TSTP Solution File: GRP645+1 by ET---2.0

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : ET---2.0
% Problem  : GRP645+1 : TPTP v8.1.0. Released v3.4.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : run_ET %s %d

% Computer : n014.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 600s
% DateTime : Sat Jul 16 09:02:46 EDT 2022

% Result   : Theorem 0.25s 1.42s
% Output   : CNFRefutation 0.25s
% Verified : 
% SZS Type : Refutation
%            Derivation depth      :    7
%            Number of leaves      :    5
% Syntax   : Number of formulae    :   32 (  12 unt;   0 def)
%            Number of atoms       :  208 (  19 equ)
%            Maximal formula atoms :   38 (   6 avg)
%            Number of connectives :  285 ( 109   ~; 115   |;  46   &)
%                                         (   1 <=>;  14  =>;   0  <=;   0 <~>)
%            Maximal formula depth :   16 (   6 avg)
%            Maximal term depth    :    4 (   1 avg)
%            Number of predicates  :   11 (   9 usr;   1 prp; 0-3 aty)
%            Number of functors    :   11 (  11 usr;   3 con; 0-3 aty)
%            Number of variables   :   43 (   0 sgn  26   !;   0   ?)

% Comments : 
%------------------------------------------------------------------------------
fof(t24_latsubgr,conjecture,
    ! [X1] :
      ( ( ~ v3_struct_0(X1)
        & v3_group_1(X1)
        & v4_group_1(X1)
        & l1_group_1(X1) )
     => ! [X2] :
          ( ( v1_group_1(X2)
            & m1_group_2(X2,X1) )
         => ! [X3] :
              ( ( v1_group_1(X3)
                & m1_group_2(X3,X1) )
             => k1_funct_1(k1_latsubgr(X1),k9_group_2(X1,X2,X3)) = k3_xboole_0(k1_funct_1(k1_latsubgr(X1),X2),k1_funct_1(k1_latsubgr(X1),X3)) ) ) ),
    file('/export/starexec/sandbox2/solver/bin/../tmp/theBenchmark.p.mepo_128.in',t24_latsubgr) ).

fof(t23_latsubgr,axiom,
    ! [X1] :
      ( ( ~ v3_struct_0(X1)
        & v3_group_1(X1)
        & v4_group_1(X1)
        & l1_group_1(X1) )
     => ! [X2] :
          ( ( v1_group_1(X2)
            & m1_group_2(X2,X1) )
         => ! [X3] :
              ( ( v1_group_1(X3)
                & m1_group_2(X3,X1) )
             => u1_struct_0(k9_group_2(X1,X2,X3)) = k3_xboole_0(k1_funct_1(k1_latsubgr(X1),X2),k1_funct_1(k1_latsubgr(X1),X3)) ) ) ),
    file('/export/starexec/sandbox2/solver/bin/../tmp/theBenchmark.p.mepo_128.in',t23_latsubgr) ).

fof(d1_latsubgr,axiom,
    ! [X1] :
      ( ( ~ v3_struct_0(X1)
        & v3_group_1(X1)
        & v4_group_1(X1)
        & l1_group_1(X1) )
     => ! [X2] :
          ( ( v1_funct_1(X2)
            & v1_funct_2(X2,k1_group_3(X1),k1_zfmisc_1(u1_struct_0(X1)))
            & m2_relset_1(X2,k1_group_3(X1),k1_zfmisc_1(u1_struct_0(X1))) )
         => ( X2 = k1_latsubgr(X1)
          <=> ! [X3] :
                ( ( v1_group_1(X3)
                  & m1_group_2(X3,X1) )
               => k1_funct_1(X2,X3) = u1_struct_0(X3) ) ) ) ),
    file('/export/starexec/sandbox2/solver/bin/../tmp/theBenchmark.p.mepo_128.in',d1_latsubgr) ).

