TSTP Solution File: GRP704+1 by Otter---3.3

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Otter---3.3
% Problem  : GRP704+1 : TPTP v8.1.0. Released v4.0.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : otter-tptp-script %s

% Computer : n028.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Wed Jul 27 12:57:42 EDT 2022

% Result   : Theorem 1.79s 2.01s
% Output   : Refutation 1.79s
% Verified : 
% SZS Type : Refutation
%            Derivation depth      :   17
%            Number of leaves      :   15
% Syntax   : Number of clauses     :   69 (  65 unt;   0 nHn;   9 RR)
%            Number of literals    :   76 (  75 equ;  12 neg)
%            Maximal clause size   :    3 (   1 avg)
%            Maximal term depth    :    5 (   2 avg)
%            Number of predicates  :    2 (   0 usr;   1 prp; 0-2 aty)
%            Number of functors    :   10 (  10 usr;   7 con; 0-2 aty)
%            Number of variables   :  100 (   0 sgn)

% Comments : 
%------------------------------------------------------------------------------
cnf(1,axiom,
    ( mult(op_f,mult(dollar_c2,dollar_c1)) != mult(mult(op_f,dollar_c2),dollar_c1)
    | mult(dollar_c2,mult(dollar_c1,op_f)) != mult(mult(dollar_c2,dollar_c1),op_f)
    | mult(dollar_c2,mult(op_f,dollar_c1)) != mult(mult(dollar_c2,op_f),dollar_c1) ),
    file('GRP704+1.p',unknown),
    [] ).

cnf(2,plain,
    ( mult(mult(op_f,dollar_c2),dollar_c1) != mult(op_f,mult(dollar_c2,dollar_c1))
    | mult(mult(dollar_c2,dollar_c1),op_f) != mult(dollar_c2,mult(dollar_c1,op_f))
    | mult(mult(dollar_c2,op_f),dollar_c1) != mult(dollar_c2,mult(op_f,dollar_c1)) ),
    inference(flip,[status(thm),theory(equality)],[inference(flip,[status(thm),theory(equality)],[inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[1])])])]),
    [iquote('copy,1,flip.1,flip.2,flip.3')] ).

cnf(3,axiom,
    A = A,
    file('GRP704+1.p',unknown),
    [] ).

cnf(5,axiom,
    mult(A,ld(A,B)) = B,
    file('GRP704+1.p',unknown),
    [] ).

cnf(6,axiom,
    ld(A,mult(A,B)) = B,
    file('GRP704+1.p',unknown),
    [] ).

cnf(9,axiom,
    mult(rd(A,B),B) = A,
    file('GRP704+1.p',unknown),
    [] ).

cnf(10,axiom,
    rd(mult(A,B),B) = A,
    file('GRP704+1.p',unknown),
    [] ).

cnf(12,axiom,
    mult(A,unit) = A,
    file('GRP704+1.p',unknown),
    [] ).

cnf(15,axiom,
    mult(unit,A) = A,
    file('GRP704+1.p',unknown),
    [] ).

cnf(16,axiom,
    mult(A,mult(B,mult(B,C))) = mult(mult(mult(A,B),B),C),
    file('GRP704+1.p',unknown),
    [] ).

cnf(17,plain,
    mult(mult(mult(A,B),B),C) = mult(A,mult(B,mult(B,C))),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[16])]),
    [iquote('copy,16,flip.1')] ).

cnf(19,axiom,
    mult(op_c,mult(A,B)) = mult(mult(op_c,A),B),
    file('GRP704+1.p',unknown),
    [] ).

cnf(21,plain,
    mult(mult(op_c,A),B) = mult(op_c,mult(A,B)),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[19])]),
    [iquote('copy,19,flip.1')] ).

cnf(22,axiom,
    mult(A,mult(B,op_c)) = mult(mult(A,B),op_c),
    file('GRP704+1.p',unknown),
    [] ).

cnf(24,plain,
    mult(mult(A,B),op_c) = mult(A,mult(B,op_c)),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[22])]),
    [iquote('copy,22,flip.1')] ).

cnf(25,axiom,
    mult(A,mult(op_c,B)) = mult(mult(A,op_c),B),
    file('GRP704+1.p',unknown),
    [] ).

