TSTP Solution File: KLE027+3 by Otter---3.3

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Otter---3.3
% Problem  : KLE027+3 : TPTP v8.1.0. Released v4.0.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : otter-tptp-script %s

% Computer : n025.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Wed Jul 27 13:00:32 EDT 2022

% Result   : Theorem 1.94s 2.15s
% Output   : Refutation 1.94s
% Verified : 
% SZS Type : Refutation
%            Derivation depth      :    9
%            Number of leaves      :   18
% Syntax   : Number of clauses     :   37 (  29 unt;   0 nHn;  24 RR)
%            Number of literals    :   50 (  33 equ;  17 neg)
%            Maximal clause size   :    4 (   1 avg)
%            Maximal term depth    :    6 (   2 avg)
%            Number of predicates  :    4 (   2 usr;   1 prp; 0-2 aty)
%            Number of functors    :    9 (   9 usr;   6 con; 0-2 aty)
%            Number of variables   :   40 (   3 sgn)

% Comments : 
%------------------------------------------------------------------------------
cnf(4,axiom,
    ( test(A)
    | ~ complement(B,A) ),
    file('KLE027+3.p',unknown),
    [] ).

cnf(5,axiom,
    ( ~ complement(A,B)
    | multiplication(B,A) = zero ),
    file('KLE027+3.p',unknown),
    [] ).

cnf(6,axiom,
    ( ~ complement(A,B)
    | multiplication(A,B) = zero ),
    file('KLE027+3.p',unknown),
    [] ).

cnf(7,axiom,
    ( ~ complement(A,B)
    | addition(B,A) = one ),
    file('KLE027+3.p',unknown),
    [] ).

cnf(8,axiom,
    ( complement(A,B)
    | multiplication(B,A) != zero
    | multiplication(A,B) != zero
    | addition(B,A) != one ),
    file('KLE027+3.p',unknown),
    [] ).

cnf(9,axiom,
    ( ~ test(A)
    | c(A) != B
    | complement(A,B) ),
    file('KLE027+3.p',unknown),
    [] ).

cnf(10,axiom,
    ( ~ test(A)
    | c(A) = B
    | ~ complement(A,B) ),
    file('KLE027+3.p',unknown),
    [] ).

cnf(11,axiom,
    ( ~ test(A)
    | ~ test(B)
    | c(addition(A,B)) = multiplication(c(A),c(B)) ),
    file('KLE027+3.p',unknown),
    [] ).

cnf(13,axiom,
    addition(multiplication(dollar_c2,addition(multiplication(dollar_c2,dollar_c5),multiplication(c(dollar_c2),dollar_c4))),multiplication(c(dollar_c2),dollar_c3)) != addition(multiplication(dollar_c2,dollar_c5),multiplication(c(dollar_c2),dollar_c3)),
    file('KLE027+3.p',unknown),
    [] ).

cnf(17,axiom,
    A = A,
    file('KLE027+3.p',unknown),
    [] ).

cnf(18,axiom,
    addition(A,B) = addition(B,A),
    file('KLE027+3.p',unknown),
    [] ).

cnf(19,axiom,
    addition(A,addition(B,C)) = addition(addition(A,B),C),
    file('KLE027+3.p',unknown),
    [] ).

cnf(21,plain,
    addition(addition(A,B),C) = addition(A,addition(B,C)),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[19])]),
    [iquote('copy,19,flip.1')] ).

cnf(22,axiom,
    addition(A,zero) = A,
    file('KLE027+3.p',unknown),
    [] ).

cnf(25,axiom,
    addition(A,A) = A,
    file('KLE027+3.p',unknown),
    [] ).

cnf(26,axiom,
    multiplication(A,multiplication(B,C)) = multiplication(multiplication(A,B),C),
    file('KLE027+3.p',unknown),
    [] ).

cnf(27,plain,
    multiplication(multiplication(A,B),C) = multiplication(A,multiplication(B,C)),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[26])]),
    [iquote('copy,26,flip.1')] ).

cnf(34,axiom,
    multiplication(A,addition(B,C)) = addition(multiplication(A,B),multiplication(A,C)),
    file('KLE027+3.p',unknown),
    [] ).

cnf(40,axiom,
    multiplication(zero,A) = zero,
    file('KLE027+3.p',unknown),
    [] ).

