TSTP Solution File: GRP710-11 by Otter---3.3

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Otter---3.3
% Problem  : GRP710-11 : TPTP v8.1.0. Released v8.1.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : otter-tptp-script %s

% Computer : n024.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Wed Jul 27 12:57:43 EDT 2022

% Result   : Unsatisfiable 1.68s 1.91s
% Output   : Refutation 1.68s
% Verified : 
% SZS Type : Refutation
%            Derivation depth      :    8
%            Number of leaves      :    6
% Syntax   : Number of clauses     :   26 (  26 unt;   0 nHn;   5 RR)
%            Number of literals    :   26 (  25 equ;   4 neg)
%            Maximal clause size   :    1 (   1 avg)
%            Maximal term depth    :    7 (   2 avg)
%            Number of predicates  :    2 (   0 usr;   1 prp; 0-2 aty)
%            Number of functors    :    5 (   5 usr;   3 con; 0-2 aty)
%            Number of variables   :   38 (   4 sgn)

% Comments : 
%------------------------------------------------------------------------------
cnf(1,axiom,
    mult(A,x4) != x3,
    file('GRP710-11.p',unknown),
    [] ).

cnf(4,axiom,
    mult(A,unit) = A,
    file('GRP710-11.p',unknown),
    [] ).

cnf(6,axiom,
    mult(unit,A) = A,
    file('GRP710-11.p',unknown),
    [] ).

cnf(7,axiom,
    mult(A,mult(B,mult(B,C))) = mult(mult(mult(A,B),B),C),
    file('GRP710-11.p',unknown),
    [] ).

cnf(8,plain,
    mult(mult(mult(A,B),B),C) = mult(A,mult(B,mult(B,C))),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[7])]),
    [iquote('copy,7,flip.1')] ).

cnf(11,axiom,
    mult(A,i(A)) = unit,
    file('GRP710-11.p',unknown),
    [] ).

cnf(13,axiom,
    mult(i(A),A) = unit,
    file('GRP710-11.p',unknown),
    [] ).

cnf(17,plain,
    mult(A,mult(i(A),mult(i(A),B))) = mult(i(A),B),
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[8,11]),6])]),
    [iquote('para_into,8.1.1.1.1,10.1.1,demod,6,flip.1')] ).

cnf(21,plain,
    mult(mult(A,A),B) = mult(A,mult(A,B)),
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[8,6]),6]),
    [iquote('para_into,8.1.1.1.1,5.1.1,demod,6')] ).

cnf(25,plain,
    mult(A,mult(B,mult(B,i(mult(mult(A,B),B))))) = unit,
    inference(flip,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[8,11])]),
    [iquote('para_into,8.1.1,10.1.1,flip.1')] ).

cnf(28,plain,
    mult(mult(A,B),B) = mult(A,mult(B,B)),
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[8,4]),4]),
    [iquote('para_into,8.1.1,3.1.1,demod,4')] ).

cnf(29,plain,
    mult(A,mult(B,mult(B,i(mult(A,mult(B,B)))))) = unit,
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[25]),28]),
    [iquote('back_demod,25,demod,28')] ).

cnf(31,plain,
    mult(mult(A,mult(B,B)),C) = mult(A,mult(B,mult(B,C))),
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[8]),28]),
    [iquote('back_demod,8,demod,28')] ).

cnf(34,plain,
    mult(A,mult(A,i(mult(A,A)))) = unit,
    inference(flip,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[21,11])]),
    [iquote('para_into,21.1.1,10.1.1,flip.1')] ).

cnf(40,plain,
    mult(A,mult(i(A),i(A))) = i(A),
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[17,4]),4]),
    [iquote('para_into,17.1.1.2.2,3.1.1,demod,4')] ).

cnf(41,plain,
    mult(A,mult(A,mult(i(mult(A,A)),mult(i(mult(A,A)),B)))) = mult(i(mult(A,A)),B),
    inference(para_into,[status(thm),theory(equality)],[17,21]),
    [iquote('para_into,17.1.1,21.1.1')] ).

cnf(47,plain,
    mult(i(A),i(mult(i(A),i(A)))) = A,
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[34,17]),4])]),
    [iquote('para_from,34.1.1,17.1.1.2,demod,4,flip.1')] ).

cnf(52,plain,
    i(i(A)) = A,
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[40,17]),11,4,40])]),
    [iquote('para_from,39.1.1,17.1.1.2.2,demod,11,4,40,flip.1')] ).

cnf(103,plain,
    mult(i(A),mult(A,A)) = A,
    inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[52,40]),52,52]),
    [iquote('para_from,51.1.1,39.1.1.2.2,demod,52,52')] ).

