TSTP Solution File: KLE035+2 by Otter---3.3

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Otter---3.3
% Problem  : KLE035+2 : TPTP v8.1.0. Released v4.0.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : otter-tptp-script %s

% Computer : n007.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Wed Jul 27 13:00:34 EDT 2022

% Result   : Theorem 1.65s 1.81s
% Output   : Refutation 1.65s
% Verified : 
% SZS Type : Refutation
%            Derivation depth      :    5
%            Number of leaves      :    9
% Syntax   : Number of clauses     :   17 (  16 unt;   0 nHn;  10 RR)
%            Number of literals    :   18 (   9 equ;   4 neg)
%            Maximal clause size   :    2 (   1 avg)
%            Maximal term depth    :    5 (   2 avg)
%            Number of predicates  :    3 (   1 usr;   1 prp; 0-2 aty)
%            Number of functors    :    8 (   8 usr;   5 con; 0-2 aty)
%            Number of variables   :   18 (   0 sgn)

% Comments : 
%------------------------------------------------------------------------------
cnf(1,axiom,
    ( ~ le_q(A,B)
    | addition(A,B) = B ),
    file('KLE035+2.p',unknown),
    [] ).

cnf(13,axiom,
    ~ le_q(multiplication(multiplication(dollar_c2,addition(dollar_c4,dollar_c3)),c(dollar_c1)),zero),
    file('KLE035+2.p',unknown),
    [] ).

cnf(18,axiom,
    addition(A,B) = addition(B,A),
    file('KLE035+2.p',unknown),
    [] ).

cnf(23,axiom,
    addition(A,zero) = A,
    file('KLE035+2.p',unknown),
    [] ).

cnf(26,axiom,
    multiplication(A,multiplication(B,C)) = multiplication(multiplication(A,B),C),
    file('KLE035+2.p',unknown),
    [] ).

cnf(28,plain,
    multiplication(multiplication(A,B),C) = multiplication(A,multiplication(B,C)),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[26])]),
    [iquote('copy,26,flip.1')] ).

cnf(34,axiom,
    multiplication(A,addition(B,C)) = addition(multiplication(A,B),multiplication(A,C)),
    file('KLE035+2.p',unknown),
    [] ).

cnf(36,axiom,
    multiplication(addition(A,B),C) = addition(multiplication(A,C),multiplication(B,C)),
    file('KLE035+2.p',unknown),
    [] ).

cnf(44,axiom,
    le_q(multiplication(multiplication(dollar_c2,dollar_c4),c(dollar_c1)),zero),
    file('KLE035+2.p',unknown),
    [] ).

cnf(45,plain,
    le_q(multiplication(dollar_c2,multiplication(dollar_c4,c(dollar_c1))),zero),
    inference(demod,[status(thm),theory(equality)],[inference(copy,[status(thm)],[44]),28]),
    [iquote('copy,44,demod,28')] ).

cnf(46,axiom,
    le_q(multiplication(multiplication(dollar_c2,dollar_c3),c(dollar_c1)),zero),
    file('KLE035+2.p',unknown),
    [] ).

cnf(47,plain,
    le_q(multiplication(dollar_c2,multiplication(dollar_c3,c(dollar_c1))),zero),
    inference(demod,[status(thm),theory(equality)],[inference(copy,[status(thm)],[46]),28]),
    [iquote('copy,46,demod,28')] ).

cnf(51,plain,
    ~ le_q(addition(multiplication(dollar_c2,multiplication(dollar_c4,c(dollar_c1))),multiplication(dollar_c2,multiplication(dollar_c3,c(dollar_c1)))),zero),
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[13]),34,36,28,28]),
    [iquote('back_demod,13,demod,34,36,28,28')] ).

cnf(164,plain,
    addition(zero,A) = A,
    inference(para_into,[status(thm),theory(equality)],[23,18]),
    [iquote('para_into,22.1.1,18.1.1')] ).

cnf(431,plain,
    multiplication(dollar_c2,multiplication(dollar_c4,c(dollar_c1))) = zero,
    inference(demod,[status(thm),theory(equality)],[inference(hyper,[status(thm)],[45,1]),23]),
    [iquote('hyper,45,1,demod,23')] ).

cnf(432,plain,
    ~ le_q(multiplication(dollar_c2,multiplication(dollar_c3,c(dollar_c1))),zero),
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[51]),431,164]),
    [iquote('back_demod,51,demod,431,164')] ).

cnf(433,plain,
    $false,
    inference(binary,[status(thm)],[432,47]),
    [iquote('binary,432.1,47.1')] ).

