TSTP Solution File: KLE017+1 by Otter---3.3

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Otter---3.3
% Problem  : KLE017+1 : TPTP v8.1.0. Released v4.0.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : otter-tptp-script %s

% Computer : n028.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Wed Jul 27 13:00:29 EDT 2022

% Result   : Theorem 18.95s 19.21s
% Output   : Refutation 18.95s
% Verified : 
% SZS Type : Refutation
%            Derivation depth      :   13
%            Number of leaves      :   25
% Syntax   : Number of clauses     :   71 (  52 unt;   4 nHn;  40 RR)
%            Number of literals    :   96 (  50 equ;  22 neg)
%            Maximal clause size   :    4 (   1 avg)
%            Maximal term depth    :    4 (   1 avg)
%            Number of predicates  :    5 (   3 usr;   1 prp; 0-2 aty)
%            Number of functors    :    9 (   9 usr;   5 con; 0-2 aty)
%            Number of variables   :   75 (   4 sgn)

% Comments : 
%------------------------------------------------------------------------------
cnf(1,axiom,
    ( ~ le_q(A,B)
    | addition(A,B) = B ),
    file('KLE017+1.p',unknown),
    [] ).

cnf(2,axiom,
    ( le_q(A,B)
    | addition(A,B) != B ),
    file('KLE017+1.p',unknown),
    [] ).

cnf(3,axiom,
    ( ~ test(A)
    | complement(dollar_f1(A),A) ),
    file('KLE017+1.p',unknown),
    [] ).

cnf(5,axiom,
    ( ~ complement(A,B)
    | multiplication(B,A) = zero ),
    file('KLE017+1.p',unknown),
    [] ).

cnf(6,axiom,
    ( ~ complement(A,B)
    | multiplication(A,B) = zero ),
    file('KLE017+1.p',unknown),
    [] ).

cnf(7,axiom,
    ( ~ complement(A,B)
    | addition(B,A) = one ),
    file('KLE017+1.p',unknown),
    [] ).

cnf(8,axiom,
    ( complement(A,B)
    | multiplication(B,A) != zero
    | multiplication(A,B) != zero
    | addition(B,A) != one ),
    file('KLE017+1.p',unknown),
    [] ).

cnf(9,axiom,
    ( ~ test(A)
    | c(A) != B
    | complement(A,B) ),
    file('KLE017+1.p',unknown),
    [] ).

cnf(10,axiom,
    ( ~ test(A)
    | c(A) = B
    | ~ complement(A,B) ),
    file('KLE017+1.p',unknown),
    [] ).

cnf(11,axiom,
    ( ~ le_q(dollar_c1,multiplication(dollar_c3,dollar_c2))
    | ~ le_q(dollar_c1,dollar_c3)
    | ~ le_q(dollar_c1,dollar_c2) ),
    file('KLE017+1.p',unknown),
    [] ).

cnf(13,axiom,
    A = A,
    file('KLE017+1.p',unknown),
    [] ).

cnf(14,axiom,
    addition(A,B) = addition(B,A),
    file('KLE017+1.p',unknown),
    [] ).

cnf(15,axiom,
    addition(A,addition(B,C)) = addition(addition(A,B),C),
    file('KLE017+1.p',unknown),
    [] ).

cnf(16,plain,
    addition(addition(A,B),C) = addition(A,addition(B,C)),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[15])]),
    [iquote('copy,15,flip.1')] ).

cnf(19,axiom,
    addition(A,zero) = A,
    file('KLE017+1.p',unknown),
    [] ).

cnf(20,axiom,
    addition(A,A) = A,
    file('KLE017+1.p',unknown),
    [] ).

cnf(22,axiom,
    multiplication(A,multiplication(B,C)) = multiplication(multiplication(A,B),C),
    file('KLE017+1.p',unknown),
    [] ).

cnf(23,plain,
    multiplication(multiplication(A,B),C) = multiplication(A,multiplication(B,C)),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[22])]),
    [iquote('copy,22,flip.1')] ).

cnf(26,axiom,
    multiplication(A,one) = A,
    file('KLE017+1.p',unknown),
    [] ).