fof(dt_k1_latsubgr,axiom,
    ! [X1] :
      ( ( ~ v3_struct_0(X1)
        & v3_group_1(X1)
        & v4_group_1(X1)
        & l1_group_1(X1) )
     => ( v1_funct_1(k1_latsubgr(X1))
        & v1_funct_2(k1_latsubgr(X1),k1_group_3(X1),k1_zfmisc_1(u1_struct_0(X1)))
        & m2_relset_1(k1_latsubgr(X1),k1_group_3(X1),k1_zfmisc_1(u1_struct_0(X1))) ) ),
    file('/export/starexec/sandbox2/solver/bin/../tmp/theBenchmark.p.mepo_128.in',dt_k1_latsubgr) ).

fof(dt_k9_group_2,axiom,
    ! [X1,X2,X3] :
      ( ( ~ v3_struct_0(X1)
        & v3_group_1(X1)
        & v4_group_1(X1)
        & l1_group_1(X1)
        & m1_group_2(X2,X1)
        & m1_group_2(X3,X1) )
     => ( v1_group_1(k9_group_2(X1,X2,X3))
        & m1_group_2(k9_group_2(X1,X2,X3),X1) ) ),
    file('/export/starexec/sandbox2/solver/bin/../tmp/theBenchmark.p.mepo_128.in',dt_k9_group_2) ).

fof(c_0_5,negated_conjecture,
    ~ ! [X1] :
        ( ( ~ v3_struct_0(X1)
          & v3_group_1(X1)
          & v4_group_1(X1)
          & l1_group_1(X1) )
       => ! [X2] :
            ( ( v1_group_1(X2)
              & m1_group_2(X2,X1) )
           => ! [X3] :
                ( ( v1_group_1(X3)
                  & m1_group_2(X3,X1) )
               => k1_funct_1(k1_latsubgr(X1),k9_group_2(X1,X2,X3)) = k3_xboole_0(k1_funct_1(k1_latsubgr(X1),X2),k1_funct_1(k1_latsubgr(X1),X3)) ) ) ),
    inference(assume_negation,[status(cth)],[t24_latsubgr]) ).

fof(c_0_6,negated_conjecture,
    ( ~ v3_struct_0(esk1_0)
    & v3_group_1(esk1_0)
    & v4_group_1(esk1_0)
    & l1_group_1(esk1_0)
    & v1_group_1(esk2_0)
    & m1_group_2(esk2_0,esk1_0)
    & v1_group_1(esk3_0)
    & m1_group_2(esk3_0,esk1_0)
    & k1_funct_1(k1_latsubgr(esk1_0),k9_group_2(esk1_0,esk2_0,esk3_0)) != k3_xboole_0(k1_funct_1(k1_latsubgr(esk1_0),esk2_0),k1_funct_1(k1_latsubgr(esk1_0),esk3_0)) ),
    inference(skolemize,[status(esa)],[inference(shift_quantors,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[inference(fof_simplification,[status(thm)],[c_0_5])])])])])]) ).

fof(c_0_7,plain,
    ! [X4,X5,X6] :
      ( v3_struct_0(X4)
      | ~ v3_group_1(X4)
      | ~ v4_group_1(X4)
      | ~ l1_group_1(X4)
      | ~ v1_group_1(X5)
      | ~ m1_group_2(X5,X4)
      | ~ v1_group_1(X6)
      | ~ m1_group_2(X6,X4)
      | u1_struct_0(k9_group_2(X4,X5,X6)) = k3_xboole_0(k1_funct_1(k1_latsubgr(X4),X5),k1_funct_1(k1_latsubgr(X4),X6)) ),
    inference(shift_quantors,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[inference(fof_simplification,[status(thm)],[t23_latsubgr])])])])])]) ).

