TSTP Solution File: KLE012+1 by Enigma---0.5.1

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Enigma---0.5.1
% Problem  : KLE012+1 : TPTP v8.1.0. Released v4.0.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : enigmatic-eprover.py %s %d 1

% Computer : n027.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 600s
% DateTime : Sun Jul 17 01:49:33 EDT 2022

% Result   : Theorem 11.05s 2.75s
% Output   : CNFRefutation 11.05s
% Verified : 
% SZS Type : Refutation
%            Derivation depth      :   17
%            Number of leaves      :   14
% Syntax   : Number of formulae    :  125 (  82 unt;   0 def)
%            Number of atoms       :  195 ( 124 equ)
%            Maximal formula atoms :   10 (   1 avg)
%            Number of connectives :  126 (  56   ~;  53   |;  11   &)
%                                         (   3 <=>;   3  =>;   0  <=;   0 <~>)
%            Maximal formula depth :   10 (   2 avg)
%            Maximal term depth    :    5 (   2 avg)
%            Number of predicates  :    4 (   2 usr;   1 prp; 0-2 aty)
%            Number of functors    :    8 (   8 usr;   4 con; 0-2 aty)
%            Number of variables   :  135 (   4 sgn  54   !;   1   ?)

% Comments : 
%------------------------------------------------------------------------------
fof(test_2,axiom,
    ! [X4,X5] :
      ( complement(X5,X4)
    <=> ( multiplication(X4,X5) = zero
        & multiplication(X5,X4) = zero
        & addition(X4,X5) = one ) ),
    file('/export/starexec/sandbox2/benchmark/Axioms/KLE001+1.ax',test_2) ).

fof(test_1,axiom,
    ! [X4] :
      ( test(X4)
    <=> ? [X5] : complement(X5,X4) ),
    file('/export/starexec/sandbox2/benchmark/Axioms/KLE001+1.ax',test_1) ).

fof(test_3,axiom,
    ! [X4,X5] :
      ( test(X4)
     => ( c(X4) = X5
      <=> complement(X4,X5) ) ),
    file('/export/starexec/sandbox2/benchmark/Axioms/KLE001+1.ax',test_3) ).

fof(left_distributivity,axiom,
    ! [X1,X2,X3] : multiplication(addition(X1,X2),X3) = addition(multiplication(X1,X3),multiplication(X2,X3)),
    file('/export/starexec/sandbox2/benchmark/Axioms/KLE001+0.ax',left_distributivity) ).

fof(multiplicative_left_identity,axiom,
    ! [X1] : multiplication(one,X1) = X1,
    file('/export/starexec/sandbox2/benchmark/Axioms/KLE001+0.ax',multiplicative_left_identity) ).

fof(additive_identity,axiom,
    ! [X1] : addition(X1,zero) = X1,
    file('/export/starexec/sandbox2/benchmark/Axioms/KLE001+0.ax',additive_identity) ).

fof(goals,conjecture,
    ! [X4,X5] :
      ( ( test(X5)
        & test(X4) )
     => multiplication(X4,X5) = multiplication(X5,X4) ),
    file('/export/starexec/sandbox2/benchmark/theBenchmark.p',goals) ).

fof(multiplicative_associativity,axiom,
    ! [X1,X2,X3] : multiplication(X1,multiplication(X2,X3)) = multiplication(multiplication(X1,X2),X3),
    file('/export/starexec/sandbox2/benchmark/Axioms/KLE001+0.ax',multiplicative_associativity) ).

fof(left_annihilation,axiom,
    ! [X1] : multiplication(zero,X1) = zero,
    file('/export/starexec/sandbox2/benchmark/Axioms/KLE001+0.ax',left_annihilation) ).

fof(additive_commutativity,axiom,
    ! [X1,X2] : addition(X1,X2) = addition(X2,X1),
    file('/export/starexec/sandbox2/benchmark/Axioms/KLE001+0.ax',additive_commutativity) ).

fof(right_distributivity,axiom,
    ! [X1,X2,X3] : multiplication(X1,addition(X2,X3)) = addition(multiplication(X1,X2),multiplication(X1,X3)),
    file('/export/starexec/sandbox2/benchmark/Axioms/KLE001+0.ax',right_distributivity) ).