cnf(28,axiom,
    multiplication(one,A) = A,
    file('KLE017+1.p',unknown),
    [] ).

cnf(30,axiom,
    multiplication(A,addition(B,C)) = addition(multiplication(A,B),multiplication(A,C)),
    file('KLE017+1.p',unknown),
    [] ).

cnf(31,axiom,
    multiplication(addition(A,B),C) = addition(multiplication(A,C),multiplication(B,C)),
    file('KLE017+1.p',unknown),
    [] ).

cnf(36,axiom,
    multiplication(zero,A) = zero,
    file('KLE017+1.p',unknown),
    [] ).

cnf(38,axiom,
    test(dollar_c3),
    file('KLE017+1.p',unknown),
    [] ).

cnf(39,axiom,
    test(dollar_c2),
    file('KLE017+1.p',unknown),
    [] ).

cnf(41,axiom,
    ( le_q(dollar_c1,multiplication(dollar_c3,dollar_c2))
    | le_q(dollar_c1,dollar_c3) ),
    file('KLE017+1.p',unknown),
    [] ).

cnf(42,axiom,
    ( le_q(dollar_c1,multiplication(dollar_c3,dollar_c2))
    | le_q(dollar_c1,dollar_c2) ),
    file('KLE017+1.p',unknown),
    [] ).

cnf(44,plain,
    complement(dollar_c3,c(dollar_c3)),
    inference(hyper,[status(thm)],[38,9,13]),
    [iquote('hyper,38,9,13')] ).

cnf(45,plain,
    complement(dollar_f1(dollar_c3),dollar_c3),
    inference(hyper,[status(thm)],[38,3]),
    [iquote('hyper,38,3')] ).

cnf(47,plain,
    complement(dollar_f1(dollar_c2),dollar_c2),
    inference(hyper,[status(thm)],[39,3]),
    [iquote('hyper,39,3')] ).

cnf(50,plain,
    addition(c(dollar_c3),dollar_c3) = one,
    inference(hyper,[status(thm)],[44,7]),
    [iquote('hyper,44,7')] ).

cnf(64,plain,
    addition(dollar_c3,dollar_f1(dollar_c3)) = one,
    inference(hyper,[status(thm)],[45,7]),
    [iquote('hyper,45,7')] ).

cnf(66,plain,
    multiplication(dollar_f1(dollar_c3),dollar_c3) = zero,
    inference(hyper,[status(thm)],[45,6]),
    [iquote('hyper,45,6')] ).

cnf(68,plain,
    multiplication(dollar_c3,dollar_f1(dollar_c3)) = zero,
    inference(hyper,[status(thm)],[45,5]),
    [iquote('hyper,45,5')] ).

cnf(80,plain,
    ( addition(A,addition(B,C)) = addition(B,C)
    | ~ le_q(A,B) ),
    inference(flip,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[16,1])]),
    [iquote('para_into,16.1.1.1,1.2.1,flip.1')] ).

cnf(88,plain,
    addition(dollar_c2,dollar_f1(dollar_c2)) = one,
    inference(hyper,[status(thm)],[47,7]),
    [iquote('hyper,47,7')] ).

cnf(110,plain,
    addition(zero,A) = A,
    inference(para_into,[status(thm),theory(equality)],[19,14]),
    [iquote('para_into,18.1.1,14.1.1')] ).

cnf(122,plain,
    addition(A,addition(A,B)) = addition(A,B),
    inference(flip,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[20,16])]),
    [iquote('para_from,20.1.1,16.1.1.1,flip.1')] ).

cnf(149,plain,
    ( addition(multiplication(A,B),multiplication(A,C)) = multiplication(A,C)
    | ~ le_q(B,C) ),
    inference(flip,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[30,1])]),
    [iquote('para_into,29.1.1.2,1.2.1,flip.1')] ).

cnf(180,plain,
    ( le_q(dollar_c1,multiplication(dollar_c3,dollar_c2))
    | addition(dollar_c1,dollar_c3) = dollar_c3 ),
    inference(hyper,[status(thm)],[41,1]),
    [iquote('hyper,41,1')] ).