%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.11/0.11  % Problem  : KLE035+2 : TPTP v8.1.0. Released v4.0.0.
% 0.11/0.12  % Command  : otter-tptp-script %s
% 0.12/0.33  % Computer : n007.cluster.edu
% 0.12/0.33  % Model    : x86_64 x86_64
% 0.12/0.33  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.12/0.33  % Memory   : 8042.1875MB
% 0.12/0.33  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.12/0.33  % CPULimit : 300
% 0.12/0.33  % WCLimit  : 300
% 0.12/0.33  % DateTime : Wed Jul 27 06:13:31 EDT 2022
% 0.12/0.33  % CPUTime  : 
% 1.60/1.80  ----- Otter 3.3f, August 2004 -----
% 1.60/1.80  The process was started by sandbox on n007.cluster.edu,
% 1.60/1.80  Wed Jul 27 06:13:31 2022
% 1.60/1.80  The command was "./otter".  The process ID is 4382.
% 1.60/1.80  
% 1.60/1.80  set(prolog_style_variables).
% 1.60/1.80  set(auto).
% 1.60/1.80     dependent: set(auto1).
% 1.60/1.80     dependent: set(process_input).
% 1.60/1.80     dependent: clear(print_kept).
% 1.60/1.80     dependent: clear(print_new_demod).
% 1.60/1.80     dependent: clear(print_back_demod).
% 1.60/1.80     dependent: clear(print_back_sub).
% 1.60/1.80     dependent: set(control_memory).
% 1.60/1.80     dependent: assign(max_mem, 12000).
% 1.60/1.80     dependent: assign(pick_given_ratio, 4).
% 1.60/1.80     dependent: assign(stats_level, 1).
% 1.60/1.80     dependent: assign(max_seconds, 10800).
% 1.60/1.80  clear(print_given).
% 1.60/1.80  
% 1.60/1.80  formula_list(usable).
% 1.60/1.80  all A (A=A).
% 1.60/1.80  all A B (addition(A,B)=addition(B,A)).
% 1.60/1.80  all C B A (addition(A,addition(B,C))=addition(addition(A,B),C)).
% 1.60/1.80  all A (addition(A,zero)=A).
% 1.60/1.80  all A (addition(A,A)=A).
% 1.60/1.80  all A B C (multiplication(A,multiplication(B,C))=multiplication(multiplication(A,B),C)).
% 1.60/1.80  all A (multiplication(A,one)=A).
% 1.60/1.80  all A (multiplication(one,A)=A).
% 1.60/1.80  all A B C (multiplication(A,addition(B,C))=addition(multiplication(A,B),multiplication(A,C))).
% 1.60/1.80  all A B C (multiplication(addition(A,B),C)=addition(multiplication(A,C),multiplication(B,C))).
% 1.60/1.80  all A (multiplication(A,zero)=zero).
% 1.60/1.80  all A (multiplication(zero,A)=zero).
% 1.60/1.80  all A B (le_q(A,B)<->addition(A,B)=B).
% 1.60/1.80  all X0 (test(X0)<-> (exists X1 complement(X1,X0))).
% 1.60/1.80  all X0 X1 (complement(X1,X0)<->multiplication(X0,X1)=zero&multiplication(X1,X0)=zero&addition(X0,X1)=one).
% 1.60/1.80  all X0 X1 (test(X0)-> (c(X0)=X1<->complement(X0,X1))).
% 1.60/1.80  all X0 (-test(X0)->c(X0)=zero).
% 1.60/1.80  all X0 X1 (test(X0)&test(X1)->c(addition(X0,X1))=multiplication(c(X0),c(X1))).
% 1.60/1.80  all X0 X1 (test(X0)&test(X1)->c(multiplication(X0,X1))=addition(c(X0),c(X1))).
% 1.60/1.80  -(all X0 X1 X2 X3 (test(X3)&test(X2)&le_q(multiplication(multiplication(X2,X0),c(X3)),zero)&le_q(multiplication(multiplication(X2,X1),c(X3)),zero)->le_q(multiplication(multiplication(X2,addition(X0,X1)),c(X3)),zero))).
% 1.60/1.80  end_of_list.
% 1.60/1.80  
% 1.60/1.80  -------> usable clausifies to:
% 1.60/1.80  
% 1.60/1.80  list(usable).
% 1.60/1.80  0 [] A=A.
% 1.60/1.80  0 [] addition(A,B)=addition(B,A).
% 1.60/1.80  0 [] addition(A,addition(B,C))=addition(addition(A,B),C).
% 1.60/1.80  0 [] addition(A,zero)=A.
% 1.60/1.80  0 [] addition(A,A)=A.
% 1.60/1.80  0 [] multiplication(A,multiplication(B,C))=multiplication(multiplication(A,B),C).
% 1.60/1.80  0 [] multiplication(A,one)=A.
% 1.60/1.80  0 [] multiplication(one,A)=A.
% 1.60/1.80  0 [] multiplication(A,addition(B,C))=addition(multiplication(A,B),multiplication(A,C)).
% 1.60/1.80  0 [] multiplication(addition(A,B),C)=addition(multiplication(A,C),multiplication(B,C)).
% 1.60/1.80  0 [] multiplication(A,zero)=zero.
% 1.60/1.80  0 [] multiplication(zero,A)=zero.
% 1.60/1.80  0 [] -le_q(A,B)|addition(A,B)=B.
% 1.60/1.80  0 [] le_q(A,B)|addition(A,B)!=B.
% 1.60/1.80  0 [] -test(X0)|complement($f1(X0),X0).
% 1.60/1.80  0 [] test(X0)| -complement(X1,X0).
% 1.60/1.80  0 [] -complement(X1,X0)|multiplication(X0,X1)=zero.
% 1.60/1.80  0 [] -complement(X1,X0)|multiplication(X1,X0)=zero.
% 1.60/1.80  0 [] -complement(X1,X0)|addition(X0,X1)=one.
% 1.60/1.80  0 [] complement(X1,X0)|multiplication(X0,X1)!=zero|multiplication(X1,X0)!=zero|addition(X0,X1)!=one.
% 1.60/1.80  0 [] -test(X0)|c(X0)!=X1|complement(X0,X1).
% 1.60/1.80  0 [] -test(X0)|c(X0)=X1| -complement(X0,X1).
% 1.60/1.80  0 [] test(X0)|c(X0)=zero.
% 1.60/1.80  0 [] -test(X0)| -test(X1)|c(addition(X0,X1))=multiplication(c(X0),c(X1)).
% 1.60/1.80  0 [] -test(X0)| -test(X1)|c(multiplication(X0,X1))=addition(c(X0),c(X1)).
% 1.60/1.80  0 [] test($c1).
% 1.60/1.80  0 [] test($c2).
% 1.60/1.80  0 [] le_q(multiplication(multiplication($c2,$c4),c($c1)),zero).
% 1.60/1.80  0 [] le_q(multiplication(multiplication($c2,$c3),c($c1)),zero).
% 1.60/1.80  0 [] -le_q(multiplication(multiplication($c2,addition($c4,$c3)),c($c1)),zero).
% 1.60/1.80  end_of_list.
% 1.60/1.80  
% 1.60/1.80  SCAN INPUT: prop=0, horn=0, equality=1, symmetry=0, max_lits=4.
% 1.60/1.80  
% 1.60/1.80  This ia a non-Horn set with equality.  The strategy will be
% 1.60/1.80  Knuth-Bendix, ordered hyper_res, factoring, and unit
% 1.60/1.80  deletion, with positive clauses in sos and nonpositive
% 1.60/1.80  clauses in usable.
% 1.60/1.80  
% 1.60/1.80     dependent: set(knuth_bendix).
% 1.60/1.80     dependent: set(anl_eq).
% 1.60/1.80     dependent: set(para_from).
% 1.60/1.80     dependent: set(para_into).
% 1.60/1.80     dependent: clear(para_from_right).
% 1.60/1.80     dependent: clear(para_into_right).
% 1.60/1.80     dependent: set(para_from_vars).
% 1.60/1.80     dependent: set(eq_units_both_ways).
% 1.60/1.80     dependent: set(dynamic_demod_all).
% 1.60/1.80     dependent: set(dynamic_demod).
% 1.60/1.80     dependent: set(order_eq).
% 1.60/1.80     dependent: set(back_demod).
% 1.60/1.80     dependent: set(lrpo).
% 1.60/1.80     dependent: set(hyper_res).
% 1.65/1.81     dependent: set(unit_deletion).
% 1.65/1.81     dependent: set(factor).
% 1.65/1.81  
% 1.65/1.81  ------------> process usable:
% 1.65/1.81  ** KEPT (pick-wt=8): 1 [] -le_q(A,B)|addition(A,B)=B.
% 1.65/1.81  ** KEPT (pick-wt=8): 2 [] le_q(A,B)|addition(A,B)!=B.
% 1.65/1.81  ** KEPT (pick-wt=6): 3 [] -test(A)|complement($f1(A),A).
% 1.65/1.81  ** KEPT (pick-wt=5): 4 [] test(A)| -complement(B,A).
% 1.65/1.81  ** KEPT (pick-wt=8): 5 [] -complement(A,B)|multiplication(B,A)=zero.
% 1.65/1.81  ** KEPT (pick-wt=8): 6 [] -complement(A,B)|multiplication(A,B)=zero.
% 1.65/1.81  ** KEPT (pick-wt=8): 7 [] -complement(A,B)|addition(B,A)=one.
% 1.65/1.81  ** KEPT (pick-wt=18): 8 [] complement(A,B)|multiplication(B,A)!=zero|multiplication(A,B)!=zero|addition(B,A)!=one.
% 1.65/1.81  ** KEPT (pick-wt=9): 9 [] -test(A)|c(A)!=B|complement(A,B).
% 1.65/1.81  ** KEPT (pick-wt=9): 10 [] -test(A)|c(A)=B| -complement(A,B).
% 1.65/1.81  ** KEPT (pick-wt=14): 11 [] -test(A)| -test(B)|c(addition(A,B))=multiplication(c(A),c(B)).
% 1.65/1.81  ** KEPT (pick-wt=14): 12 [] -test(A)| -test(B)|c(multiplication(A,B))=addition(c(A),c(B)).
% 1.65/1.81  ** KEPT (pick-wt=10): 13 [] -le_q(multiplication(multiplication($c2,addition($c4,$c3)),c($c1)),zero).
% 1.65/1.81  
% 1.65/1.81  ------------> process sos:
% 1.65/1.81  ** KEPT (pick-wt=3): 17 [] A=A.
% 1.65/1.81  ** KEPT (pick-wt=7): 18 [] addition(A,B)=addition(B,A).
% 1.65/1.81  ** KEPT (pick-wt=11): 20 [copy,19,flip.1] addition(addition(A,B),C)=addition(A,addition(B,C)).
% 1.65/1.81  ---> New Demodulator: 21 [new_demod,20] addition(addition(A,B),C)=addition(A,addition(B,C)).
% 1.65/1.81  ** KEPT (pick-wt=5): 22 [] addition(A,zero)=A.
% 1.65/1.81  ---> New Demodulator: 23 [new_demod,22] addition(A,zero)=A.
% 1.65/1.81  ** KEPT (pick-wt=5): 24 [] addition(A,A)=A.
% 1.65/1.81  ---> New Demodulator: 25 [new_demod,24] addition(A,A)=A.
% 1.65/1.81  ** KEPT (pick-wt=11): 27 [copy,26,flip.1] multiplication(multiplication(A,B),C)=multiplication(A,multiplication(B,C)).
% 1.65/1.81  ---> New Demodulator: 28 [new_demod,27] multiplication(multiplication(A,B),C)=multiplication(A,multiplication(B,C)).
% 1.65/1.81  ** KEPT (pick-wt=5): 29 [] multiplication(A,one)=A.
% 1.65/1.81  ---> New Demodulator: 30 [new_demod,29] multiplication(A,one)=A.
% 1.65/1.81  ** KEPT (pick-wt=5): 31 [] multiplication(one,A)=A.
% 1.65/1.81  ---> New Demodulator: 32 [new_demod,31] multiplication(one,A)=A.
% 1.65/1.81  ** KEPT (pick-wt=13): 33 [] multiplication(A,addition(B,C))=addition(multiplication(A,B),multiplication(A,C)).
% 1.65/1.81  ---> New Demodulator: 34 [new_demod,33] multiplication(A,addition(B,C))=addition(multiplication(A,B),multiplication(A,C)).
% 1.65/1.81  ** KEPT (pick-wt=13): 35 [] multiplication(addition(A,B),C)=addition(multiplication(A,C),multiplication(B,C)).
% 1.65/1.81  ---> New Demodulator: 36 [new_demod,35] multiplication(addition(A,B),C)=addition(multiplication(A,C),multiplication(B,C)).
% 1.65/1.81  ** KEPT (pick-wt=5): 37 [] multiplication(A,zero)=zero.
% 1.65/1.81  ---> New Demodulator: 38 [new_demod,37] multiplication(A,zero)=zero.
% 1.65/1.81  ** KEPT (pick-wt=5): 39 [] multiplication(zero,A)=zero.
% 1.65/1.81  ---> New Demodulator: 40 [new_demod,39] multiplication(zero,A)=zero.