cnf(27,plain,
    mult(mult(A,op_c),B) = mult(A,mult(op_c,B)),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[25])]),
    [iquote('copy,25,flip.1')] ).

cnf(28,axiom,
    op_d = ld(A,mult(op_c,A)),
    file('GRP704+1.p',unknown),
    [] ).

cnf(29,plain,
    ld(A,mult(op_c,A)) = op_d,
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[28])]),
    [iquote('copy,28,flip.1')] ).

cnf(31,axiom,
    op_e = mult(mult(rd(op_c,mult(A,B)),B),A),
    file('GRP704+1.p',unknown),
    [] ).

cnf(32,plain,
    mult(mult(rd(op_c,mult(A,B)),B),A) = op_e,
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[31])]),
    [iquote('copy,31,flip.1')] ).

cnf(34,axiom,
    op_f = mult(A,mult(B,ld(mult(A,B),op_c))),
    file('GRP704+1.p',unknown),
    [] ).

cnf(35,plain,
    mult(A,mult(B,ld(mult(A,B),op_c))) = op_f,
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[34])]),
    [iquote('copy,34,flip.1')] ).

cnf(38,plain,
    ld(unit,A) = A,
    inference(para_into,[status(thm),theory(equality)],[5,15]),
    [iquote('para_into,4.1.1,14.1.1')] ).

cnf(40,plain,
    ld(A,A) = unit,
    inference(para_into,[status(thm),theory(equality)],[6,12]),
    [iquote('para_into,6.1.1.2,12.1.1')] ).

cnf(46,plain,
    rd(A,A) = unit,
    inference(para_into,[status(thm),theory(equality)],[10,15]),
    [iquote('para_into,10.1.1.1,14.1.1')] ).

cnf(47,plain,
    rd(A,ld(B,A)) = B,
    inference(para_into,[status(thm),theory(equality)],[10,5]),
    [iquote('para_into,10.1.1.1,4.1.1')] ).

cnf(53,plain,
    mult(rd(A,B),mult(B,mult(B,C))) = mult(mult(A,B),C),
    inference(flip,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[17,9])]),
    [iquote('para_into,17.1.1.1.1,8.1.1,flip.1')] ).

cnf(66,plain,
    op_d = op_c,
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[29,12]),38])]),
    [iquote('para_into,29.1.1.2,12.1.1,demod,38,flip.1')] ).

cnf(67,plain,
    ld(ld(op_c,A),A) = op_c,
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[29,5]),66]),
    [iquote('para_into,29.1.1.2,4.1.1,demod,66')] ).

cnf(69,plain,
    ld(A,mult(op_c,A)) = op_c,
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[29]),66]),
    [iquote('back_demod,29,demod,66')] ).

cnf(71,plain,
    mult(op_c,mult(ld(op_c,A),B)) = mult(A,B),
    inference(flip,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[21,5])]),
    [iquote('para_into,20.1.1.1,4.1.1,flip.1')] ).

cnf(75,plain,
    rd(mult(op_c,mult(A,B)),B) = mult(op_c,A),
    inference(para_from,[status(thm),theory(equality)],[21,10]),
    [iquote('para_from,20.1.1,10.1.1.1')] ).

cnf(80,plain,
    rd(A,op_c) = ld(op_c,A),
    inference(para_from,[status(thm),theory(equality)],[67,47]),
    [iquote('para_from,67.1.1,47.1.1.2')] ).

cnf(81,plain,
    mult(ld(op_c,A),op_c) = A,
    inference(para_from,[status(thm),theory(equality)],[67,5]),
    [iquote('para_from,67.1.1,4.1.1.2')] ).

cnf(83,plain,
    mult(A,op_c) = mult(op_c,A),
    inference(para_from,[status(thm),theory(equality)],[69,5]),
    [iquote('para_from,69.1.1,4.1.1.2')] ).

cnf(84,plain,
    mult(op_c,A) = mult(A,op_c),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[83])]),
    [iquote('copy,83,flip.1')] ).

cnf(93,plain,
    ld(op_c,mult(A,mult(B,op_c))) = mult(A,B),
    inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[24,10]),80]),
    [iquote('para_from,23.1.1,10.1.1.1,demod,80')] ).