cnf(188,plain,
    addition(multiplication(c(dollar_c3),A),multiplication(dollar_c3,A)) = A,
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[50,31]),28])]),
    [iquote('para_from,50.1.1,31.1.1.1,demod,28,flip.1')] ).

cnf(204,plain,
    ( le_q(dollar_c1,multiplication(dollar_c3,dollar_c2))
    | addition(dollar_c1,dollar_c2) = dollar_c2 ),
    inference(hyper,[status(thm)],[42,1]),
    [iquote('hyper,42,1')] ).

cnf(219,plain,
    addition(dollar_f1(dollar_c3),dollar_c3) = one,
    inference(para_into,[status(thm),theory(equality)],[64,14]),
    [iquote('para_into,63.1.1,14.1.1')] ).

cnf(223,plain,
    addition(multiplication(dollar_c3,A),multiplication(dollar_f1(dollar_c3),A)) = A,
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[64,31]),28])]),
    [iquote('para_from,63.1.1,31.1.1.1,demod,28,flip.1')] ).

cnf(229,plain,
    multiplication(dollar_f1(dollar_c3),multiplication(dollar_c3,A)) = zero,
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[66,23]),36])]),
    [iquote('para_from,65.1.1,23.1.1.1,demod,36,flip.1')] ).

cnf(230,plain,
    complement(dollar_c3,dollar_f1(dollar_c3)),
    inference(unit_del,[status(thm)],[inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[66,8]),68,219]),13,13,13]),
    [iquote('para_from,65.1.1,8.2.1,demod,68,219,unit_del,13,13,13')] ).

cnf(235,plain,
    c(dollar_c3) = dollar_f1(dollar_c3),
    inference(hyper,[status(thm)],[230,10,38]),
    [iquote('hyper,230,10,38')] ).

cnf(256,plain,
    addition(multiplication(dollar_f1(dollar_c3),A),multiplication(dollar_c3,A)) = A,
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[188]),235]),
    [iquote('back_demod,188,demod,235')] ).

cnf(527,plain,
    ( addition(A,B) = addition(C,B)
    | ~ le_q(A,C)
    | ~ le_q(C,B) ),
    inference(para_into,[status(thm),theory(equality)],[80,1]),
    [iquote('para_into,80.1.1.2,1.2.1')] ).

cnf(1496,plain,
    le_q(A,addition(A,B)),
    inference(hyper,[status(thm)],[122,2]),
    [iquote('hyper,122,2')] ).

cnf(1511,plain,
    addition(dollar_c2,one) = one,
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[122,88]),88]),
    [iquote('para_into,122.1.1.2,87.1.1,demod,88')] ).

cnf(1521,plain,
    addition(dollar_c3,one) = one,
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[122,64]),64]),
    [iquote('para_into,122.1.1.2,63.1.1,demod,64')] ).

cnf(1558,plain,
    le_q(addition(A,B),addition(A,addition(B,C))),
    inference(para_into,[status(thm),theory(equality)],[1496,16]),
    [iquote('para_into,1496.1.2,16.1.1')] ).

cnf(1690,plain,
    addition(multiplication(A,dollar_c2),A) = A,
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[1511,30]),26,26])]),
    [iquote('para_from,1511.1.1,29.1.1.2,demod,26,26,flip.1')] ).

cnf(1715,plain,
    addition(multiplication(dollar_c3,A),A) = A,
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[1521,31]),28,28])]),
    [iquote('para_from,1521.1.1,31.1.1.1,demod,28,28,flip.1')] ).

cnf(2829,plain,
    ( multiplication(dollar_f1(dollar_c3),A) = zero
    | ~ le_q(A,dollar_c3) ),
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[149,66]),19,66]),
    [iquote('para_into,149.1.1.2,65.1.1,demod,19,66')] ).

cnf(2858,plain,
    ( le_q(multiplication(A,B),multiplication(A,C))
    | ~ le_q(B,C) ),
    inference(para_from,[status(thm),theory(equality)],[149,1496]),
    [iquote('para_from,149.1.1,1496.1.2')] ).