fof(multiplicative_right_identity,axiom,
    ! [X1] : multiplication(X1,one) = X1,
    file('/export/starexec/sandbox2/benchmark/Axioms/KLE001+0.ax',multiplicative_right_identity) ).

fof(additive_associativity,axiom,
    ! [X3,X2,X1] : addition(X1,addition(X2,X3)) = addition(addition(X1,X2),X3),
    file('/export/starexec/sandbox2/benchmark/Axioms/KLE001+0.ax',additive_associativity) ).

fof(additive_idempotence,axiom,
    ! [X1] : addition(X1,X1) = X1,
    file('/export/starexec/sandbox2/benchmark/Axioms/KLE001+0.ax',additive_idempotence) ).

fof(c_0_14,plain,
    ! [X32,X33] :
      ( ( multiplication(X32,X33) = zero
        | ~ complement(X33,X32) )
      & ( multiplication(X33,X32) = zero
        | ~ complement(X33,X32) )
      & ( addition(X32,X33) = one
        | ~ complement(X33,X32) )
      & ( multiplication(X32,X33) != zero
        | multiplication(X33,X32) != zero
        | addition(X32,X33) != one
        | complement(X33,X32) ) ),
    inference(distribute,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[test_2])])]) ).

fof(c_0_15,plain,
    ! [X28,X30,X31] :
      ( ( ~ test(X28)
        | complement(esk1_1(X28),X28) )
      & ( ~ complement(X31,X30)
        | test(X30) ) ),
    inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(fof_nnf,[status(thm)],[test_1])])])])]) ).

fof(c_0_16,plain,
    ! [X34,X35] :
      ( ( c(X34) != X35
        | complement(X34,X35)
        | ~ test(X34) )
      & ( ~ complement(X34,X35)
        | c(X34) = X35
        | ~ test(X34) ) ),
    inference(distribute,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[test_3])])]) ).

fof(c_0_17,plain,
    ! [X21,X22,X23] : multiplication(addition(X21,X22),X23) = addition(multiplication(X21,X23),multiplication(X22,X23)),
    inference(variable_rename,[status(thm)],[left_distributivity]) ).

cnf(c_0_18,plain,
    ( addition(X1,X2) = one
    | ~ complement(X2,X1) ),
    inference(split_conjunct,[status(thm)],[c_0_14]) ).

cnf(c_0_19,plain,
    ( complement(esk1_1(X1),X1)
    | ~ test(X1) ),
    inference(split_conjunct,[status(thm)],[c_0_15]) ).

fof(c_0_20,plain,
    ! [X17] : multiplication(one,X17) = X17,
    inference(variable_rename,[status(thm)],[multiplicative_left_identity]) ).

cnf(c_0_21,plain,
    ( complement(X1,X2)
    | c(X1) != X2
    | ~ test(X1) ),
    inference(split_conjunct,[status(thm)],[c_0_16]) ).

cnf(c_0_22,plain,
    multiplication(addition(X1,X2),X3) = addition(multiplication(X1,X3),multiplication(X2,X3)),
    inference(split_conjunct,[status(thm)],[c_0_17]) ).

cnf(c_0_23,plain,
    ( addition(X1,esk1_1(X1)) = one
    | ~ test(X1) ),
    inference(spm,[status(thm)],[c_0_18,c_0_19]) ).

cnf(c_0_24,plain,
    multiplication(one,X1) = X1,
    inference(split_conjunct,[status(thm)],[c_0_20]) ).

cnf(c_0_25,plain,
    ( multiplication(X1,X2) = zero
    | ~ complement(X1,X2) ),
    inference(split_conjunct,[status(thm)],[c_0_14]) ).

fof(c_0_26,plain,
    ! [X11] : addition(X11,zero) = X11,
    inference(variable_rename,[status(thm)],[additive_identity]) ).

fof(c_0_27,negated_conjecture,
    ~ ! [X4,X5] :
        ( ( test(X5)
          & test(X4) )
       => multiplication(X4,X5) = multiplication(X5,X4) ),
    inference(assume_negation,[status(cth)],[goals]) ).

fof(c_0_28,plain,
    ! [X13,X14,X15] : multiplication(X13,multiplication(X14,X15)) = multiplication(multiplication(X13,X14),X15),
    inference(variable_rename,[status(thm)],[multiplicative_associativity]) ).

