TSTP Solution File: KLE011+1 by Twee---2.4.2

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Twee---2.4.2
% Problem  : KLE011+1 : TPTP v8.1.2. Released v4.0.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : parallel-twee %s --tstp --conditional-encoding if --smaller --drop-non-horn --give-up-on-saturation --explain-encoding --formal-proof

% Computer : n003.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Thu Aug 31 05:35:26 EDT 2023

% Result   : Theorem 0.21s 0.60s
% Output   : Proof 1.90s
% Verified : 
% SZS Type : -

% Comments : 
%------------------------------------------------------------------------------
%----WARNING: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.11/0.12  % Problem  : KLE011+1 : TPTP v8.1.2. Released v4.0.0.
% 0.11/0.13  % Command  : parallel-twee %s --tstp --conditional-encoding if --smaller --drop-non-horn --give-up-on-saturation --explain-encoding --formal-proof
% 0.13/0.34  % Computer : n003.cluster.edu
% 0.13/0.34  % Model    : x86_64 x86_64
% 0.13/0.34  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.13/0.34  % Memory   : 8042.1875MB
% 0.13/0.34  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.13/0.34  % CPULimit : 300
% 0.13/0.34  % WCLimit  : 300
% 0.13/0.34  % DateTime : Tue Aug 29 11:33:40 EDT 2023
% 0.13/0.35  % CPUTime  : 
% 0.21/0.60  Command-line arguments: --lhs-weight 1 --flip-ordering --normalise-queue-percent 10 --cp-renormalise-threshold 10
% 0.21/0.60  
% 0.21/0.60  % SZS status Theorem
% 0.21/0.60  
% 0.21/0.60  % SZS output start Proof
% 0.21/0.60  Take the following subset of the input axioms:
% 0.21/0.61    fof(additive_associativity, axiom, ![A, B, C]: addition(A, addition(B, C))=addition(addition(A, B), C)).
% 0.21/0.61    fof(additive_commutativity, axiom, ![A2, B2]: addition(A2, B2)=addition(B2, A2)).
% 0.21/0.61    fof(additive_idempotence, axiom, ![A2]: addition(A2, A2)=A2).
% 0.21/0.61    fof(goals, conjecture, ![X0, X1]: ((test(X1) & test(X0)) => one=addition(addition(multiplication(addition(X1, c(X1)), X0), multiplication(addition(X0, c(X0)), X1)), multiplication(c(X0), c(X1))))).
% 0.21/0.61    fof(left_distributivity, axiom, ![A2, B2, C2]: multiplication(addition(A2, B2), C2)=addition(multiplication(A2, C2), multiplication(B2, C2))).
% 0.21/0.61    fof(multiplicative_left_identity, axiom, ![A2]: multiplication(one, A2)=A2).
% 0.21/0.61    fof(multiplicative_right_identity, axiom, ![A2]: multiplication(A2, one)=A2).
% 0.21/0.61    fof(right_distributivity, axiom, ![A2, B2, C2]: multiplication(A2, addition(B2, C2))=addition(multiplication(A2, B2), multiplication(A2, C2))).
% 0.21/0.61    fof(test_1, axiom, ![X0_2]: (test(X0_2) <=> ?[X1_2]: complement(X1_2, X0_2))).
% 0.21/0.61    fof(test_2, axiom, ![X0_2, X1_2]: (complement(X1_2, X0_2) <=> (multiplication(X0_2, X1_2)=zero & (multiplication(X1_2, X0_2)=zero & addition(X0_2, X1_2)=one)))).
% 0.21/0.61    fof(test_3, axiom, ![X0_2, X1_2]: (test(X0_2) => (c(X0_2)=X1_2 <=> complement(X0_2, X1_2)))).
% 0.21/0.61  
% 0.21/0.61  Now clausify the problem and encode Horn clauses using encoding 3 of
% 0.21/0.61  http://www.cse.chalmers.se/~nicsma/papers/horn.pdf.
% 0.21/0.61  We repeatedly replace C & s=t => u=v by the two clauses:
% 0.21/0.61    fresh(y, y, x1...xn) = u
% 0.21/0.61    C => fresh(s, t, x1...xn) = v
% 0.21/0.61  where fresh is a fresh function symbol and x1..xn are the free
% 0.21/0.61  variables of u and v.