cnf(42,axiom,
    test(dollar_c2),
    file('KLE027+3.p',unknown),
    [] ).

cnf(47,plain,
    addition(multiplication(dollar_c2,multiplication(dollar_c2,dollar_c5)),addition(multiplication(dollar_c2,multiplication(c(dollar_c2),dollar_c4)),multiplication(c(dollar_c2),dollar_c3))) != addition(multiplication(dollar_c2,dollar_c5),multiplication(c(dollar_c2),dollar_c3)),
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[13]),34,21]),
    [iquote('back_demod,13,demod,34,21')] ).

cnf(52,plain,
    complement(dollar_c2,c(dollar_c2)),
    inference(hyper,[status(thm)],[42,9,17]),
    [iquote('hyper,42,9,17')] ).

cnf(68,plain,
    addition(c(dollar_c2),dollar_c2) = one,
    inference(hyper,[status(thm)],[52,7]),
    [iquote('hyper,52,7')] ).

cnf(70,plain,
    multiplication(dollar_c2,c(dollar_c2)) = zero,
    inference(hyper,[status(thm)],[52,6]),
    [iquote('hyper,52,6')] ).

cnf(73,plain,
    multiplication(c(dollar_c2),dollar_c2) = zero,
    inference(hyper,[status(thm)],[52,5]),
    [iquote('hyper,52,5')] ).

cnf(74,plain,
    test(c(dollar_c2)),
    inference(hyper,[status(thm)],[52,4]),
    [iquote('hyper,52,4')] ).

cnf(83,plain,
    multiplication(c(c(dollar_c2)),c(c(dollar_c2))) = c(c(dollar_c2)),
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(hyper,[status(thm)],[74,11,74]),25])]),
    [iquote('hyper,74,11,74,demod,25,flip.1')] ).

cnf(160,plain,
    addition(zero,A) = A,
    inference(para_into,[status(thm),theory(equality)],[22,18]),
    [iquote('para_into,22.1.1,18.1.1')] ).

cnf(379,plain,
    addition(dollar_c2,c(dollar_c2)) = one,
    inference(para_into,[status(thm),theory(equality)],[68,18]),
    [iquote('para_into,68.1.1,18.1.1')] ).

cnf(391,plain,
    multiplication(dollar_c2,multiplication(c(dollar_c2),A)) = zero,
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[70,27]),40])]),
    [iquote('para_from,70.1.1,27.1.1.1,demod,40,flip.1')] ).

cnf(392,plain,
    complement(c(dollar_c2),dollar_c2),
    inference(unit_del,[status(thm)],[inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[70,8]),73,379]),17,17,17]),
    [iquote('para_from,70.1.1,8.2.1,demod,73,379,unit_del,17,17,17')] ).

cnf(393,plain,
    addition(multiplication(dollar_c2,multiplication(dollar_c2,dollar_c5)),multiplication(c(dollar_c2),dollar_c3)) != addition(multiplication(dollar_c2,dollar_c5),multiplication(c(dollar_c2),dollar_c3)),
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[47]),391,160]),
    [iquote('back_demod,47,demod,391,160')] ).

cnf(395,plain,
    c(c(dollar_c2)) = dollar_c2,
    inference(hyper,[status(thm)],[392,10,74]),
    [iquote('hyper,392,10,74')] ).

cnf(416,plain,
    multiplication(dollar_c2,dollar_c2) = dollar_c2,
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[83]),395,395,395]),
    [iquote('back_demod,83,demod,395,395,395')] ).

cnf(449,plain,
    multiplication(dollar_c2,multiplication(dollar_c2,A)) = multiplication(dollar_c2,A),
    inference(flip,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[416,27])]),
    [iquote('para_from,416.1.1,27.1.1.1,flip.1')] ).

cnf(451,plain,
    addition(multiplication(dollar_c2,dollar_c5),multiplication(c(dollar_c2),dollar_c3)) != addition(multiplication(dollar_c2,dollar_c5),multiplication(c(dollar_c2),dollar_c3)),
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[393]),449]),
    [iquote('back_demod,393,demod,449')] ).

cnf(452,plain,
    $false,
    inference(binary,[status(thm)],[451,17]),
    [iquote('binary,451.1,17.1')] ).