cnf(c_0_29,plain,
    ( multiplication(X1,X2) = zero
    | ~ complement(X2,X1) ),
    inference(split_conjunct,[status(thm)],[c_0_14]) ).

cnf(c_0_30,plain,
    ( complement(X1,c(X1))
    | ~ test(X1) ),
    inference(er,[status(thm)],[c_0_21]) ).

fof(c_0_31,plain,
    ! [X25] : multiplication(zero,X25) = zero,
    inference(variable_rename,[status(thm)],[left_annihilation]) ).

cnf(c_0_32,plain,
    ( addition(multiplication(X1,X2),multiplication(esk1_1(X1),X2)) = X2
    | ~ test(X1) ),
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_22,c_0_23]),c_0_24]) ).

cnf(c_0_33,plain,
    ( multiplication(esk1_1(X1),X1) = zero
    | ~ test(X1) ),
    inference(spm,[status(thm)],[c_0_25,c_0_19]) ).

cnf(c_0_34,plain,
    addition(X1,zero) = X1,
    inference(split_conjunct,[status(thm)],[c_0_26]) ).

fof(c_0_35,negated_conjecture,
    ( test(esk3_0)
    & test(esk2_0)
    & multiplication(esk2_0,esk3_0) != multiplication(esk3_0,esk2_0) ),
    inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_27])])]) ).

fof(c_0_36,plain,
    ! [X6,X7] : addition(X6,X7) = addition(X7,X6),
    inference(variable_rename,[status(thm)],[additive_commutativity]) ).

fof(c_0_37,plain,
    ! [X18,X19,X20] : multiplication(X18,addition(X19,X20)) = addition(multiplication(X18,X19),multiplication(X18,X20)),
    inference(variable_rename,[status(thm)],[right_distributivity]) ).

fof(c_0_38,plain,
    ! [X16] : multiplication(X16,one) = X16,
    inference(variable_rename,[status(thm)],[multiplicative_right_identity]) ).

cnf(c_0_39,plain,
    multiplication(X1,multiplication(X2,X3)) = multiplication(multiplication(X1,X2),X3),
    inference(split_conjunct,[status(thm)],[c_0_28]) ).

cnf(c_0_40,plain,
    ( multiplication(c(X1),X1) = zero
    | ~ test(X1) ),
    inference(spm,[status(thm)],[c_0_29,c_0_30]) ).

cnf(c_0_41,plain,
    multiplication(zero,X1) = zero,
    inference(split_conjunct,[status(thm)],[c_0_31]) ).

cnf(c_0_42,plain,
    ( multiplication(X1,X1) = X1
    | ~ test(X1) ),
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_32,c_0_33]),c_0_34]) ).

cnf(c_0_43,negated_conjecture,
    test(esk3_0),
    inference(split_conjunct,[status(thm)],[c_0_35]) ).

cnf(c_0_44,plain,
    ( multiplication(X1,esk1_1(X1)) = zero
    | ~ test(X1) ),
    inference(spm,[status(thm)],[c_0_29,c_0_19]) ).

cnf(c_0_45,negated_conjecture,
    test(esk2_0),
    inference(split_conjunct,[status(thm)],[c_0_35]) ).

cnf(c_0_46,plain,
    addition(X1,X2) = addition(X2,X1),
    inference(split_conjunct,[status(thm)],[c_0_36]) ).

cnf(c_0_47,plain,
    multiplication(X1,addition(X2,X3)) = addition(multiplication(X1,X2),multiplication(X1,X3)),
    inference(split_conjunct,[status(thm)],[c_0_37]) ).

cnf(c_0_48,plain,
    multiplication(X1,one) = X1,
    inference(split_conjunct,[status(thm)],[c_0_38]) ).

cnf(c_0_49,plain,
    ( multiplication(c(X1),multiplication(X1,X2)) = zero
    | ~ test(X1) ),
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_39,c_0_40]),c_0_41]) ).

cnf(c_0_50,negated_conjecture,
    multiplication(esk3_0,esk3_0) = esk3_0,
    inference(spm,[status(thm)],[c_0_42,c_0_43]) ).

cnf(c_0_51,plain,
    ( multiplication(X1,multiplication(X2,esk1_1(multiplication(X1,X2)))) = zero
    | ~ test(multiplication(X1,X2)) ),
    inference(spm,[status(thm)],[c_0_39,c_0_44]) ).