% 0.21/0.61  A predicate p(X) is encoded as p(X)=true (this is sound, because the
% 0.21/0.61  input problem has no model of domain size 1).
% 0.21/0.61  
% 0.21/0.61  The encoding turns the above axioms into the following unit equations and goals:
% 0.21/0.61  
% 0.21/0.61  Axiom 1 (goals): test(x1) = true.
% 0.21/0.61  Axiom 2 (goals_1): test(x0) = true.
% 0.21/0.61  Axiom 3 (additive_idempotence): addition(X, X) = X.
% 0.21/0.61  Axiom 4 (additive_commutativity): addition(X, Y) = addition(Y, X).
% 0.21/0.61  Axiom 5 (multiplicative_right_identity): multiplication(X, one) = X.
% 0.21/0.61  Axiom 6 (multiplicative_left_identity): multiplication(one, X) = X.
% 0.21/0.61  Axiom 7 (test_1): fresh12(X, X, Y) = true.
% 0.21/0.61  Axiom 8 (additive_associativity): addition(X, addition(Y, Z)) = addition(addition(X, Y), Z).
% 0.21/0.61  Axiom 9 (test_1): fresh12(test(X), true, X) = complement(x1_2(X), X).
% 0.21/0.61  Axiom 10 (test_2_1): fresh8(X, X, Y, Z) = one.
% 0.21/0.61  Axiom 11 (test_3): fresh5(X, X, Y, Z) = complement(Y, Z).
% 0.21/0.61  Axiom 12 (test_3): fresh4(X, X, Y, Z) = true.
% 0.21/0.61  Axiom 13 (test_3): fresh5(test(X), true, X, Y) = fresh4(c(X), Y, X, Y).
% 0.21/0.61  Axiom 14 (right_distributivity): multiplication(X, addition(Y, Z)) = addition(multiplication(X, Y), multiplication(X, Z)).
% 0.21/0.61  Axiom 15 (left_distributivity): multiplication(addition(X, Y), Z) = addition(multiplication(X, Z), multiplication(Y, Z)).
% 0.21/0.61  Axiom 16 (test_2_1): fresh8(complement(X, Y), true, Y, X) = addition(Y, X).
% 0.21/0.61  
% 0.21/0.61  Lemma 17: addition(x1, c(x1)) = one.
% 0.21/0.61  Proof:
% 0.21/0.61    addition(x1, c(x1))
% 0.21/0.61  = { by axiom 4 (additive_commutativity) R->L }
% 0.21/0.61    addition(c(x1), x1)
% 0.21/0.61  = { by axiom 16 (test_2_1) R->L }
% 0.21/0.61    fresh8(complement(x1, c(x1)), true, c(x1), x1)
% 0.21/0.61  = { by axiom 11 (test_3) R->L }
% 0.21/0.61    fresh8(fresh5(true, true, x1, c(x1)), true, c(x1), x1)
% 0.21/0.61  = { by axiom 1 (goals) R->L }
% 0.21/0.61    fresh8(fresh5(test(x1), true, x1, c(x1)), true, c(x1), x1)
% 0.21/0.61  = { by axiom 13 (test_3) }
% 0.21/0.61    fresh8(fresh4(c(x1), c(x1), x1, c(x1)), true, c(x1), x1)
% 0.21/0.61  = { by axiom 12 (test_3) }
% 0.21/0.61    fresh8(true, true, c(x1), x1)
% 0.21/0.61  = { by axiom 10 (test_2_1) }
% 0.21/0.61    one
% 0.21/0.61  
% 0.21/0.61  Lemma 18: addition(x0, c(x0)) = one.