cnf(3032,plain,
    le_q(multiplication(dollar_c3,A),A),
    inference(para_from,[status(thm),theory(equality)],[223,1496]),
    [iquote('para_from,223.1.1,1496.1.2')] ).

cnf(3124,plain,
    le_q(multiplication(A,dollar_c2),A),
    inference(hyper,[status(thm)],[1690,2]),
    [iquote('hyper,1689,2')] ).

cnf(3398,plain,
    addition(dollar_c1,dollar_c2) = dollar_c2,
    inference(factor_simp,[status(thm)],[inference(demod,[status(thm),theory(equality)],[inference(hyper,[status(thm)],[527,204,3032]),1715])]),
    [iquote('hyper,527,204,3032,demod,1715,factor_simp')] ).

cnf(3400,plain,
    addition(dollar_c1,dollar_c3) = dollar_c3,
    inference(factor_simp,[status(thm)],[inference(demod,[status(thm),theory(equality)],[inference(hyper,[status(thm)],[527,180,3124]),1690])]),
    [iquote('hyper,527,180,3124,demod,1690,factor_simp')] ).

cnf(3402,plain,
    le_q(dollar_c1,dollar_c2),
    inference(hyper,[status(thm)],[3398,2]),
    [iquote('hyper,3398,2')] ).

cnf(3437,plain,
    le_q(dollar_c1,dollar_c3),
    inference(hyper,[status(thm)],[3400,2]),
    [iquote('hyper,3400,2')] ).

cnf(4648,plain,
    le_q(addition(A,dollar_c1),addition(A,dollar_c3)),
    inference(para_into,[status(thm),theory(equality)],[1558,3400]),
    [iquote('para_into,1558.1.2.2,3400.1.1')] ).

cnf(4651,plain,
    le_q(addition(dollar_c1,A),addition(A,dollar_c3)),
    inference(para_into,[status(thm),theory(equality)],[4648,14]),
    [iquote('para_into,4648.1.1,14.1.1')] ).

cnf(4660,plain,
    le_q(addition(dollar_c1,multiplication(dollar_c3,dollar_c2)),dollar_c3),
    inference(para_into,[status(thm),theory(equality)],[4651,1690]),
    [iquote('para_into,4651.1.2,1689.1.1')] ).

cnf(4778,plain,
    multiplication(dollar_f1(dollar_c3),dollar_c1) = zero,
    inference(demod,[status(thm),theory(equality)],[inference(hyper,[status(thm)],[2829,4660]),30,229,19]),
    [iquote('hyper,2829,4660,demod,30,229,19')] ).

cnf(4780,plain,
    multiplication(dollar_c3,dollar_c1) = dollar_c1,
    inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[4778,256]),110]),
    [iquote('para_from,4778.1.1,256.1.1.1,demod,110')] ).

cnf(4912,plain,
    le_q(multiplication(A,dollar_c1),multiplication(A,dollar_c2)),
    inference(hyper,[status(thm)],[2858,3402]),
    [iquote('hyper,2858,3402')] ).

cnf(4924,plain,
    le_q(dollar_c1,multiplication(dollar_c3,dollar_c2)),
    inference(para_into,[status(thm),theory(equality)],[4912,4780]),
    [iquote('para_into,4912.1.1,4780.1.1')] ).

cnf(4929,plain,
    $false,
    inference(hyper,[status(thm)],[4924,11,3437,3402]),
    [iquote('hyper,4924,11,3437,3402')] ).