fof(c_0_8,plain,
    ! [X4,X5,X6] :
      ( ( X5 != k1_latsubgr(X4)
        | ~ v1_group_1(X6)
        | ~ m1_group_2(X6,X4)
        | k1_funct_1(X5,X6) = u1_struct_0(X6)
        | ~ v1_funct_1(X5)
        | ~ v1_funct_2(X5,k1_group_3(X4),k1_zfmisc_1(u1_struct_0(X4)))
        | ~ m2_relset_1(X5,k1_group_3(X4),k1_zfmisc_1(u1_struct_0(X4)))
        | v3_struct_0(X4)
        | ~ v3_group_1(X4)
        | ~ v4_group_1(X4)
        | ~ l1_group_1(X4) )
      & ( v1_group_1(esk4_2(X4,X5))
        | X5 = k1_latsubgr(X4)
        | ~ v1_funct_1(X5)
        | ~ v1_funct_2(X5,k1_group_3(X4),k1_zfmisc_1(u1_struct_0(X4)))
        | ~ m2_relset_1(X5,k1_group_3(X4),k1_zfmisc_1(u1_struct_0(X4)))
        | v3_struct_0(X4)
        | ~ v3_group_1(X4)
        | ~ v4_group_1(X4)
        | ~ l1_group_1(X4) )
      & ( m1_group_2(esk4_2(X4,X5),X4)
        | X5 = k1_latsubgr(X4)
        | ~ v1_funct_1(X5)
        | ~ v1_funct_2(X5,k1_group_3(X4),k1_zfmisc_1(u1_struct_0(X4)))
        | ~ m2_relset_1(X5,k1_group_3(X4),k1_zfmisc_1(u1_struct_0(X4)))
        | v3_struct_0(X4)
        | ~ v3_group_1(X4)
        | ~ v4_group_1(X4)
        | ~ l1_group_1(X4) )
      & ( k1_funct_1(X5,esk4_2(X4,X5)) != u1_struct_0(esk4_2(X4,X5))
        | X5 = k1_latsubgr(X4)
        | ~ v1_funct_1(X5)
        | ~ v1_funct_2(X5,k1_group_3(X4),k1_zfmisc_1(u1_struct_0(X4)))
        | ~ m2_relset_1(X5,k1_group_3(X4),k1_zfmisc_1(u1_struct_0(X4)))
        | v3_struct_0(X4)
        | ~ v3_group_1(X4)
        | ~ v4_group_1(X4)
        | ~ l1_group_1(X4) ) ),
    inference(distribute,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(shift_quantors,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[inference(fof_simplification,[status(thm)],[d1_latsubgr])])])])])])])]) ).

fof(c_0_9,plain,
    ! [X2] :
      ( ( v1_funct_1(k1_latsubgr(X2))
        | v3_struct_0(X2)
        | ~ v3_group_1(X2)
        | ~ v4_group_1(X2)
        | ~ l1_group_1(X2) )
      & ( v1_funct_2(k1_latsubgr(X2),k1_group_3(X2),k1_zfmisc_1(u1_struct_0(X2)))
        | v3_struct_0(X2)
        | ~ v3_group_1(X2)
        | ~ v4_group_1(X2)
        | ~ l1_group_1(X2) )
      & ( m2_relset_1(k1_latsubgr(X2),k1_group_3(X2),k1_zfmisc_1(u1_struct_0(X2)))
        | v3_struct_0(X2)
        | ~ v3_group_1(X2)
        | ~ v4_group_1(X2)
        | ~ l1_group_1(X2) ) ),
    inference(distribute,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[inference(fof_simplification,[status(thm)],[dt_k1_latsubgr])])])]) ).

cnf(c_0_10,negated_conjecture,
    k1_funct_1(k1_latsubgr(esk1_0),k9_group_2(esk1_0,esk2_0,esk3_0)) != k3_xboole_0(k1_funct_1(k1_latsubgr(esk1_0),esk2_0),k1_funct_1(k1_latsubgr(esk1_0),esk3_0)),
    inference(split_conjunct,[status(thm)],[c_0_6]) ).

cnf(c_0_11,plain,
    ( u1_struct_0(k9_group_2(X1,X2,X3)) = k3_xboole_0(k1_funct_1(k1_latsubgr(X1),X2),k1_funct_1(k1_latsubgr(X1),X3))
    | v3_struct_0(X1)
    | ~ m1_group_2(X3,X1)
    | ~ v1_group_1(X3)
    | ~ m1_group_2(X2,X1)
    | ~ v1_group_1(X2)
    | ~ l1_group_1(X1)
    | ~ v4_group_1(X1)
    | ~ v3_group_1(X1) ),
    inference(split_conjunct,[status(thm)],[c_0_7]) ).