% 0.21/0.61  Proof:
% 0.21/0.61    addition(x0, c(x0))
% 0.21/0.61  = { by axiom 4 (additive_commutativity) R->L }
% 0.21/0.61    addition(c(x0), x0)
% 0.21/0.61  = { by axiom 16 (test_2_1) R->L }
% 0.21/0.61    fresh8(complement(x0, c(x0)), true, c(x0), x0)
% 0.21/0.61  = { by axiom 11 (test_3) R->L }
% 0.21/0.61    fresh8(fresh5(true, true, x0, c(x0)), true, c(x0), x0)
% 0.21/0.61  = { by axiom 2 (goals_1) R->L }
% 0.21/0.61    fresh8(fresh5(test(x0), true, x0, c(x0)), true, c(x0), x0)
% 0.21/0.61  = { by axiom 13 (test_3) }
% 0.21/0.61    fresh8(fresh4(c(x0), c(x0), x0, c(x0)), true, c(x0), x0)
% 0.21/0.61  = { by axiom 12 (test_3) }
% 0.21/0.61    fresh8(true, true, c(x0), x0)
% 0.21/0.61  = { by axiom 10 (test_2_1) }
% 0.21/0.61    one
% 0.21/0.61  
% 0.21/0.61  Lemma 19: addition(x0, x1_2(x0)) = one.
% 0.21/0.61  Proof:
% 0.21/0.61    addition(x0, x1_2(x0))
% 0.21/0.61  = { by axiom 16 (test_2_1) R->L }
% 0.21/0.61    fresh8(complement(x1_2(x0), x0), true, x0, x1_2(x0))
% 0.21/0.61  = { by axiom 9 (test_1) R->L }
% 0.21/0.61    fresh8(fresh12(test(x0), true, x0), true, x0, x1_2(x0))
% 0.21/0.61  = { by axiom 2 (goals_1) }
% 0.21/0.61    fresh8(fresh12(true, true, x0), true, x0, x1_2(x0))
% 0.21/0.61  = { by axiom 7 (test_1) }
% 0.21/0.61    fresh8(true, true, x0, x1_2(x0))
% 0.21/0.61  = { by axiom 10 (test_2_1) }
% 0.21/0.61    one
% 0.21/0.61  
% 0.21/0.61  Lemma 20: addition(Y, addition(X, Z)) = addition(X, addition(Y, Z)).
% 0.21/0.61  Proof:
% 0.21/0.61    addition(Y, addition(X, Z))
% 0.21/0.61  = { by axiom 4 (additive_commutativity) R->L }
% 0.21/0.61    addition(addition(X, Z), Y)
% 0.21/0.61  = { by axiom 8 (additive_associativity) R->L }
% 0.21/0.61    addition(X, addition(Z, Y))
% 0.21/0.61  = { by axiom 4 (additive_commutativity) }
% 0.21/0.61    addition(X, addition(Y, Z))
% 0.21/0.61  
% 0.21/0.61  Goal 1 (goals_2): one = addition(addition(multiplication(addition(x1, c(x1)), x0), multiplication(addition(x0, c(x0)), x1)), multiplication(c(x0), c(x1))).
% 0.21/0.61  Proof:
% 0.21/0.61    one
% 0.21/0.61  = { by lemma 19 R->L }
% 0.21/0.61    addition(x0, x1_2(x0))
% 0.21/0.61  = { by axiom 3 (additive_idempotence) R->L }
% 0.21/0.61    addition(addition(x0, x0), x1_2(x0))
% 0.21/0.61  = { by axiom 8 (additive_associativity) R->L }
% 0.21/0.61    addition(x0, addition(x0, x1_2(x0)))
% 0.21/0.61  = { by lemma 19 }
% 0.21/0.61    addition(x0, one)
% 0.21/0.61  = { by lemma 17 R->L }
% 0.21/0.61    addition(x0, addition(x1, c(x1)))
% 0.21/0.61  = { by lemma 20 }
% 0.21/0.61    addition(x1, addition(x0, c(x1)))
% 0.21/0.61  = { by axiom 4 (additive_commutativity) R->L }
% 0.21/0.61    addition(x1, addition(c(x1), x0))
% 0.21/0.61  = { by axiom 6 (multiplicative_left_identity) R->L }
% 0.21/0.61    addition(x1, addition(multiplication(one, c(x1)), x0))
% 0.21/0.62  = { by lemma 18 R->L }
% 0.21/0.62    addition(x1, addition(multiplication(addition(x0, c(x0)), c(x1)), x0))
% 0.21/0.62  = { by axiom 4 (additive_commutativity) R->L }
% 0.21/0.62    addition(x1, addition(multiplication(addition(c(x0), x0), c(x1)), x0))
% 1.90/0.62  = { by axiom 15 (left_distributivity) }