%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.03/0.11  % Problem  : KLE017+1 : TPTP v8.1.0. Released v4.0.0.
% 0.03/0.12  % Command  : otter-tptp-script %s
% 0.13/0.33  % Computer : n028.cluster.edu
% 0.13/0.33  % Model    : x86_64 x86_64
% 0.13/0.33  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.13/0.33  % Memory   : 8042.1875MB
% 0.13/0.33  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.13/0.33  % CPULimit : 300
% 0.13/0.33  % WCLimit  : 300
% 0.13/0.33  % DateTime : Wed Jul 27 06:37:48 EDT 2022
% 0.13/0.33  % CPUTime  : 
% 1.60/1.81  ----- Otter 3.3f, August 2004 -----
% 1.60/1.81  The process was started by sandbox on n028.cluster.edu,
% 1.60/1.81  Wed Jul 27 06:37:49 2022
% 1.60/1.81  The command was "./otter".  The process ID is 16305.
% 1.60/1.81  
% 1.60/1.81  set(prolog_style_variables).
% 1.60/1.81  set(auto).
% 1.60/1.81     dependent: set(auto1).
% 1.60/1.81     dependent: set(process_input).
% 1.60/1.81     dependent: clear(print_kept).
% 1.60/1.81     dependent: clear(print_new_demod).
% 1.60/1.81     dependent: clear(print_back_demod).
% 1.60/1.81     dependent: clear(print_back_sub).
% 1.60/1.81     dependent: set(control_memory).
% 1.60/1.81     dependent: assign(max_mem, 12000).
% 1.60/1.81     dependent: assign(pick_given_ratio, 4).
% 1.60/1.81     dependent: assign(stats_level, 1).
% 1.60/1.81     dependent: assign(max_seconds, 10800).
% 1.60/1.81  clear(print_given).
% 1.60/1.81  
% 1.60/1.81  formula_list(usable).
% 1.60/1.81  all A (A=A).
% 1.60/1.81  all A B (addition(A,B)=addition(B,A)).
% 1.60/1.81  all C B A (addition(A,addition(B,C))=addition(addition(A,B),C)).
% 1.60/1.81  all A (addition(A,zero)=A).
% 1.60/1.81  all A (addition(A,A)=A).
% 1.60/1.81  all A B C (multiplication(A,multiplication(B,C))=multiplication(multiplication(A,B),C)).
% 1.60/1.81  all A (multiplication(A,one)=A).
% 1.60/1.81  all A (multiplication(one,A)=A).
% 1.60/1.81  all A B C (multiplication(A,addition(B,C))=addition(multiplication(A,B),multiplication(A,C))).
% 1.60/1.81  all A B C (multiplication(addition(A,B),C)=addition(multiplication(A,C),multiplication(B,C))).
% 1.60/1.81  all A (multiplication(A,zero)=zero).
% 1.60/1.81  all A (multiplication(zero,A)=zero).
% 1.60/1.81  all A B (le_q(A,B)<->addition(A,B)=B).
% 1.60/1.81  all X0 (test(X0)<-> (exists X1 complement(X1,X0))).
% 1.60/1.81  all X0 X1 (complement(X1,X0)<->multiplication(X0,X1)=zero&multiplication(X1,X0)=zero&addition(X0,X1)=one).
% 1.60/1.81  all X0 X1 (test(X0)-> (c(X0)=X1<->complement(X0,X1))).
% 1.60/1.81  all X0 (-test(X0)->c(X0)=zero).
% 1.60/1.81  -(all X0 X1 X2 (test(X0)&test(X1)&test(X2)-> (le_q(X2,multiplication(X0,X1))<->le_q(X2,X0)&le_q(X2,X1)))).
% 1.60/1.81  end_of_list.
% 1.60/1.81  
% 1.60/1.81  -------> usable clausifies to:
% 1.60/1.81  
% 1.60/1.81  list(usable).
% 1.60/1.81  0 [] A=A.
% 1.60/1.81  0 [] addition(A,B)=addition(B,A).
% 1.60/1.81  0 [] addition(A,addition(B,C))=addition(addition(A,B),C).