cnf(c_0_12,negated_conjecture,
    m1_group_2(esk3_0,esk1_0),
    inference(split_conjunct,[status(thm)],[c_0_6]) ).

cnf(c_0_13,negated_conjecture,
    m1_group_2(esk2_0,esk1_0),
    inference(split_conjunct,[status(thm)],[c_0_6]) ).

cnf(c_0_14,negated_conjecture,
    v1_group_1(esk3_0),
    inference(split_conjunct,[status(thm)],[c_0_6]) ).

cnf(c_0_15,negated_conjecture,
    v1_group_1(esk2_0),
    inference(split_conjunct,[status(thm)],[c_0_6]) ).

cnf(c_0_16,negated_conjecture,
    l1_group_1(esk1_0),
    inference(split_conjunct,[status(thm)],[c_0_6]) ).

cnf(c_0_17,negated_conjecture,
    v4_group_1(esk1_0),
    inference(split_conjunct,[status(thm)],[c_0_6]) ).

cnf(c_0_18,negated_conjecture,
    v3_group_1(esk1_0),
    inference(split_conjunct,[status(thm)],[c_0_6]) ).

cnf(c_0_19,negated_conjecture,
    ~ v3_struct_0(esk1_0),
    inference(split_conjunct,[status(thm)],[c_0_6]) ).

cnf(c_0_20,plain,
    ( v3_struct_0(X1)
    | k1_funct_1(X2,X3) = u1_struct_0(X3)
    | ~ l1_group_1(X1)
    | ~ v4_group_1(X1)
    | ~ v3_group_1(X1)
    | ~ m2_relset_1(X2,k1_group_3(X1),k1_zfmisc_1(u1_struct_0(X1)))
    | ~ v1_funct_2(X2,k1_group_3(X1),k1_zfmisc_1(u1_struct_0(X1)))
    | ~ v1_funct_1(X2)
    | ~ m1_group_2(X3,X1)
    | ~ v1_group_1(X3)
    | X2 != k1_latsubgr(X1) ),
    inference(split_conjunct,[status(thm)],[c_0_8]) ).

cnf(c_0_21,plain,
    ( v3_struct_0(X1)
    | v1_funct_2(k1_latsubgr(X1),k1_group_3(X1),k1_zfmisc_1(u1_struct_0(X1)))
    | ~ l1_group_1(X1)
    | ~ v4_group_1(X1)
    | ~ v3_group_1(X1) ),
    inference(split_conjunct,[status(thm)],[c_0_9]) ).

cnf(c_0_22,plain,
    ( v3_struct_0(X1)
    | v1_funct_1(k1_latsubgr(X1))
    | ~ l1_group_1(X1)
    | ~ v4_group_1(X1)
    | ~ v3_group_1(X1) ),
    inference(split_conjunct,[status(thm)],[c_0_9]) ).

cnf(c_0_23,plain,
    ( v3_struct_0(X1)
    | m2_relset_1(k1_latsubgr(X1),k1_group_3(X1),k1_zfmisc_1(u1_struct_0(X1)))
    | ~ l1_group_1(X1)
    | ~ v4_group_1(X1)
    | ~ v3_group_1(X1) ),
    inference(split_conjunct,[status(thm)],[c_0_9]) ).

cnf(c_0_24,negated_conjecture,
    k1_funct_1(k1_latsubgr(esk1_0),k9_group_2(esk1_0,esk2_0,esk3_0)) != u1_struct_0(k9_group_2(esk1_0,esk2_0,esk3_0)),
    inference(sr,[status(thm)],[inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_10,c_0_11]),c_0_12]),c_0_13]),c_0_14]),c_0_15]),c_0_16]),c_0_17]),c_0_18])]),c_0_19]) ).