%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.00/0.11  % Problem  : KLE027+3 : TPTP v8.1.0. Released v4.0.0.
% 0.12/0.12  % Command  : otter-tptp-script %s
% 0.12/0.33  % Computer : n025.cluster.edu
% 0.12/0.33  % Model    : x86_64 x86_64
% 0.12/0.33  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.12/0.33  % Memory   : 8042.1875MB
% 0.12/0.33  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.12/0.33  % CPULimit : 300
% 0.12/0.33  % WCLimit  : 300
% 0.12/0.33  % DateTime : Wed Jul 27 06:36:15 EDT 2022
% 0.12/0.33  % CPUTime  : 
% 1.94/2.14  ----- Otter 3.3f, August 2004 -----
% 1.94/2.14  The process was started by sandbox on n025.cluster.edu,
% 1.94/2.14  Wed Jul 27 06:36:15 2022
% 1.94/2.14  The command was "./otter".  The process ID is 31163.
% 1.94/2.14  
% 1.94/2.14  set(prolog_style_variables).
% 1.94/2.14  set(auto).
% 1.94/2.14     dependent: set(auto1).
% 1.94/2.14     dependent: set(process_input).
% 1.94/2.14     dependent: clear(print_kept).
% 1.94/2.14     dependent: clear(print_new_demod).
% 1.94/2.14     dependent: clear(print_back_demod).
% 1.94/2.14     dependent: clear(print_back_sub).
% 1.94/2.14     dependent: set(control_memory).
% 1.94/2.14     dependent: assign(max_mem, 12000).
% 1.94/2.14     dependent: assign(pick_given_ratio, 4).
% 1.94/2.14     dependent: assign(stats_level, 1).
% 1.94/2.14     dependent: assign(max_seconds, 10800).
% 1.94/2.14  clear(print_given).
% 1.94/2.14  
% 1.94/2.14  formula_list(usable).
% 1.94/2.14  all A (A=A).
% 1.94/2.14  all A B (addition(A,B)=addition(B,A)).
% 1.94/2.14  all C B A (addition(A,addition(B,C))=addition(addition(A,B),C)).
% 1.94/2.14  all A (addition(A,zero)=A).
% 1.94/2.14  all A (addition(A,A)=A).
% 1.94/2.14  all A B C (multiplication(A,multiplication(B,C))=multiplication(multiplication(A,B),C)).
% 1.94/2.14  all A (multiplication(A,one)=A).
% 1.94/2.14  all A (multiplication(one,A)=A).
% 1.94/2.14  all A B C (multiplication(A,addition(B,C))=addition(multiplication(A,B),multiplication(A,C))).
% 1.94/2.14  all A B C (multiplication(addition(A,B),C)=addition(multiplication(A,C),multiplication(B,C))).
% 1.94/2.14  all A (multiplication(A,zero)=zero).
% 1.94/2.14  all A (multiplication(zero,A)=zero).
% 1.94/2.14  all A B (le_q(A,B)<->addition(A,B)=B).
% 1.94/2.14  all X0 (test(X0)<-> (exists X1 complement(X1,X0))).
% 1.94/2.14  all X0 X1 (complement(X1,X0)<->multiplication(X0,X1)=zero&multiplication(X1,X0)=zero&addition(X0,X1)=one).
% 1.94/2.14  all X0 X1 (test(X0)-> (c(X0)=X1<->complement(X0,X1))).
% 1.94/2.14  all X0 (-test(X0)->c(X0)=zero).
% 1.94/2.14  all X0 X1 (test(X0)&test(X1)->c(addition(X0,X1))=multiplication(c(X0),c(X1))).
% 1.94/2.14  all X0 X1 (test(X0)&test(X1)->c(multiplication(X0,X1))=addition(c(X0),c(X1))).
% 1.94/2.14  -(all X0 X1 X2 X3 X4 (test(X3)&test(X4)->addition(multiplication(X3,addition(multiplication(X3,X0),multiplication(c(X3),X1))),multiplication(c(X3),X2))=addition(multiplication(X3,X0),multiplication(c(X3),X2)))).
% 1.94/2.14  end_of_list.
% 1.94/2.14  