% 1.60/1.81  0 [] addition(A,zero)=A.
% 1.60/1.81  0 [] addition(A,A)=A.
% 1.60/1.81  0 [] multiplication(A,multiplication(B,C))=multiplication(multiplication(A,B),C).
% 1.60/1.81  0 [] multiplication(A,one)=A.
% 1.60/1.81  0 [] multiplication(one,A)=A.
% 1.60/1.81  0 [] multiplication(A,addition(B,C))=addition(multiplication(A,B),multiplication(A,C)).
% 1.60/1.81  0 [] multiplication(addition(A,B),C)=addition(multiplication(A,C),multiplication(B,C)).
% 1.60/1.81  0 [] multiplication(A,zero)=zero.
% 1.60/1.81  0 [] multiplication(zero,A)=zero.
% 1.60/1.81  0 [] -le_q(A,B)|addition(A,B)=B.
% 1.60/1.81  0 [] le_q(A,B)|addition(A,B)!=B.
% 1.60/1.81  0 [] -test(X0)|complement($f1(X0),X0).
% 1.60/1.81  0 [] test(X0)| -complement(X1,X0).
% 1.60/1.81  0 [] -complement(X1,X0)|multiplication(X0,X1)=zero.
% 1.60/1.81  0 [] -complement(X1,X0)|multiplication(X1,X0)=zero.
% 1.60/1.81  0 [] -complement(X1,X0)|addition(X0,X1)=one.
% 1.60/1.81  0 [] complement(X1,X0)|multiplication(X0,X1)!=zero|multiplication(X1,X0)!=zero|addition(X0,X1)!=one.
% 1.60/1.81  0 [] -test(X0)|c(X0)!=X1|complement(X0,X1).
% 1.60/1.81  0 [] -test(X0)|c(X0)=X1| -complement(X0,X1).
% 1.60/1.81  0 [] test(X0)|c(X0)=zero.
% 1.60/1.81  0 [] test($c3).
% 1.60/1.81  0 [] test($c2).
% 1.60/1.81  0 [] test($c1).
% 1.60/1.81  0 [] le_q($c1,multiplication($c3,$c2))|le_q($c1,$c3).
% 1.60/1.81  0 [] le_q($c1,multiplication($c3,$c2))|le_q($c1,$c2).
% 1.60/1.81  0 [] -le_q($c1,multiplication($c3,$c2))| -le_q($c1,$c3)| -le_q($c1,$c2).
% 1.60/1.81  end_of_list.
% 1.60/1.81  
% 1.60/1.81  SCAN INPUT: prop=0, horn=0, equality=1, symmetry=0, max_lits=4.
% 1.60/1.81  
% 1.60/1.81  This ia a non-Horn set with equality.  The strategy will be
% 1.60/1.81  Knuth-Bendix, ordered hyper_res, factoring, and unit
% 1.60/1.81  deletion, with positive clauses in sos and nonpositive
% 1.60/1.81  clauses in usable.
% 1.60/1.81  
% 1.60/1.81     dependent: set(knuth_bendix).
% 1.60/1.81     dependent: set(anl_eq).
% 1.60/1.81     dependent: set(para_from).
% 1.60/1.81     dependent: set(para_into).
% 1.60/1.81     dependent: clear(para_from_right).
% 1.60/1.81     dependent: clear(para_into_right).
% 1.60/1.81     dependent: set(para_from_vars).
% 1.60/1.81     dependent: set(eq_units_both_ways).
% 1.60/1.81     dependent: set(dynamic_demod_all).
% 1.60/1.81     dependent: set(dynamic_demod).
% 1.60/1.81     dependent: set(order_eq).
% 1.60/1.81     dependent: set(back_demod).
% 1.60/1.81     dependent: set(lrpo).
% 1.60/1.81     dependent: set(hyper_res).
% 1.60/1.81     dependent: set(unit_deletion).
% 1.60/1.81     dependent: set(factor).
% 1.60/1.81  
% 1.60/1.81  ------------> process usable:
% 1.60/1.81  ** KEPT (pick-wt=8): 1 [] -le_q(A,B)|addition(A,B)=B.
% 1.60/1.81  ** KEPT (pick-wt=8): 2 [] le_q(A,B)|addition(A,B)!=B.
% 1.60/1.81  ** KEPT (pick-wt=6): 3 [] -test(A)|complement($f1(A),A).
% 1.60/1.81  ** KEPT (pick-wt=5): 4 [] test(A)| -complement(B,A).