cnf(c_0_52,negated_conjecture,
    multiplication(esk2_0,esk2_0) = esk2_0,
    inference(spm,[status(thm)],[c_0_42,c_0_45]) ).

fof(c_0_53,plain,
    ! [X8,X9,X10] : addition(X10,addition(X9,X8)) = addition(addition(X10,X9),X8),
    inference(variable_rename,[status(thm)],[additive_associativity]) ).

fof(c_0_54,plain,
    ! [X12] : addition(X12,X12) = X12,
    inference(variable_rename,[status(thm)],[additive_idempotence]) ).

cnf(c_0_55,plain,
    ( addition(X1,c(X1)) = one
    | ~ test(X1) ),
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_18,c_0_30]),c_0_46]) ).

cnf(c_0_56,plain,
    ( addition(multiplication(X1,X2),multiplication(X1,esk1_1(X2))) = X1
    | ~ test(X2) ),
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_47,c_0_23]),c_0_48]) ).

cnf(c_0_57,negated_conjecture,
    multiplication(c(esk3_0),esk3_0) = zero,
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_49,c_0_50]),c_0_43])]) ).

cnf(c_0_58,plain,
    addition(zero,X1) = X1,
    inference(spm,[status(thm)],[c_0_34,c_0_46]) ).

cnf(c_0_59,negated_conjecture,
    multiplication(esk3_0,multiplication(esk3_0,esk1_1(esk3_0))) = zero,
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_51,c_0_50]),c_0_43])]) ).

cnf(c_0_60,negated_conjecture,
    multiplication(esk3_0,multiplication(esk3_0,X1)) = multiplication(esk3_0,X1),
    inference(spm,[status(thm)],[c_0_39,c_0_50]) ).

cnf(c_0_61,negated_conjecture,
    multiplication(c(esk2_0),esk2_0) = zero,
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_49,c_0_52]),c_0_45])]) ).

cnf(c_0_62,negated_conjecture,
    multiplication(esk2_0,multiplication(esk2_0,esk1_1(esk2_0))) = zero,
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_51,c_0_52]),c_0_45])]) ).

cnf(c_0_63,negated_conjecture,
    multiplication(esk2_0,multiplication(esk2_0,X1)) = multiplication(esk2_0,X1),
    inference(spm,[status(thm)],[c_0_39,c_0_52]) ).

cnf(c_0_64,plain,
    addition(X1,addition(X2,X3)) = addition(addition(X1,X2),X3),
    inference(split_conjunct,[status(thm)],[c_0_53]) ).

cnf(c_0_65,plain,
    addition(X1,X1) = X1,
    inference(split_conjunct,[status(thm)],[c_0_54]) ).

cnf(c_0_66,plain,
    ( multiplication(X1,c(X1)) = zero
    | ~ test(X1) ),
    inference(spm,[status(thm)],[c_0_25,c_0_30]) ).

cnf(c_0_67,plain,
    ( addition(multiplication(X1,X2),multiplication(c(X1),X2)) = X2
    | ~ test(X1) ),
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_22,c_0_55]),c_0_24]) ).

cnf(c_0_68,negated_conjecture,
    multiplication(c(esk3_0),esk1_1(esk3_0)) = c(esk3_0),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_56,c_0_57]),c_0_58]),c_0_43])]) ).

cnf(c_0_69,negated_conjecture,
    multiplication(esk3_0,esk1_1(esk3_0)) = zero,
    inference(rw,[status(thm)],[c_0_59,c_0_60]) ).

cnf(c_0_70,negated_conjecture,
    multiplication(c(esk2_0),esk1_1(esk2_0)) = c(esk2_0),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_56,c_0_61]),c_0_58]),c_0_45])]) ).

cnf(c_0_71,negated_conjecture,
    multiplication(esk2_0,esk1_1(esk2_0)) = zero,
    inference(rw,[status(thm)],[c_0_62,c_0_63]) ).

cnf(c_0_72,plain,
    addition(X1,addition(X1,X2)) = addition(X1,X2),
    inference(spm,[status(thm)],[c_0_64,c_0_65]) ).

cnf(c_0_73,plain,
    ( multiplication(X1,multiplication(X2,c(multiplication(X1,X2)))) = zero
    | ~ test(multiplication(X1,X2)) ),
    inference(spm,[status(thm)],[c_0_39,c_0_66]) ).