cnf(99,plain,
    mult(A,mult(B,op_c)) = mult(op_c,mult(A,B)),
    inference(para_into,[status(thm),theory(equality)],[83,24]),
    [iquote('para_into,83.1.1,23.1.1')] ).

cnf(100,plain,
    mult(op_c,mult(A,B)) = mult(A,mult(B,op_c)),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[99])]),
    [iquote('copy,99,flip.1')] ).

cnf(106,plain,
    mult(ld(op_c,A),mult(op_c,B)) = mult(A,B),
    inference(flip,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[27,81])]),
    [iquote('para_into,26.1.1.1,81.1.1,flip.1')] ).

cnf(111,plain,
    rd(mult(A,mult(op_c,B)),B) = mult(A,op_c),
    inference(para_from,[status(thm),theory(equality)],[27,10]),
    [iquote('para_from,26.1.1,10.1.1.1')] ).

cnf(120,plain,
    op_e = op_c,
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[32,84]),24,9])]),
    [iquote('para_into,32.1.1.1.1.2,84.1.1,demod,24,9,flip.1')] ).

cnf(121,plain,
    mult(A,mult(rd(op_c,mult(A,B)),B)) = op_c,
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[32,32]),120,46,15,120]),
    [iquote('para_into,32.1.1.1.1.2,32.1.1,demod,120,46,15,120')] ).

cnf(139,plain,
    mult(mult(rd(op_c,mult(A,B)),B),A) = op_c,
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[32]),120]),
    [iquote('back_demod,32,demod,120')] ).

cnf(146,plain,
    op_f = op_c,
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[35,81]),106,5])]),
    [iquote('para_into,35.1.1.2.2.1,81.1.1,demod,106,5,flip.1')] ).

cnf(169,plain,
    ( mult(op_c,mult(dollar_c2,dollar_c1)) != mult(op_c,mult(dollar_c2,dollar_c1))
    | mult(dollar_c2,mult(dollar_c1,op_c)) != mult(dollar_c2,mult(dollar_c1,op_c))
    | mult(dollar_c2,mult(op_c,dollar_c1)) != mult(dollar_c2,mult(op_c,dollar_c1)) ),
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[2]),146,21,146,146,24,146,146,27,146]),
    [iquote('back_demod,2,demod,146,21,146,146,24,146,146,27,146')] ).

cnf(261,plain,
    mult(ld(op_c,A),B) = ld(op_c,mult(A,B)),
    inference(flip,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[71,6])]),
    [iquote('para_from,71.1.1,6.1.1.2,flip.1')] ).

cnf(265,plain,
    ld(op_c,mult(A,mult(op_c,B))) = mult(A,B),
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[106]),261]),
    [iquote('back_demod,105,demod,261')] ).

cnf(268,plain,
    mult(A,mult(B,op_c)) = mult(A,mult(op_c,B)),
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[53,84]),80,261,265,27]),
    [iquote('para_into,53.1.1.2.2,84.1.1,demod,80,261,265,27')] ).

cnf(288,plain,
    mult(A,mult(op_c,B)) = mult(A,mult(B,op_c)),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[268])]),
    [iquote('copy,268,flip.1')] ).

cnf(328,plain,
    rd(mult(A,mult(B,op_c)),B) = mult(op_c,A),
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[75,84]),24]),
    [iquote('para_into,75.1.1.1,84.1.1,demod,24')] ).

cnf(593,plain,
    mult(rd(A,mult(op_c,B)),op_c) = rd(A,B),
    inference(flip,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[111,9])]),
    [iquote('para_into,111.1.1.1,8.1.1,flip.1')] ).

cnf(692,plain,
    mult(A,rd(op_c,A)) = op_c,
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[121,83]),593]),
    [iquote('para_into,121.1.1.2.1.2,83.1.1,demod,593')] ).

cnf(722,plain,
    mult(A,rd(op_c,mult(A,op_c))) = unit,
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[121,93]),40])]),
    [iquote('para_from,121.1.1,93.1.1.2,demod,40,flip.1')] ).

cnf(741,plain,
    mult(rd(op_c,mult(A,B)),B) = ld(A,op_c),
    inference(flip,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[121,6])]),
    [iquote('para_from,121.1.1,6.1.1.2,flip.1')] ).