cnf(c_0_25,plain,
    ( k1_funct_1(k1_latsubgr(X1),X2) = u1_struct_0(X2)
    | v3_struct_0(X1)
    | ~ m1_group_2(X2,X1)
    | ~ v1_group_1(X2)
    | ~ l1_group_1(X1)
    | ~ v4_group_1(X1)
    | ~ v3_group_1(X1) ),
    inference(csr,[status(thm)],[inference(csr,[status(thm)],[inference(spm,[status(thm)],[c_0_20,c_0_21]),c_0_22]),c_0_23]) ).

fof(c_0_26,plain,
    ! [X4,X5,X6] :
      ( ( v1_group_1(k9_group_2(X4,X5,X6))
        | v3_struct_0(X4)
        | ~ v3_group_1(X4)
        | ~ v4_group_1(X4)
        | ~ l1_group_1(X4)
        | ~ m1_group_2(X5,X4)
        | ~ m1_group_2(X6,X4) )
      & ( m1_group_2(k9_group_2(X4,X5,X6),X4)
        | v3_struct_0(X4)
        | ~ v3_group_1(X4)
        | ~ v4_group_1(X4)
        | ~ l1_group_1(X4)
        | ~ m1_group_2(X5,X4)
        | ~ m1_group_2(X6,X4) ) ),
    inference(distribute,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[inference(fof_simplification,[status(thm)],[dt_k9_group_2])])])]) ).

cnf(c_0_27,negated_conjecture,
    ( ~ m1_group_2(k9_group_2(esk1_0,esk2_0,esk3_0),esk1_0)
    | ~ v1_group_1(k9_group_2(esk1_0,esk2_0,esk3_0)) ),
    inference(sr,[status(thm)],[inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_24,c_0_25]),c_0_16]),c_0_17]),c_0_18])]),c_0_19]) ).

cnf(c_0_28,plain,
    ( v3_struct_0(X2)
    | v1_group_1(k9_group_2(X2,X3,X1))
    | ~ m1_group_2(X1,X2)
    | ~ m1_group_2(X3,X2)
    | ~ l1_group_1(X2)
    | ~ v4_group_1(X2)
    | ~ v3_group_1(X2) ),
    inference(split_conjunct,[status(thm)],[c_0_26]) ).

cnf(c_0_29,negated_conjecture,
    ~ m1_group_2(k9_group_2(esk1_0,esk2_0,esk3_0),esk1_0),
    inference(sr,[status(thm)],[inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_27,c_0_28]),c_0_13]),c_0_12]),c_0_16]),c_0_17]),c_0_18])]),c_0_19]) ).

cnf(c_0_30,plain,
    ( v3_struct_0(X2)
    | m1_group_2(k9_group_2(X2,X3,X1),X2)
    | ~ m1_group_2(X1,X2)
    | ~ m1_group_2(X3,X2)
    | ~ l1_group_1(X2)
    | ~ v4_group_1(X2)
    | ~ v3_group_1(X2) ),
    inference(split_conjunct,[status(thm)],[c_0_26]) ).

cnf(c_0_31,negated_conjecture,
    $false,
    inference(sr,[status(thm)],[inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_29,c_0_30]),c_0_13]),c_0_12]),c_0_16]),c_0_17]),c_0_18])]),c_0_19]),
    [proof] ).