cnf(c_0_74,plain,
    ( complement(X2,X1)
    | multiplication(X1,X2) != zero
    | multiplication(X2,X1) != zero
    | addition(X1,X2) != one ),
    inference(split_conjunct,[status(thm)],[c_0_14]) ).

cnf(c_0_75,negated_conjecture,
    esk1_1(esk3_0) = c(esk3_0),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_67,c_0_68]),c_0_69]),c_0_58]),c_0_43])]) ).

cnf(c_0_76,negated_conjecture,
    esk1_1(esk2_0) = c(esk2_0),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_67,c_0_70]),c_0_71]),c_0_58]),c_0_45])]) ).

cnf(c_0_77,plain,
    ( addition(X1,one) = one
    | ~ test(X1) ),
    inference(spm,[status(thm)],[c_0_72,c_0_23]) ).

cnf(c_0_78,negated_conjecture,
    multiplication(esk3_0,c(esk3_0)) = zero,
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_73,c_0_50]),c_0_60]),c_0_43])]) ).

cnf(c_0_79,plain,
    ( complement(X1,X2)
    | addition(X1,X2) != one
    | multiplication(X1,X2) != zero
    | multiplication(X2,X1) != zero ),
    inference(spm,[status(thm)],[c_0_74,c_0_46]) ).

cnf(c_0_80,negated_conjecture,
    addition(esk3_0,c(esk3_0)) = one,
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_23,c_0_75]),c_0_43])]) ).

cnf(c_0_81,negated_conjecture,
    multiplication(esk2_0,c(esk2_0)) = zero,
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_73,c_0_52]),c_0_63]),c_0_45])]) ).

cnf(c_0_82,negated_conjecture,
    addition(esk2_0,c(esk2_0)) = one,
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_23,c_0_76]),c_0_45])]) ).

cnf(c_0_83,plain,
    ( c(X1) = X2
    | ~ complement(X1,X2)
    | ~ test(X1) ),
    inference(split_conjunct,[status(thm)],[c_0_16]) ).

cnf(c_0_84,negated_conjecture,
    addition(one,esk2_0) = one,
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_77,c_0_45]),c_0_46]) ).

cnf(c_0_85,negated_conjecture,
    multiplication(esk1_1(esk3_0),c(esk3_0)) = c(esk3_0),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_32,c_0_78]),c_0_58]),c_0_43])]) ).

cnf(c_0_86,plain,
    ( test(X2)
    | ~ complement(X1,X2) ),
    inference(split_conjunct,[status(thm)],[c_0_15]) ).

cnf(c_0_87,negated_conjecture,
    complement(esk3_0,c(esk3_0)),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_79,c_0_80]),c_0_78]),c_0_57])]) ).

cnf(c_0_88,negated_conjecture,
    addition(one,esk3_0) = one,
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_77,c_0_43]),c_0_46]) ).

cnf(c_0_89,negated_conjecture,
    multiplication(esk1_1(esk2_0),c(esk2_0)) = c(esk2_0),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_32,c_0_81]),c_0_58]),c_0_45])]) ).

cnf(c_0_90,negated_conjecture,
    complement(esk2_0,c(esk2_0)),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_79,c_0_82]),c_0_81]),c_0_61])]) ).

cnf(c_0_91,plain,
    ( c(esk1_1(X1)) = X1
    | ~ test(esk1_1(X1))
    | ~ test(X1) ),
    inference(spm,[status(thm)],[c_0_83,c_0_19]) ).

cnf(c_0_92,plain,
    ( addition(multiplication(esk1_1(addition(X1,X2)),X1),multiplication(esk1_1(addition(X1,X2)),X2)) = zero
    | ~ test(addition(X1,X2)) ),
    inference(spm,[status(thm)],[c_0_33,c_0_47]) ).

cnf(c_0_93,negated_conjecture,
    addition(X1,multiplication(esk2_0,X1)) = X1,
    inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_22,c_0_84]),c_0_24]),c_0_24]) ).

cnf(c_0_94,plain,
    ( multiplication(esk1_1(X1),multiplication(X1,X2)) = zero
    | ~ test(X1) ),
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_39,c_0_33]),c_0_41]) ).

cnf(c_0_95,negated_conjecture,
    multiplication(c(esk3_0),c(esk3_0)) = c(esk3_0),
    inference(rw,[status(thm)],[c_0_85,c_0_75]) ).