% 1.94/2.14  -------> usable clausifies to:
% 1.94/2.14  
% 1.94/2.14  list(usable).
% 1.94/2.14  0 [] A=A.
% 1.94/2.14  0 [] addition(A,B)=addition(B,A).
% 1.94/2.14  0 [] addition(A,addition(B,C))=addition(addition(A,B),C).
% 1.94/2.14  0 [] addition(A,zero)=A.
% 1.94/2.14  0 [] addition(A,A)=A.
% 1.94/2.14  0 [] multiplication(A,multiplication(B,C))=multiplication(multiplication(A,B),C).
% 1.94/2.14  0 [] multiplication(A,one)=A.
% 1.94/2.14  0 [] multiplication(one,A)=A.
% 1.94/2.14  0 [] multiplication(A,addition(B,C))=addition(multiplication(A,B),multiplication(A,C)).
% 1.94/2.14  0 [] multiplication(addition(A,B),C)=addition(multiplication(A,C),multiplication(B,C)).
% 1.94/2.14  0 [] multiplication(A,zero)=zero.
% 1.94/2.14  0 [] multiplication(zero,A)=zero.
% 1.94/2.14  0 [] -le_q(A,B)|addition(A,B)=B.
% 1.94/2.14  0 [] le_q(A,B)|addition(A,B)!=B.
% 1.94/2.14  0 [] -test(X0)|complement($f1(X0),X0).
% 1.94/2.14  0 [] test(X0)| -complement(X1,X0).
% 1.94/2.14  0 [] -complement(X1,X0)|multiplication(X0,X1)=zero.
% 1.94/2.14  0 [] -complement(X1,X0)|multiplication(X1,X0)=zero.
% 1.94/2.14  0 [] -complement(X1,X0)|addition(X0,X1)=one.
% 1.94/2.14  0 [] complement(X1,X0)|multiplication(X0,X1)!=zero|multiplication(X1,X0)!=zero|addition(X0,X1)!=one.
% 1.94/2.14  0 [] -test(X0)|c(X0)!=X1|complement(X0,X1).
% 1.94/2.14  0 [] -test(X0)|c(X0)=X1| -complement(X0,X1).
% 1.94/2.14  0 [] test(X0)|c(X0)=zero.
% 1.94/2.14  0 [] -test(X0)| -test(X1)|c(addition(X0,X1))=multiplication(c(X0),c(X1)).
% 1.94/2.14  0 [] -test(X0)| -test(X1)|c(multiplication(X0,X1))=addition(c(X0),c(X1)).
% 1.94/2.14  0 [] test($c2).
% 1.94/2.14  0 [] test($c1).
% 1.94/2.14  0 [] addition(multiplication($c2,addition(multiplication($c2,$c5),multiplication(c($c2),$c4))),multiplication(c($c2),$c3))!=addition(multiplication($c2,$c5),multiplication(c($c2),$c3)).
% 1.94/2.14  end_of_list.
% 1.94/2.14  
% 1.94/2.14  SCAN INPUT: prop=0, horn=0, equality=1, symmetry=0, max_lits=4.
% 1.94/2.14  
% 1.94/2.14  This ia a non-Horn set with equality.  The strategy will be
% 1.94/2.14  Knuth-Bendix, ordered hyper_res, factoring, and unit
% 1.94/2.14  deletion, with positive clauses in sos and nonpositive
% 1.94/2.14  clauses in usable.
% 1.94/2.14  
% 1.94/2.14     dependent: set(knuth_bendix).
% 1.94/2.14     dependent: set(anl_eq).
% 1.94/2.14     dependent: set(para_from).
% 1.94/2.14     dependent: set(para_into).
% 1.94/2.14     dependent: clear(para_from_right).
% 1.94/2.14     dependent: clear(para_into_right).
% 1.94/2.14     dependent: set(para_from_vars).
% 1.94/2.14     dependent: set(eq_units_both_ways).
% 1.94/2.14     dependent: set(dynamic_demod_all).
% 1.94/2.14     dependent: set(dynamic_demod).
% 1.94/2.14     dependent: set(order_eq).
% 1.94/2.14     dependent: set(back_demod).
% 1.94/2.14     dependent: set(lrpo).
% 1.94/2.14     dependent: set(hyper_res).
% 1.94/2.14     dependent: set(unit_deletion).
% 1.94/2.15     dependent: set(factor).
% 1.94/2.15  
% 1.94/2.15  ------------> process usable:
% 1.94/2.15  ** KEPT (pick-wt=8): 1 [] -le_q(A,B)|addition(A,B)=B.
% 1.94/2.15  ** KEPT (pick-wt=8): 2 [] le_q(A,B)|addition(A,B)!=B.
% 1.94/2.15  ** KEPT (pick-wt=6): 3 [] -test(A)|complement($f1(A),A).
% 1.94/2.15  ** KEPT (pick-wt=5): 4 [] test(A)| -complement(B,A).
% 1.94/2.15  ** KEPT (pick-wt=8): 5 [] -complement(A,B)|multiplication(B,A)=zero.
% 1.94/2.15  ** KEPT (pick-wt=8): 6 [] -complement(A,B)|multiplication(A,B)=zero.
% 1.94/2.15  ** KEPT (pick-wt=8): 7 [] -complement(A,B)|addition(B,A)=one.
% 1.94/2.15  ** KEPT (pick-wt=18): 8 [] complement(A,B)|multiplication(B,A)!=zero|multiplication(A,B)!=zero|addition(B,A)!=one.
% 1.94/2.15  ** KEPT (pick-wt=9): 9 [] -test(A)|c(A)!=B|complement(A,B).
% 1.94/2.15  ** KEPT (pick-wt=9): 10 [] -test(A)|c(A)=B| -complement(A,B).
% 1.94/2.15  ** KEPT (pick-wt=14): 11 [] -test(A)| -test(B)|c(addition(A,B))=multiplication(c(A),c(B)).
% 1.94/2.15  ** KEPT (pick-wt=14): 12 [] -test(A)| -test(B)|c(multiplication(A,B))=addition(c(A),c(B)).
% 1.94/2.15  ** KEPT (pick-wt=24): 13 [] addition(multiplication($c2,addition(multiplication($c2,$c5),multiplication(c($c2),$c4))),multiplication(c($c2),$c3))!=addition(multiplication($c2,$c5),multiplication(c($c2),$c3)).
% 1.94/2.15  
% 1.94/2.15  ------------> process sos:
% 1.94/2.15  ** KEPT (pick-wt=3): 17 [] A=A.
% 1.94/2.15  ** KEPT (pick-wt=7): 18 [] addition(A,B)=addition(B,A).
% 1.94/2.15  ** KEPT (pick-wt=11): 20 [copy,19,flip.1] addition(addition(A,B),C)=addition(A,addition(B,C)).
% 1.94/2.15  ---> New Demodulator: 21 [new_demod,20] addition(addition(A,B),C)=addition(A,addition(B,C)).
% 1.94/2.15  ** KEPT (pick-wt=5): 22 [] addition(A,zero)=A.
% 1.94/2.15  ---> New Demodulator: 23 [new_demod,22] addition(A,zero)=A.
% 1.94/2.15  ** KEPT (pick-wt=5): 24 [] addition(A,A)=A.
% 1.94/2.15  ---> New Demodulator: 25 [new_demod,24] addition(A,A)=A.
% 1.94/2.15  ** KEPT (pick-wt=11): 27 [copy,26,flip.1] multiplication(multiplication(A,B),C)=multiplication(A,multiplication(B,C)).
% 1.94/2.15  ---> New Demodulator: 28 [new_demod,27] multiplication(multiplication(A,B),C)=multiplication(A,multiplication(B,C)).
% 1.94/2.15  ** KEPT (pick-wt=5): 29 [] multiplication(A,one)=A.
% 1.94/2.15  ---> New Demodulator: 30 [new_demod,29] multiplication(A,one)=A.
% 1.94/2.15  ** KEPT (pick-wt=5): 31 [] multiplication(one,A)=A.
% 1.94/2.15  ---> New Demodulator: 32 [new_demod,31] multiplication(one,A)=A.
% 1.94/2.15  ** KEPT (pick-wt=13): 33 [] multiplication(A,addition(B,C))=addition(multiplication(A,B),multiplication(A,C)).
% 1.94/2.15  ---> New Demodulator: 34 [new_demod,33] multiplication(A,addition(B,C))=addition(multiplication(A,B),multiplication(A,C)).
% 1.94/2.15  ** KEPT (pick-wt=13): 35 [] multiplication(addition(A,B),C)=addition(multiplication(A,C),multiplication(B,C)).
% 1.94/2.15  ---> New Demodulator: 36 [new_demod,35] multiplication(addition(A,B),C)=addition(multiplication(A,C),multiplication(B,C)).
% 1.94/2.15  ** KEPT (pick-wt=5): 37 [] multiplication(A,zero)=zero.