% 1.90/0.62    addition(x1, addition(addition(multiplication(c(x0), c(x1)), multiplication(x0, c(x1))), x0))
% 1.90/0.62  = { by axiom 8 (additive_associativity) R->L }
% 1.90/0.62    addition(x1, addition(multiplication(c(x0), c(x1)), addition(multiplication(x0, c(x1)), x0)))
% 1.90/0.62  = { by axiom 4 (additive_commutativity) }
% 1.90/0.62    addition(x1, addition(multiplication(c(x0), c(x1)), addition(x0, multiplication(x0, c(x1)))))
% 1.90/0.62  = { by axiom 5 (multiplicative_right_identity) R->L }
% 1.90/0.62    addition(x1, addition(multiplication(c(x0), c(x1)), addition(multiplication(x0, one), multiplication(x0, c(x1)))))
% 1.90/0.62  = { by axiom 14 (right_distributivity) R->L }
% 1.90/0.62    addition(x1, addition(multiplication(c(x0), c(x1)), multiplication(x0, addition(one, c(x1)))))
% 1.90/0.62  = { by axiom 4 (additive_commutativity) R->L }
% 1.90/0.62    addition(x1, addition(multiplication(c(x0), c(x1)), multiplication(x0, addition(c(x1), one))))
% 1.90/0.62  = { by lemma 17 R->L }
% 1.90/0.62    addition(x1, addition(multiplication(c(x0), c(x1)), multiplication(x0, addition(c(x1), addition(x1, c(x1))))))
% 1.90/0.62  = { by lemma 20 }
% 1.90/0.62    addition(x1, addition(multiplication(c(x0), c(x1)), multiplication(x0, addition(x1, addition(c(x1), c(x1))))))
% 1.90/0.62  = { by axiom 3 (additive_idempotence) }
% 1.90/0.62    addition(x1, addition(multiplication(c(x0), c(x1)), multiplication(x0, addition(x1, c(x1)))))
% 1.90/0.62  = { by lemma 17 }
% 1.90/0.62    addition(x1, addition(multiplication(c(x0), c(x1)), multiplication(x0, one)))
% 1.90/0.62  = { by axiom 5 (multiplicative_right_identity) }
% 1.90/0.62    addition(x1, addition(multiplication(c(x0), c(x1)), x0))
% 1.90/0.62  = { by axiom 4 (additive_commutativity) }
% 1.90/0.62    addition(x1, addition(x0, multiplication(c(x0), c(x1))))
% 1.90/0.62  = { by axiom 6 (multiplicative_left_identity) R->L }
% 1.90/0.62    addition(x1, addition(multiplication(one, x0), multiplication(c(x0), c(x1))))
% 1.90/0.62  = { by lemma 17 R->L }
% 1.90/0.62    addition(x1, addition(multiplication(addition(x1, c(x1)), x0), multiplication(c(x0), c(x1))))
% 1.90/0.62  = { by axiom 6 (multiplicative_left_identity) R->L }
% 1.90/0.62    addition(multiplication(one, x1), addition(multiplication(addition(x1, c(x1)), x0), multiplication(c(x0), c(x1))))
% 1.90/0.62  = { by lemma 18 R->L }
% 1.90/0.62    addition(multiplication(addition(x0, c(x0)), x1), addition(multiplication(addition(x1, c(x1)), x0), multiplication(c(x0), c(x1))))
% 1.90/0.62  = { by lemma 20 }
% 1.90/0.62    addition(multiplication(addition(x1, c(x1)), x0), addition(multiplication(addition(x0, c(x0)), x1), multiplication(c(x0), c(x1))))
% 1.90/0.62  = { by axiom 8 (additive_associativity) }
% 1.90/0.62    addition(addition(multiplication(addition(x1, c(x1)), x0), multiplication(addition(x0, c(x0)), x1)), multiplication(c(x0), c(x1)))
% 1.90/0.62  % SZS output end Proof
% 1.90/0.62  
% 1.90/0.62  RESULT: Theorem (the conjecture is true).
%------------------------------------------------------------------------------