cnf(742,plain,
    mult(ld(A,op_c),A) = op_c,
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[139]),741]),
    [iquote('back_demod,139,demod,741')] ).

cnf(761,plain,
    rd(op_c,A) = ld(A,op_c),
    inference(flip,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[692,6])]),
    [iquote('para_from,692.1.1,6.1.1.2,flip.1')] ).

cnf(766,plain,
    mult(A,ld(mult(A,op_c),op_c)) = unit,
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[722]),761]),
    [iquote('back_demod,722,demod,761')] ).

cnf(876,plain,
    ld(ld(A,op_c),op_c) = A,
    inference(para_from,[status(thm),theory(equality)],[742,6]),
    [iquote('para_from,742.1.1,6.1.1.2')] ).

cnf(906,plain,
    ld(mult(A,op_c),op_c) = ld(A,unit),
    inference(flip,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[766,6])]),
    [iquote('para_from,766.1.1,6.1.1.2,flip.1')] ).

cnf(985,plain,
    mult(A,op_c) = ld(ld(A,unit),op_c),
    inference(flip,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[906,876])]),
    [iquote('para_from,906.1.1,876.1.1.1,flip.1')] ).

cnf(1173,plain,
    rd(mult(A,ld(ld(B,unit),op_c)),B) = mult(op_c,A),
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[328]),985]),
    [iquote('back_demod,328,demod,985')] ).

cnf(1181,plain,
    mult(A,mult(op_c,B)) = mult(A,ld(ld(B,unit),op_c)),
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[288]),985]),
    [iquote('back_demod,288,demod,985')] ).

cnf(1196,plain,
    ( mult(op_c,mult(dollar_c2,dollar_c1)) != mult(op_c,mult(dollar_c2,dollar_c1))
    | mult(dollar_c2,ld(ld(dollar_c1,unit),op_c)) != mult(dollar_c2,ld(ld(dollar_c1,unit),op_c)) ),
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[169]),985,985,1181,1181]),
    [iquote('back_demod,169,demod,985,985,1181,1181')] ).

cnf(1200,plain,
    mult(op_c,A) = ld(ld(A,unit),op_c),
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[111]),1181,1173,985]),
    [iquote('back_demod,111,demod,1181,1173,985')] ).

cnf(1206,plain,
    mult(A,ld(ld(B,unit),op_c)) = ld(ld(mult(A,B),unit),op_c),
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[100]),1200,985])]),
    [iquote('back_demod,100,demod,1200,985,flip.1')] ).

cnf(1273,plain,
    ld(ld(mult(dollar_c2,dollar_c1),unit),op_c) != ld(ld(mult(dollar_c2,dollar_c1),unit),op_c),
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[1196]),1200,1200,1206,1206]),
    [iquote('back_demod,1196,demod,1200,1200,1206,1206')] ).

cnf(1274,plain,
    $false,
    inference(binary,[status(thm)],[1273,3]),
    [iquote('binary,1273.1,3.1')] ).