cnf(c_0_96,negated_conjecture,
    test(c(esk3_0)),
    inference(spm,[status(thm)],[c_0_86,c_0_87]) ).

cnf(c_0_97,negated_conjecture,
    ( multiplication(esk1_1(c(esk3_0)),esk3_0) = esk3_0
    | ~ test(c(esk3_0)) ),
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_32,c_0_57]),c_0_58]) ).

cnf(c_0_98,plain,
    ( test(c(X1))
    | ~ test(X1) ),
    inference(spm,[status(thm)],[c_0_86,c_0_30]) ).

cnf(c_0_99,negated_conjecture,
    addition(X1,multiplication(esk3_0,X1)) = X1,
    inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_22,c_0_88]),c_0_24]),c_0_24]) ).

cnf(c_0_100,negated_conjecture,
    multiplication(c(esk2_0),c(esk2_0)) = c(esk2_0),
    inference(rw,[status(thm)],[c_0_89,c_0_76]) ).

cnf(c_0_101,negated_conjecture,
    test(c(esk2_0)),
    inference(spm,[status(thm)],[c_0_86,c_0_90]) ).

cnf(c_0_102,negated_conjecture,
    ( c(c(esk2_0)) = esk2_0
    | ~ test(c(esk2_0)) ),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_91,c_0_76]),c_0_45])]) ).

cnf(c_0_103,negated_conjecture,
    ( multiplication(esk1_1(c(esk2_0)),esk2_0) = esk2_0
    | ~ test(c(esk2_0)) ),
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_32,c_0_61]),c_0_58]) ).

cnf(c_0_104,negated_conjecture,
    ( addition(multiplication(esk1_1(X1),X1),multiplication(esk1_1(X1),multiplication(esk2_0,X1))) = zero
    | ~ test(X1) ),
    inference(spm,[status(thm)],[c_0_92,c_0_93]) ).

cnf(c_0_105,plain,
    ( addition(multiplication(X1,X2),multiplication(X1,c(X2))) = X1
    | ~ test(X2) ),
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_47,c_0_55]),c_0_48]) ).

cnf(c_0_106,negated_conjecture,
    multiplication(esk1_1(c(esk3_0)),c(esk3_0)) = zero,
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_94,c_0_95]),c_0_96])]) ).

cnf(c_0_107,negated_conjecture,
    multiplication(esk1_1(c(esk3_0)),esk3_0) = esk3_0,
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_97,c_0_98]),c_0_43])]) ).

cnf(c_0_108,negated_conjecture,
    ( addition(multiplication(esk1_1(X1),X1),multiplication(esk1_1(X1),multiplication(esk3_0,X1))) = zero
    | ~ test(X1) ),
    inference(spm,[status(thm)],[c_0_92,c_0_99]) ).

cnf(c_0_109,negated_conjecture,
    multiplication(esk1_1(c(esk2_0)),c(esk2_0)) = zero,
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_94,c_0_100]),c_0_101])]) ).

cnf(c_0_110,negated_conjecture,
    c(c(esk2_0)) = esk2_0,
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_102,c_0_98]),c_0_45])]) ).

cnf(c_0_111,negated_conjecture,
    multiplication(esk1_1(c(esk2_0)),esk2_0) = esk2_0,
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_103,c_0_98]),c_0_45])]) ).

cnf(c_0_112,negated_conjecture,
    addition(X1,multiplication(X1,esk3_0)) = X1,
    inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_47,c_0_88]),c_0_48]),c_0_48]) ).

cnf(c_0_113,negated_conjecture,
    multiplication(c(esk3_0),multiplication(esk2_0,esk3_0)) = zero,
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_104,c_0_75]),c_0_57]),c_0_58]),c_0_43])]) ).

cnf(c_0_114,negated_conjecture,
    esk1_1(c(esk3_0)) = esk3_0,
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_105,c_0_106]),c_0_107]),c_0_34]),c_0_43])]) ).

cnf(c_0_115,negated_conjecture,
    addition(X1,multiplication(X1,esk2_0)) = X1,
    inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_47,c_0_84]),c_0_48]),c_0_48]) ).

cnf(c_0_116,negated_conjecture,
    multiplication(c(esk2_0),multiplication(esk3_0,esk2_0)) = zero,
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_108,c_0_76]),c_0_61]),c_0_58]),c_0_45])]) ).