% 1.60/1.81  ** KEPT (pick-wt=8): 5 [] -complement(A,B)|multiplication(B,A)=zero.
% 1.60/1.81  ** KEPT (pick-wt=8): 6 [] -complement(A,B)|multiplication(A,B)=zero.
% 18.95/19.21  ** KEPT (pick-wt=8): 7 [] -complement(A,B)|addition(B,A)=one.
% 18.95/19.21  ** KEPT (pick-wt=18): 8 [] complement(A,B)|multiplication(B,A)!=zero|multiplication(A,B)!=zero|addition(B,A)!=one.
% 18.95/19.21  ** KEPT (pick-wt=9): 9 [] -test(A)|c(A)!=B|complement(A,B).
% 18.95/19.21  ** KEPT (pick-wt=9): 10 [] -test(A)|c(A)=B| -complement(A,B).
% 18.95/19.21  ** KEPT (pick-wt=11): 11 [] -le_q($c1,multiplication($c3,$c2))| -le_q($c1,$c3)| -le_q($c1,$c2).
% 18.95/19.21  
% 18.95/19.21  ------------> process sos:
% 18.95/19.21  ** KEPT (pick-wt=3): 13 [] A=A.
% 18.95/19.21  ** KEPT (pick-wt=7): 14 [] addition(A,B)=addition(B,A).
% 18.95/19.21  ** KEPT (pick-wt=11): 16 [copy,15,flip.1] addition(addition(A,B),C)=addition(A,addition(B,C)).
% 18.95/19.21  ---> New Demodulator: 17 [new_demod,16] addition(addition(A,B),C)=addition(A,addition(B,C)).
% 18.95/19.21  ** KEPT (pick-wt=5): 18 [] addition(A,zero)=A.
% 18.95/19.21  ---> New Demodulator: 19 [new_demod,18] addition(A,zero)=A.
% 18.95/19.21  ** KEPT (pick-wt=5): 20 [] addition(A,A)=A.
% 18.95/19.21  ---> New Demodulator: 21 [new_demod,20] addition(A,A)=A.
% 18.95/19.21  ** KEPT (pick-wt=11): 23 [copy,22,flip.1] multiplication(multiplication(A,B),C)=multiplication(A,multiplication(B,C)).
% 18.95/19.21  ---> New Demodulator: 24 [new_demod,23] multiplication(multiplication(A,B),C)=multiplication(A,multiplication(B,C)).
% 18.95/19.21  ** KEPT (pick-wt=5): 25 [] multiplication(A,one)=A.
% 18.95/19.21  ---> New Demodulator: 26 [new_demod,25] multiplication(A,one)=A.
% 18.95/19.21  ** KEPT (pick-wt=5): 27 [] multiplication(one,A)=A.
% 18.95/19.21  ---> New Demodulator: 28 [new_demod,27] multiplication(one,A)=A.
% 18.95/19.21  ** KEPT (pick-wt=13): 29 [] multiplication(A,addition(B,C))=addition(multiplication(A,B),multiplication(A,C)).
% 18.95/19.21  ---> New Demodulator: 30 [new_demod,29] multiplication(A,addition(B,C))=addition(multiplication(A,B),multiplication(A,C)).
% 18.95/19.21  ** KEPT (pick-wt=13): 31 [] multiplication(addition(A,B),C)=addition(multiplication(A,C),multiplication(B,C)).
% 18.95/19.21  ---> New Demodulator: 32 [new_demod,31] multiplication(addition(A,B),C)=addition(multiplication(A,C),multiplication(B,C)).
% 18.95/19.21  ** KEPT (pick-wt=5): 33 [] multiplication(A,zero)=zero.
% 18.95/19.21  ---> New Demodulator: 34 [new_demod,33] multiplication(A,zero)=zero.
% 18.95/19.21  ** KEPT (pick-wt=5): 35 [] multiplication(zero,A)=zero.
% 18.95/19.21  ---> New Demodulator: 36 [new_demod,35] multiplication(zero,A)=zero.
% 18.95/19.21  ** KEPT (pick-wt=6): 37 [] test(A)|c(A)=zero.
% 18.95/19.21  ** KEPT (pick-wt=2): 38 [] test($c3).
% 18.95/19.21  ** KEPT (pick-wt=2): 39 [] test($c2).
% 18.95/19.21  ** KEPT (pick-wt=2): 40 [] test($c1).
% 18.95/19.21  ** KEPT (pick-wt=8): 41 [] le_q($c1,multiplication($c3,$c2))|le_q($c1,$c3).