%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.00/0.12  % Problem  : GRP704+1 : TPTP v8.1.0. Released v4.0.0.
% 0.11/0.12  % Command  : otter-tptp-script %s
% 0.12/0.33  % Computer : n028.cluster.edu
% 0.12/0.33  % Model    : x86_64 x86_64
% 0.12/0.33  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.12/0.33  % Memory   : 8042.1875MB
% 0.12/0.33  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.12/0.33  % CPULimit : 300
% 0.12/0.33  % WCLimit  : 300
% 0.12/0.33  % DateTime : Wed Jul 27 05:40:48 EDT 2022
% 0.12/0.33  % CPUTime  : 
% 1.75/1.96  ----- Otter 3.3f, August 2004 -----
% 1.75/1.96  The process was started by sandbox2 on n028.cluster.edu,
% 1.75/1.96  Wed Jul 27 05:40:48 2022
% 1.75/1.96  The command was "./otter".  The process ID is 32387.
% 1.75/1.96  
% 1.75/1.96  set(prolog_style_variables).
% 1.75/1.96  set(auto).
% 1.75/1.96     dependent: set(auto1).
% 1.75/1.96     dependent: set(process_input).
% 1.75/1.96     dependent: clear(print_kept).
% 1.75/1.96     dependent: clear(print_new_demod).
% 1.75/1.96     dependent: clear(print_back_demod).
% 1.75/1.96     dependent: clear(print_back_sub).
% 1.75/1.96     dependent: set(control_memory).
% 1.75/1.96     dependent: assign(max_mem, 12000).
% 1.75/1.96     dependent: assign(pick_given_ratio, 4).
% 1.75/1.96     dependent: assign(stats_level, 1).
% 1.75/1.96     dependent: assign(max_seconds, 10800).
% 1.75/1.96  clear(print_given).
% 1.75/1.96  
% 1.75/1.96  formula_list(usable).
% 1.75/1.96  all A (A=A).
% 1.75/1.96  all B A (mult(A,ld(A,B))=B).
% 1.75/1.96  all B A (ld(A,mult(A,B))=B).
% 1.75/1.96  all B A (mult(rd(A,B),B)=A).
% 1.75/1.96  all B A (rd(mult(A,B),B)=A).
% 1.75/1.96  all A (mult(A,unit)=A).
% 1.75/1.96  all A (mult(unit,A)=A).
% 1.75/1.96  all C B A (mult(A,mult(B,mult(B,C)))=mult(mult(mult(A,B),B),C)).
% 1.75/1.96  all B A (mult(op_c,mult(A,B))=mult(mult(op_c,A),B)).
% 1.75/1.96  all B A (mult(A,mult(B,op_c))=mult(mult(A,B),op_c)).
% 1.75/1.96  all B A (mult(A,mult(op_c,B))=mult(mult(A,op_c),B)).
% 1.75/1.96  all A (op_d=ld(A,mult(op_c,A))).
% 1.75/1.96  all B A (op_e=mult(mult(rd(op_c,mult(A,B)),B),A)).
% 1.75/1.96  all B A (op_f=mult(A,mult(B,ld(mult(A,B),op_c)))).
% 1.75/1.96  -(all X4 X5 (mult(op_f,mult(X4,X5))=mult(mult(op_f,X4),X5)&mult(X4,mult(X5,op_f))=mult(mult(X4,X5),op_f)&mult(X4,mult(op_f,X5))=mult(mult(X4,op_f),X5))).
% 1.75/1.96  end_of_list.
% 1.75/1.96  
% 1.75/1.96  -------> usable clausifies to:
% 1.75/1.96  
% 1.75/1.96  list(usable).
% 1.75/1.96  0 [] A=A.
% 1.75/1.96  0 [] mult(A,ld(A,B))=B.
% 1.75/1.96  0 [] ld(A,mult(A,B))=B.
% 1.75/1.96  0 [] mult(rd(A,B),B)=A.
% 1.75/1.96  0 [] rd(mult(A,B),B)=A.
% 1.75/1.96  0 [] mult(A,unit)=A.
% 1.75/1.96  0 [] mult(unit,A)=A.
% 1.75/1.96  0 [] mult(A,mult(B,mult(B,C)))=mult(mult(mult(A,B),B),C).
% 1.75/1.96  0 [] mult(op_c,mult(A,B))=mult(mult(op_c,A),B).
% 1.75/1.96  0 [] mult(A,mult(B,op_c))=mult(mult(A,B),op_c).
% 1.75/1.96  0 [] mult(A,mult(op_c,B))=mult(mult(A,op_c),B).
% 1.75/1.96  0 [] op_d=ld(A,mult(op_c,A)).
% 1.75/1.96  0 [] op_e=mult(mult(rd(op_c,mult(A,B)),B),A).