% 1.65/1.81  ** KEPT (pick-wt=6): 41 [] test(A)|c(A)=zero.
% 1.65/1.81  ** KEPT (pick-wt=2): 42 [] test($c1).
% 1.65/1.81  ** KEPT (pick-wt=2): 43 [] test($c2).
% 1.65/1.81  ** KEPT (pick-wt=8): 45 [copy,44,demod,28] le_q(multiplication($c2,multiplication($c4,c($c1))),zero).
% 1.65/1.81  ** KEPT (pick-wt=8): 47 [copy,46,demod,28] le_q(multiplication($c2,multiplication($c3,c($c1))),zero).
% 1.65/1.81    Following clause subsumed by 17 during input processing: 0 [copy,17,flip.1] A=A.
% 1.65/1.81    Following clause subsumed by 18 during input processing: 0 [copy,18,flip.1] addition(A,B)=addition(B,A).
% 1.65/1.81  >>>> Starting back demodulation with 21.
% 1.65/1.81  >>>> Starting back demodulation with 23.
% 1.65/1.81  >>>> Starting back demodulation with 25.
% 1.65/1.81      >> back demodulating 16 with 25.
% 1.65/1.81      >> back demodulating 15 with 25.
% 1.65/1.81      >> back demodulating 14 with 25.
% 1.65/1.81  >>>> Starting back demodulation with 28.
% 1.65/1.81      >> back demodulating 13 with 28.
% 1.65/1.81  >>>> Starting back demodulation with 30.
% 1.65/1.81  >>>> Starting back demodulation with 32.
% 1.65/1.81  >>>> Starting back demodulation with 34.
% 1.65/1.81  >>>> Starting back demodulation with 36.
% 1.65/1.81  >>>> Starting back demodulation with 38.
% 1.65/1.81  >>>> Starting back demodulation with 40.
% 1.65/1.81  
% 1.65/1.81  ======= end of input processing =======
% 1.65/1.81  
% 1.65/1.81  =========== start of search ===========
% 1.65/1.81  
% 1.65/1.81  -------- PROOF -------- 
% 1.65/1.81  
% 1.65/1.81  ----> UNIT CONFLICT at   0.01 sec ----> 433 [binary,432.1,47.1] $F.
% 1.65/1.81  
% 1.65/1.81  Length of proof is 7.  Level of proof is 4.
% 1.65/1.81  
% 1.65/1.81  ---------------- PROOF ----------------
% 1.65/1.81  % SZS status Theorem
% 1.65/1.81  % SZS output start Refutation
% See solution above
% 1.65/1.81  ------------ end of proof -------------
% 1.65/1.81  
% 1.65/1.81  
% 1.65/1.81  Search stopped by max_proofs option.
% 1.65/1.81  
% 1.65/1.81  
% 1.65/1.81  Search stopped by max_proofs option.
% 1.65/1.81  
% 1.65/1.81  ============ end of search ============
% 1.65/1.81  
% 1.65/1.81  -------------- statistics -------------
% 1.65/1.81  clauses given                 41
% 1.65/1.81  clauses generated            478
% 1.65/1.81  clauses kept                 292
% 1.65/1.81  clauses forward subsumed     299
% 1.65/1.81  clauses back subsumed          1
% 1.65/1.81  Kbytes malloced             1953
% 1.65/1.81  
% 1.65/1.81  ----------- times (seconds) -----------
% 1.65/1.81  user CPU time          0.01          (0 hr, 0 min, 0 sec)
% 1.65/1.81  system CPU time        0.00          (0 hr, 0 min, 0 sec)
% 1.65/1.81  wall-clock time        1             (0 hr, 0 min, 1 sec)
% 1.65/1.81  
% 1.65/1.81  That finishes the proof of the theorem.
% 1.65/1.81  
% 1.65/1.81  Process 4382 finished Wed Jul 27 06:13:32 2022
% 1.65/1.81  Otter interrupted
% 1.65/1.81  PROOF FOUND
%------------------------------------------------------------------------------