% 18.95/19.21  ** KEPT (pick-wt=8): 42 [] le_q($c1,multiplication($c3,$c2))|le_q($c1,$c2).
% 18.95/19.21    Following clause subsumed by 13 during input processing: 0 [copy,13,flip.1] A=A.
% 18.95/19.21    Following clause subsumed by 14 during input processing: 0 [copy,14,flip.1] addition(A,B)=addition(B,A).
% 18.95/19.21  >>>> Starting back demodulation with 17.
% 18.95/19.21  >>>> Starting back demodulation with 19.
% 18.95/19.21  >>>> Starting back demodulation with 21.
% 18.95/19.21      >> back demodulating 12 with 21.
% 18.95/19.21  >>>> Starting back demodulation with 24.
% 18.95/19.21  >>>> Starting back demodulation with 26.
% 18.95/19.21  >>>> Starting back demodulation with 28.
% 18.95/19.21  >>>> Starting back demodulation with 30.
% 18.95/19.21  >>>> Starting back demodulation with 32.
% 18.95/19.21  >>>> Starting back demodulation with 34.
% 18.95/19.21  >>>> Starting back demodulation with 36.
% 18.95/19.21  
% 18.95/19.21  ======= end of input processing =======
% 18.95/19.21  
% 18.95/19.21  =========== start of search ===========
% 18.95/19.21  
% 18.95/19.21  
% 18.95/19.21  Resetting weight limit to 7.
% 18.95/19.21  
% 18.95/19.21  
% 18.95/19.21  Resetting weight limit to 7.
% 18.95/19.21  
% 18.95/19.21  sos_size=2202
% 18.95/19.21  
% 18.95/19.21  -- HEY sandbox, WE HAVE A PROOF!! -- 
% 18.95/19.21  
% 18.95/19.21  -----> EMPTY CLAUSE at  17.39 sec ----> 4929 [hyper,4924,11,3437,3402] $F.
% 18.95/19.21  
% 18.95/19.21  Length of proof is 45.  Level of proof is 12.
% 18.95/19.21  
% 18.95/19.21  ---------------- PROOF ----------------
% 18.95/19.21  % SZS status Theorem
% 18.95/19.21  % SZS output start Refutation
% See solution above
% 18.95/19.21  ------------ end of proof -------------
% 18.95/19.21  
% 18.95/19.21  
% 18.95/19.21  Search stopped by max_proofs option.
% 18.95/19.21  
% 18.95/19.21  
% 18.95/19.21  Search stopped by max_proofs option.
% 18.95/19.21  
% 18.95/19.21  ============ end of search ============
% 18.95/19.21  
% 18.95/19.21  -------------- statistics -------------
% 18.95/19.21  clauses given               2417
% 18.95/19.21  clauses generated        1068680
% 18.95/19.21  clauses kept                4697
% 18.95/19.21  clauses forward subsumed  128451
% 18.95/19.21  clauses back subsumed       1995
% 18.95/19.21  Kbytes malloced             5859
% 18.95/19.21  
% 18.95/19.21  ----------- times (seconds) -----------
% 18.95/19.21  user CPU time         17.39          (0 hr, 0 min, 17 sec)
% 18.95/19.21  system CPU time        0.01          (0 hr, 0 min, 0 sec)
% 18.95/19.21  wall-clock time       18             (0 hr, 0 min, 18 sec)
% 18.95/19.21  
% 18.95/19.21  That finishes the proof of the theorem.
% 18.95/19.21  
% 18.95/19.21  Process 16305 finished Wed Jul 27 06:38:07 2022
% 18.95/19.21  Otter interrupted
% 18.95/19.21  PROOF FOUND
%------------------------------------------------------------------------------