% 1.75/1.96  0 [] op_f=mult(A,mult(B,ld(mult(A,B),op_c))).
% 1.75/1.96  0 [] mult(op_f,mult($c2,$c1))!=mult(mult(op_f,$c2),$c1)|mult($c2,mult($c1,op_f))!=mult(mult($c2,$c1),op_f)|mult($c2,mult(op_f,$c1))!=mult(mult($c2,op_f),$c1).
% 1.75/1.96  end_of_list.
% 1.75/1.96  
% 1.75/1.96  SCAN INPUT: prop=0, horn=1, equality=1, symmetry=0, max_lits=3.
% 1.75/1.96  
% 1.75/1.96  This is a Horn set with equality.  The strategy will be
% 1.75/1.96  Knuth-Bendix and hyper_res, with positive clauses in
% 1.75/1.96  sos and nonpositive clauses in usable.
% 1.75/1.96  
% 1.75/1.96     dependent: set(knuth_bendix).
% 1.75/1.96     dependent: set(anl_eq).
% 1.75/1.96     dependent: set(para_from).
% 1.75/1.96     dependent: set(para_into).
% 1.75/1.96     dependent: clear(para_from_right).
% 1.75/1.96     dependent: clear(para_into_right).
% 1.75/1.96     dependent: set(para_from_vars).
% 1.75/1.96     dependent: set(eq_units_both_ways).
% 1.75/1.96     dependent: set(dynamic_demod_all).
% 1.75/1.96     dependent: set(dynamic_demod).
% 1.75/1.96     dependent: set(order_eq).
% 1.75/1.96     dependent: set(back_demod).
% 1.75/1.96     dependent: set(lrpo).
% 1.75/1.96     dependent: set(hyper_res).
% 1.75/1.96     dependent: clear(order_hyper).
% 1.75/1.96  
% 1.75/1.96  ------------> process usable:
% 1.75/1.96  ** KEPT (pick-wt=33): 2 [copy,1,flip.1,flip.2,flip.3] mult(mult(op_f,$c2),$c1)!=mult(op_f,mult($c2,$c1))|mult(mult($c2,$c1),op_f)!=mult($c2,mult($c1,op_f))|mult(mult($c2,op_f),$c1)!=mult($c2,mult(op_f,$c1)).
% 1.75/1.96  
% 1.75/1.96  ------------> process sos:
% 1.75/1.96  ** KEPT (pick-wt=3): 3 [] A=A.
% 1.75/1.96  ** KEPT (pick-wt=7): 4 [] mult(A,ld(A,B))=B.
% 1.75/1.96  ---> New Demodulator: 5 [new_demod,4] mult(A,ld(A,B))=B.
% 1.75/1.96  ** KEPT (pick-wt=7): 6 [] ld(A,mult(A,B))=B.
% 1.75/1.96  ---> New Demodulator: 7 [new_demod,6] ld(A,mult(A,B))=B.
% 1.75/1.96  ** KEPT (pick-wt=7): 8 [] mult(rd(A,B),B)=A.
% 1.75/1.96  ---> New Demodulator: 9 [new_demod,8] mult(rd(A,B),B)=A.
% 1.75/1.96  ** KEPT (pick-wt=7): 10 [] rd(mult(A,B),B)=A.
% 1.75/1.96  ---> New Demodulator: 11 [new_demod,10] rd(mult(A,B),B)=A.
% 1.75/1.96  ** KEPT (pick-wt=5): 12 [] mult(A,unit)=A.
% 1.75/1.96  ---> New Demodulator: 13 [new_demod,12] mult(A,unit)=A.
% 1.75/1.96  ** KEPT (pick-wt=5): 14 [] mult(unit,A)=A.
% 1.75/1.96  ---> New Demodulator: 15 [new_demod,14] mult(unit,A)=A.
% 1.75/1.96  ** KEPT (pick-wt=15): 17 [copy,16,flip.1] mult(mult(mult(A,B),B),C)=mult(A,mult(B,mult(B,C))).
% 1.75/1.96  ---> New Demodulator: 18 [new_demod,17] mult(mult(mult(A,B),B),C)=mult(A,mult(B,mult(B,C))).
% 1.75/1.96  ** KEPT (pick-wt=11): 20 [copy,19,flip.1] mult(mult(op_c,A),B)=mult(op_c,mult(A,B)).
% 1.75/1.96  ---> New Demodulator: 21 [new_demod,20] mult(mult(op_c,A),B)=mult(op_c,mult(A,B)).
% 1.75/1.96  ** KEPT (pick-wt=11): 23 [copy,22,flip.1] mult(mult(A,B),op_c)=mult(A,mult(B,op_c)).
% 1.79/2.01  ---> New Demodulator: 24 [new_demod,23] mult(mult(A,B),op_c)=mult(A,mult(B,op_c)).
% 1.79/2.01  ** KEPT (pick-wt=11): 26 [copy,25,flip.1] mult(mult(A,op_c),B)=mult(A,mult(op_c,B)).