cnf(124,plain,
    mult(A,mult(x4,x4)) != x3,
    inference(para_from,[status(thm),theory(equality)],[28,1]),
    [iquote('para_from,27.1.1,1.1.1')] ).

cnf(170,plain,
    mult(A,i(mult(A,A))) = i(A),
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[47,52]),52,52]),
    [iquote('para_into,47.1.1.1,51.1.1,demod,52,52')] ).

cnf(181,plain,
    mult(A,mult(i(mult(A,A)),i(mult(A,A)))) = mult(i(A),i(mult(A,A))),
    inference(flip,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[170,28])]),
    [iquote('para_from,170.1.1,27.1.1.1,flip.1')] ).

cnf(205,plain,
    mult(A,mult(B,mult(B,mult(x4,x4)))) != x3,
    inference(para_from,[status(thm),theory(equality)],[31,124]),
    [iquote('para_from,31.1.1,124.1.1')] ).

cnf(245,plain,
    mult(i(mult(A,A)),i(mult(i(A),i(mult(A,A))))) = A,
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[41,29]),4,181])]),
    [iquote('para_into,41.1.1.2,29.1.1,demod,4,181,flip.1')] ).

cnf(259,plain,
    A != x3,
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[205,103]),13,4]),
    [iquote('para_into,205.1.1.2.2,103.1.1,demod,13,4')] ).

cnf(260,plain,
    $false,
    inference(binary,[status(thm)],[259,245]),
    [iquote('binary,259.1,245.1')] ).

