CPU time        0.00          (0 hr, 0 min, 0 sec)
% 2.96/3.16  wall-clock time        3             (0 hr, 0 min, 3 sec)
% 2.96/3.16  
% 2.96/3.16  That finishes the proof of the theorem.
% 2.96/3.16  
% 2.96/3.16  Process 27247 finished Wed Jul 27 06:34:56 2022
% 2.96/3.16  Otter interrupted
% 2.96/3.16  PROOF FOUND
%------------------------------------------------------------------------------