cnf(c_0_117,negated_conjecture,
    esk1_1(c(esk2_0)) = esk2_0,
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_105,c_0_109]),c_0_110]),c_0_111]),c_0_58]),c_0_101])]) ).

cnf(c_0_118,negated_conjecture,
    addition(multiplication(X1,X2),multiplication(X1,multiplication(X2,esk3_0))) = multiplication(X1,X2),
    inference(spm,[status(thm)],[c_0_47,c_0_112]) ).

cnf(c_0_119,negated_conjecture,
    multiplication(esk3_0,multiplication(esk2_0,esk3_0)) = multiplication(esk2_0,esk3_0),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_32,c_0_113]),c_0_114]),c_0_58]),c_0_96])]) ).

cnf(c_0_120,negated_conjecture,
    addition(multiplication(X1,X2),multiplication(X1,multiplication(X2,esk2_0))) = multiplication(X1,X2),
    inference(spm,[status(thm)],[c_0_47,c_0_115]) ).

cnf(c_0_121,negated_conjecture,
    multiplication(esk2_0,multiplication(esk3_0,esk2_0)) = multiplication(esk3_0,esk2_0),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_32,c_0_116]),c_0_117]),c_0_58]),c_0_101])]) ).

cnf(c_0_122,negated_conjecture,
    addition(multiplication(esk2_0,esk3_0),multiplication(esk3_0,esk2_0)) = multiplication(esk3_0,esk2_0),
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_118,c_0_119]),c_0_46]) ).

cnf(c_0_123,negated_conjecture,
    multiplication(esk2_0,esk3_0) != multiplication(esk3_0,esk2_0),
    inference(split_conjunct,[status(thm)],[c_0_35]) ).

cnf(c_0_124,negated_conjecture,
    $false,
    inference(sr,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_120,c_0_121]),c_0_122]),c_0_123]),
    [proof] ).

%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.06/0.12  % Problem  : KLE012+1 : TPTP v8.1.0. Released v4.0.0.
% 0.06/0.12  % Command  : enigmatic-eprover.py %s %d 1
% 0.12/0.33  % Computer : n027.cluster.edu
% 0.12/0.33  % Model    : x86_64 x86_64
% 0.12/0.33  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.12/0.33  % Memory   : 8042.1875MB
% 0.12/0.33  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.12/0.33  % CPULimit : 300
% 0.12/0.33  % WCLimit  : 600
% 0.12/0.33  % DateTime : Thu Jun 16 14:10:52 EDT 2022
% 0.12/0.34  % CPUTime  : 
% 0.19/0.44  # ENIGMATIC: Selected SinE mode:
% 0.19/0.45  # Parsing /export/starexec/sandbox2/benchmark/theBenchmark.p
% 0.19/0.45  # Filter: axfilter_auto   0 goes into file theBenchmark_axfilter_auto   0.p
% 0.19/0.45  # Filter: axfilter_auto   1 goes into file theBenchmark_axfilter_auto   1.p
% 0.19/0.45  # Filter: axfilter_auto   2 goes into file theBenchmark_axfilter_auto   2.p
% 11.05/2.75  # ENIGMATIC: Solved by autoschedule:
% 11.05/2.75  # No SInE strategy applied
% 11.05/2.75  # Trying AutoSched0 for 150 seconds
% 11.05/2.75  # AutoSched0-Mode selected heuristic G_E___208_B00_00_F1_SE_CS_SP_PS_S083N
% 11.05/2.75  # and selection function SelectCQArNT.
% 11.05/2.75  #
% 11.05/2.75  # Preprocessing time       : 0.025 s
% 11.05/2.75  # Presaturation interreduction done
% 11.05/2.75  
% 11.05/2.75  # Proof found!
% 11.05/2.75  # SZS status Theorem
% 11.05/2.75  # SZS output start CNFRefutation
% See solution above
% 11.05/2.76  # Training examples: 0 positive, 0 negative
% 11.05/2.76  
% 11.05/2.76  # -------------------------------------------------
% 11.05/2.76  # User time                : 0.274 s
% 11.05/2.76  # System time              : 0.013 s
% 11.05/2.76  # Total time               : 0.288 s
% 11.05/2.76  # Maximum resident set size: 7120 pages
% 11.05/2.76  
%------------------------------------------------------------------------------