%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.06/0.12  % Problem  : GRP710-11 : TPTP v8.1.0. Released v8.1.0.
% 0.06/0.12  % Command  : otter-tptp-script %s
% 0.12/0.33  % Computer : n024.cluster.edu
% 0.12/0.33  % Model    : x86_64 x86_64
% 0.12/0.33  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.12/0.33  % Memory   : 8042.1875MB
% 0.12/0.33  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.12/0.33  % CPULimit : 300
% 0.12/0.33  % WCLimit  : 300
% 0.12/0.33  % DateTime : Wed Jul 27 05:06:40 EDT 2022
% 0.12/0.33  % CPUTime  : 
% 1.68/1.91  ----- Otter 3.3f, August 2004 -----
% 1.68/1.91  The process was started by sandbox2 on n024.cluster.edu,
% 1.68/1.91  Wed Jul 27 05:06:40 2022
% 1.68/1.91  The command was "./otter".  The process ID is 16466.
% 1.68/1.91  
% 1.68/1.91  set(prolog_style_variables).
% 1.68/1.91  set(auto).
% 1.68/1.91     dependent: set(auto1).
% 1.68/1.91     dependent: set(process_input).
% 1.68/1.91     dependent: clear(print_kept).
% 1.68/1.91     dependent: clear(print_new_demod).
% 1.68/1.91     dependent: clear(print_back_demod).
% 1.68/1.91     dependent: clear(print_back_sub).
% 1.68/1.91     dependent: set(control_memory).
% 1.68/1.91     dependent: assign(max_mem, 12000).
% 1.68/1.91     dependent: assign(pick_given_ratio, 4).
% 1.68/1.91     dependent: assign(stats_level, 1).
% 1.68/1.91     dependent: assign(max_seconds, 10800).
% 1.68/1.91  clear(print_given).
% 1.68/1.91  
% 1.68/1.91  list(usable).
% 1.68/1.91  0 [] A=A.
% 1.68/1.91  0 [] mult(A,unit)=A.
% 1.68/1.91  0 [] mult(unit,A)=A.
% 1.68/1.91  0 [] mult(A,mult(B,mult(B,C)))=mult(mult(mult(A,B),B),C).
% 1.68/1.91  0 [] mult(A,i(A))=unit.
% 1.68/1.91  0 [] mult(i(A),A)=unit.
% 1.68/1.91  0 [] mult(X5,x4)!=x3.
% 1.68/1.91  end_of_list.
% 1.68/1.91  
% 1.68/1.91  SCAN INPUT: prop=0, horn=1, equality=1, symmetry=0, max_lits=1.
% 1.68/1.91  
% 1.68/1.91  All clauses are units, and equality is present; the
% 1.68/1.91  strategy will be Knuth-Bendix with positive clauses in sos.
% 1.68/1.91  
% 1.68/1.91     dependent: set(knuth_bendix).
% 1.68/1.91     dependent: set(anl_eq).
% 1.68/1.91     dependent: set(para_from).
% 1.68/1.91     dependent: set(para_into).
% 1.68/1.91     dependent: clear(para_from_right).
% 1.68/1.91     dependent: clear(para_into_right).
% 1.68/1.91     dependent: set(para_from_vars).
% 1.68/1.91     dependent: set(eq_units_both_ways).
% 1.68/1.91     dependent: set(dynamic_demod_all).
% 1.68/1.91     dependent: set(dynamic_demod).
% 1.68/1.91     dependent: set(order_eq).
% 1.68/1.91     dependent: set(back_demod).
% 1.68/1.91     dependent: set(lrpo).
% 1.68/1.91  
% 1.68/1.91  ------------> process usable:
% 1.68/1.91  ** KEPT (pick-wt=5): 1 [] mult(A,x4)!=x3.
% 1.68/1.91  
% 1.68/1.91  ------------> process sos:
% 1.68/1.91  ** KEPT (pick-wt=3): 2 [] A=A.
% 1.68/1.91  ** KEPT (pick-wt=5): 3 [] mult(A,unit)=A.
% 1.68/1.91  ---> New Demodulator: 4 [new_demod,3] mult(A,unit)=A.
% 1.68/1.91  ** KEPT (pick-wt=5): 5 [] mult(unit,A)=A.
% 1.68/1.91  ---> New Demodulator: 6 [new_demod,5] mult(unit,A)=A.
% 1.68/1.91  ** KEPT (pick-wt=15): 8 [copy,7,flip.1] mult(mult(mult(A,B),B),C)=mult(A,mult(B,mult(B,C))).
% 1.68/1.91  ---> New Demodulator: 9 [new_demod,8] mult(mult(mult(A,B),B),C)=mult(A,mult(B,mult(B,C))).
% 1.68/1.91  ** KEPT (pick-wt=6): 10 [] mult(A,i(A))=unit.
% 1.68/1.91  ---> New Demodulator: 11 [new_demod,10] mult(A,i(A))=unit.
% 1.68/1.91  ** KEPT (pick-wt=6): 12 [] mult(i(A),A)=unit.
% 1.68/1.91  ---> New Demodulator: 13 [new_demod,12] mult(i(A),A)=unit.
% 1.68/1.91    Following clause subsumed by 2 during input processing: 0 [copy,2,flip.1] A=A.
% 1.68/1.91  >>>> Starting back demodulation with 4.
% 1.68/1.91  >>>> Starting back demodulation with 6.
% 1.68/1.91  >>>> Starting back demodulation with 9.
% 1.68/1.91  >>>> Starting back demodulation with 11.
% 1.68/1.91  >>>> Starting back demodulation with 13.
% 1.68/1.91  
% 1.68/1.91  ======= end of input processing =======
% 1.68/1.91  
% 1.68/1.91  =========== start of search ===========
% 1.68/1.91  
% 1.68/1.91  -------- PROOF -------- 
% 1.68/1.91  
% 1.68/1.91  ----> UNIT CONFLICT at   0.01 sec ----> 260 [binary,259.1,245.1] $F.
% 1.68/1.91  
% 1.68/1.91  Length of proof is 19.  Level of proof is 7.
% 1.68/1.91  
% 1.68/1.91  ---------------- PROOF ----------------
% 1.68/1.91  % SZS status Unsatisfiable
% 1.68/1.91  % SZS output start Refutation
% See solution above
% 1.68/1.91  ------------ end of proof -------------
% 1.68/1.91  
% 1.68/1.91  
% 1.68/1.91  Search stopped by max_proofs option.
% 1.68/1.91  
% 1.68/1.91  
% 1.68/1.91  Search stopped by max_proofs option.
% 1.68/1.91  
% 1.68/1.91  ============ end of search ============
% 1.68/1.91  
% 1.68/1.91  -------------- statistics -------------
% 1.68/1.91  clauses given                 38
% 1.68/1.91  clauses generated            442
% 1.68/1.91  clauses kept                 158
% 1.68/1.91  clauses forward subsumed     316
% 1.68/1.91  clauses back subsumed         16
% 1.68/1.91  Kbytes malloced             2929
% 1.68/1.91  
% 1.68/1.91  ----------- times (seconds) -----------
% 1.68/1.91  user CPU time          0.02          (0 hr, 0 min, 0 sec)
% 1.68/1.91  system CPU time        0.01          (0 hr, 0 min, 0 sec)
% 1.68/1.91  wall-clock time        1             (0 hr, 0 min, 1 sec)
% 1.68/1.91  
% 1.68/1.91  That finishes the proof of the theorem.
% 1.68/1.91  
% 1.68/1.91  Process 16466 finished Wed Jul 27 05:06:41 2022
% 1.68/1.91  Otter interrupted
% 1.68/1.91  PROOF FOUND
%------------------------------------------------------------------------------