% 1.79/2.01  ---> New Demodulator: 27 [new_demod,26] mult(mult(A,op_c),B)=mult(A,mult(op_c,B)).
% 1.79/2.01  ** KEPT (pick-wt=7): 29 [copy,28,flip.1] ld(A,mult(op_c,A))=op_d.
% 1.79/2.01  ---> New Demodulator: 30 [new_demod,29] ld(A,mult(op_c,A))=op_d.
% 1.79/2.01  ** KEPT (pick-wt=11): 32 [copy,31,flip.1] mult(mult(rd(op_c,mult(A,B)),B),A)=op_e.
% 1.79/2.01  ---> New Demodulator: 33 [new_demod,32] mult(mult(rd(op_c,mult(A,B)),B),A)=op_e.
% 1.79/2.01  ** KEPT (pick-wt=11): 35 [copy,34,flip.1] mult(A,mult(B,ld(mult(A,B),op_c)))=op_f.
% 1.79/2.01  ---> New Demodulator: 36 [new_demod,35] mult(A,mult(B,ld(mult(A,B),op_c)))=op_f.
% 1.79/2.01    Following clause subsumed by 3 during input processing: 0 [copy,3,flip.1] A=A.
% 1.79/2.01  >>>> Starting back demodulation with 5.
% 1.79/2.01  >>>> Starting back demodulation with 7.
% 1.79/2.01  >>>> Starting back demodulation with 9.
% 1.79/2.01  >>>> Starting back demodulation with 11.
% 1.79/2.01  >>>> Starting back demodulation with 13.
% 1.79/2.01  >>>> Starting back demodulation with 15.
% 1.79/2.01  >>>> Starting back demodulation with 18.
% 1.79/2.01  >>>> Starting back demodulation with 21.
% 1.79/2.01  >>>> Starting back demodulation with 24.
% 1.79/2.01  >>>> Starting back demodulation with 27.
% 1.79/2.01  >>>> Starting back demodulation with 30.
% 1.79/2.01  >>>> Starting back demodulation with 33.
% 1.79/2.01  >>>> Starting back demodulation with 36.
% 1.79/2.01  
% 1.79/2.01  ======= end of input processing =======
% 1.79/2.01  
% 1.79/2.01  =========== start of search ===========
% 1.79/2.01  
% 1.79/2.01  -------- PROOF -------- 
% 1.79/2.01  
% 1.79/2.01  ----> UNIT CONFLICT at   0.04 sec ----> 1274 [binary,1273.1,3.1] $F.
% 1.79/2.01  
% 1.79/2.01  Length of proof is 53.  Level of proof is 16.
% 1.79/2.01  
% 1.79/2.01  ---------------- PROOF ----------------
% 1.79/2.01  % SZS status Theorem
% 1.79/2.01  % SZS output start Refutation
% See solution above
% 1.79/2.01  ------------ end of proof -------------
% 1.79/2.01  
% 1.79/2.01  
% 1.79/2.01  Search stopped by max_proofs option.
% 1.79/2.01  
% 1.79/2.01  
% 1.79/2.01  Search stopped by max_proofs option.
% 1.79/2.01  
% 1.79/2.01  ============ end of search ============
% 1.79/2.01  
% 1.79/2.01  -------------- statistics -------------
% 1.79/2.01  clauses given                 65
% 1.79/2.01  clauses generated           1456
% 1.79/2.01  clauses kept                 682
% 1.79/2.01  clauses forward subsumed    1317
% 1.79/2.01  clauses back subsumed         18
% 1.79/2.01  Kbytes malloced             5859
% 1.79/2.01  
% 1.79/2.01  ----------- times (seconds) -----------
% 1.79/2.01  user CPU time          0.05          (0 hr, 0 min, 0 sec)
% 1.79/2.01  system CPU time        0.01          (0 hr, 0 min, 0 sec)
% 1.79/2.01  wall-clock time        2             (0 hr, 0 min, 2 sec)
% 1.79/2.01  
% 1.79/2.01  That finishes the proof of the theorem.
% 1.79/2.01  
% 1.79/2.01  Process 32387 finished Wed Jul 27 05:40:50 2022
% 1.79/2.01  Otter interrupted
% 1.79/2.01  PROOF FOUND
%------------------------------------------------------------------------------