% 1.94/2.15  ---> New Demodulator: 38 [new_demod,37] multiplication(A,zero)=zero.
% 1.94/2.15  ** KEPT (pick-wt=5): 39 [] multiplication(zero,A)=zero.
% 1.94/2.15  ---> New Demodulator: 40 [new_demod,39] multiplication(zero,A)=zero.
% 1.94/2.15  ** KEPT (pick-wt=6): 41 [] test(A)|c(A)=zero.
% 1.94/2.15  ** KEPT (pick-wt=2): 42 [] test($c2).
% 1.94/2.15  ** KEPT (pick-wt=2): 43 [] test($c1).
% 1.94/2.15    Following clause subsumed by 17 during input processing: 0 [copy,17,flip.1] A=A.
% 1.94/2.15    Following clause subsumed by 18 during input processing: 0 [copy,18,flip.1] addition(A,B)=addition(B,A).
% 1.94/2.15  >>>> Starting back demodulation with 21.
% 1.94/2.15  >>>> Starting back demodulation with 23.
% 1.94/2.15  >>>> Starting back demodulation with 25.
% 1.94/2.15      >> back demodulating 16 with 25.
% 1.94/2.15      >> back demodulating 15 with 25.
% 1.94/2.15      >> back demodulating 14 with 25.
% 1.94/2.15  >>>> Starting back demodulation with 28.
% 1.94/2.15  >>>> Starting back demodulation with 30.
% 1.94/2.15  >>>> Starting back demodulation with 32.
% 1.94/2.15  >>>> Starting back demodulation with 34.
% 1.94/2.15      >> back demodulating 13 with 34.
% 1.94/2.15  >>>> Starting back demodulation with 36.
% 1.94/2.15  >>>> Starting back demodulation with 38.
% 1.94/2.15  >>>> Starting back demodulation with 40.
% 1.94/2.15  
% 1.94/2.15  ======= end of input processing =======
% 1.94/2.15  
% 1.94/2.15  =========== start of search ===========
% 1.94/2.15  
% 1.94/2.15  -------- PROOF -------- 
% 1.94/2.15  
% 1.94/2.15  ----> UNIT CONFLICT at   0.01 sec ----> 452 [binary,451.1,17.1] $F.
% 1.94/2.15  
% 1.94/2.15  Length of proof is 18.  Level of proof is 8.
% 1.94/2.15  
% 1.94/2.15  ---------------- PROOF ----------------
% 1.94/2.15  % SZS status Theorem
% 1.94/2.15  % SZS output start Refutation
% See solution above
% 1.94/2.15  ------------ end of proof -------------
% 1.94/2.15  
% 1.94/2.15  
% 1.94/2.15  Search stopped by max_proofs option.
% 1.94/2.15  
% 1.94/2.15  
% 1.94/2.15  Search stopped by max_proofs option.
% 1.94/2.15  
% 1.94/2.15  ============ end of search ============
% 1.94/2.15  
% 1.94/2.15  -------------- statistics -------------
% 1.94/2.15  clauses given                 45
% 1.94/2.15  clauses generated            543
% 1.94/2.15  clauses kept                 307
% 1.94/2.15  clauses forward subsumed     348
% 1.94/2.15  clauses back subsumed          1
% 1.94/2.15  Kbytes malloced             1953
% 1.94/2.15  
% 1.94/2.15  ----------- times (seconds) -----------
% 1.94/2.15  user CPU time          0.01          (0 hr, 0 min, 0 sec)
% 1.94/2.15  system CPU time        0.00          (0 hr, 0 min, 0 sec)
% 1.94/2.15  wall-clock time        2             (0 hr, 0 min, 2 sec)
% 1.94/2.15  
% 1.94/2.15  That finishes the proof of the theorem.
% 1.94/2.15  
% 1.94/2.15  Process 31163 finished Wed Jul 27 06:36:17 2022
% 1.94/2.15  Otter interrupted
% 1.94/2.15  PROOF FOUND
%------------------------------------------------------------------------------