%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.12/0.12  % Problem  : GRP645+1 : TPTP v8.1.0. Released v3.4.0.
% 0.12/0.13  % Command  : run_ET %s %d
% 0.14/0.34  % Computer : n014.cluster.edu
% 0.14/0.34  % Model    : x86_64 x86_64
% 0.14/0.34  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.14/0.34  % Memory   : 8042.1875MB
% 0.14/0.34  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.14/0.34  % CPULimit : 300
% 0.14/0.34  % WCLimit  : 600
% 0.14/0.34  % DateTime : Mon Jun 13 22:35:22 EDT 2022
% 0.14/0.34  % CPUTime  : 
% 0.25/1.42  # Running protocol protocol_eprover_4a02c828a8cc55752123edbcc1ad40e453c11447 for 23 seconds:
% 0.25/1.42  # SinE strategy is GSinE(CountFormulas,hypos,1.4,,04,100,1.0)
% 0.25/1.42  # Preprocessing time       : 0.018 s
% 0.25/1.42  
% 0.25/1.42  # Proof found!
% 0.25/1.42  # SZS status Theorem
% 0.25/1.42  # SZS output start CNFRefutation
% See solution above
% 0.25/1.42  # Proof object total steps             : 32
% 0.25/1.42  # Proof object clause steps            : 21
% 0.25/1.42  # Proof object formula steps           : 11
% 0.25/1.42  # Proof object conjectures             : 16
% 0.25/1.42  # Proof object clause conjectures      : 13
% 0.25/1.42  # Proof object formula conjectures     : 3
% 0.25/1.42  # Proof object initial clauses used    : 16
% 0.25/1.42  # Proof object initial formulas used   : 5
% 0.25/1.42  # Proof object generating inferences   : 5
% 0.25/1.42  # Proof object simplifying inferences  : 30
% 0.25/1.42  # Training examples: 0 positive, 0 negative
% 0.25/1.42  # Parsed axioms                        : 62
% 0.25/1.42  # Removed by relevancy pruning/SinE    : 33
% 0.25/1.42  # Initial clauses                      : 50
% 0.25/1.42  # Removed in clause preprocessing      : 0
% 0.25/1.42  # Initial clauses in saturation        : 50
% 0.25/1.42  # Processed clauses                    : 101
% 0.25/1.42  # ...of these trivial                  : 0
% 0.25/1.42  # ...subsumed                          : 17
% 0.25/1.42  # ...remaining for further processing  : 84
% 0.25/1.42  # Other redundant clauses eliminated   : 0
% 0.25/1.42  # Clauses deleted for lack of memory   : 0
% 0.25/1.42  # Backward-subsumed                    : 0
% 0.25/1.42  # Backward-rewritten                   : 2
% 0.25/1.42  # Generated clauses                    : 103
% 0.25/1.42  # ...of the previous two non-trivial   : 100
% 0.25/1.42  # Contextual simplify-reflections      : 2
% 0.25/1.42  # Paramodulations                      : 103
% 0.25/1.42  # Factorizations                       : 0
% 0.25/1.42  # Equation resolutions                 : 0
% 0.25/1.42  # Current number of processed clauses  : 82
% 0.25/1.42  #    Positive orientable unit clauses  : 22
% 0.25/1.42  #    Positive unorientable unit clauses: 1
% 0.25/1.42  #    Negative unit clauses             : 14
% 0.25/1.42  #    Non-unit-clauses                  : 45
% 0.25/1.42  # Current number of unprocessed clauses: 48
% 0.25/1.42  # ...number of literals in the above   : 533
% 0.25/1.42  # Current number of archived formulas  : 0
% 0.25/1.42  # Current number of archived clauses   : 2
% 0.25/1.42  # Clause-clause subsumption calls (NU) : 2301
% 0.25/1.42  # Rec. Clause-clause subsumption calls : 90
% 0.25/1.42  # Non-unit clause-clause subsumptions  : 17
% 0.25/1.42  # Unit Clause-clause subsumption calls : 118
% 0.25/1.42  # Rewrite failures with RHS unbound    : 0
% 0.25/1.42  # BW rewrite match attempts            : 6
% 0.25/1.42  # BW rewrite match successes           : 5
% 0.25/1.42  # Condensation attempts                : 0
% 0.25/1.42  # Condensation successes               : 0
% 0.25/1.42  # Termbank termtop insertions          : 6961
% 0.25/1.42  
% 0.25/1.42  # -------------------------------------------------
% 0.25/1.42  # User time                : 0.029 s
% 0.25/1.42  # System time              : 0.000 s
% 0.25/1.42  # Total time               : 0.029 s
% 0.25/1.42  # Maximum resident set size: 3352 pages
%------------------------------------------------------------------------------