TSTP Solution File: GRP614-1 by Otter---3.3

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Otter---3.3
% Problem  : GRP614-1 : TPTP v8.1.0. Released v2.6.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : otter-tptp-script %s

% Computer : n005.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Wed Jul 27 12:57:22 EDT 2022

% Result   : Unsatisfiable 1.66s 1.91s
% Output   : Refutation 1.66s
% Verified : 
% SZS Type : Refutation
%            Derivation depth      :   18
%            Number of leaves      :    4
% Syntax   : Number of clauses     :   28 (  28 unt;   0 nHn;   3 RR)
%            Number of literals    :   28 (  27 equ;   2 neg)
%            Maximal clause size   :    1 (   1 avg)
%            Maximal term depth    :    7 (   2 avg)
%            Number of predicates  :    2 (   0 usr;   1 prp; 0-2 aty)
%            Number of functors    :    5 (   5 usr;   2 con; 0-2 aty)
%            Number of variables   :   59 (   0 sgn)

% Comments : 
%------------------------------------------------------------------------------
cnf(1,axiom,
    multiply(multiply(inverse(b2),b2),a2) != a2,
    file('GRP614-1.p',unknown),
    [] ).

cnf(2,axiom,
    A = A,
    file('GRP614-1.p',unknown),
    [] ).

cnf(3,axiom,
    double_divide(inverse(double_divide(inverse(double_divide(A,inverse(B))),C)),double_divide(A,C)) = B,
    file('GRP614-1.p',unknown),
    [] ).

cnf(5,axiom,
    multiply(A,B) = inverse(double_divide(B,A)),
    file('GRP614-1.p',unknown),
    [] ).

cnf(7,plain,
    inverse(double_divide(A,B)) = multiply(B,A),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[5])]),
    [iquote('copy,5,flip.1')] ).

cnf(9,plain,
    double_divide(multiply(A,multiply(inverse(B),C)),double_divide(C,A)) = B,
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[3]),7,7]),
    [iquote('back_demod,3,demod,7,7')] ).

cnf(12,plain,
    double_divide(multiply(double_divide(A,B),multiply(inverse(C),multiply(B,multiply(inverse(D),A)))),D) = C,
    inference(para_into,[status(thm),theory(equality)],[9,9]),
    [iquote('para_into,8.1.1.2,8.1.1')] ).

cnf(14,plain,
    multiply(double_divide(A,B),multiply(B,multiply(inverse(C),A))) = inverse(C),
    inference(flip,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[9,7])]),
    [iquote('para_from,8.1.1,6.1.1.1,flip.1')] ).

cnf(16,plain,
    multiply(A,multiply(double_divide(B,C),multiply(inverse(D),multiply(C,multiply(inverse(A),B))))) = inverse(D),
    inference(para_into,[status(thm),theory(equality)],[14,9]),
    [iquote('para_into,14.1.1.1,8.1.1')] ).

cnf(96,plain,
    multiply(A,multiply(inverse(B),inverse(A))) = inverse(B),
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[16,16]),9]),
    [iquote('para_into,16.1.1.2.2,16.1.1,demod,9')] ).

cnf(108,plain,
    double_divide(multiply(inverse(A),inverse(B)),B) = A,
    inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[16,12]),9]),
    [iquote('para_from,16.1.1,12.1.1.1.2,demod,9')] ).

cnf(118,plain,
    double_divide(multiply(inverse(A),multiply(B,C)),double_divide(C,B)) = A,
    inference(para_into,[status(thm),theory(equality)],[108,7]),
    [iquote('para_into,108.1.1.1.2,6.1.1')] ).

cnf(164,plain,
    double_divide(inverse(A),double_divide(inverse(B),B)) = A,
    inference(para_from,[status(thm),theory(equality)],[96,9]),
    [iquote('para_from,96.1.1,8.1.1.1')] ).

cnf(168,plain,
    double_divide(multiply(A,B),double_divide(inverse(C),C)) = double_divide(B,A),
    inference(para_into,[status(thm),theory(equality)],[164,7]),
    [iquote('para_into,164.1.1.1,6.1.1')] ).

cnf(316,plain,
    double_divide(multiply(A,inverse(A)),inverse(B)) = B,
    inference(flip,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[168,118])]),
    [iquote('para_into,168.1.1,118.1.1,flip.1')] ).

cnf(339,plain,
    double_divide(multiply(inverse(A),multiply(inverse(B),multiply(C,inverse(C)))),A) = B,
    inference(para_from,[status(thm),theory(equality)],[316,9]),
    [iquote('para_from,316.1.1,8.1.1.2')] ).

cnf(348,plain,
    multiply(inverse(A),multiply(B,inverse(B))) = inverse(A),
    inference(flip,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[316,7])]),
    [iquote('para_from,316.1.1,6.1.1.1,flip.1')] ).

cnf(354,plain,
    double_divide(multiply(inverse(A),inverse(B)),A) = B,
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[339]),348]),
    [iquote('back_demod,339,demod,348')] ).

cnf(368,plain,
    inverse(inverse(A)) = A,
    inference(flip,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[354,316])]),
    [iquote('para_into,354.1.1,316.1.1,flip.1')] ).

cnf(552,plain,
    multiply(A,multiply(B,inverse(A))) = B,
    inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[368,96]),368]),
    [iquote('para_from,367.1.1,96.1.1.2.1,demod,368')] ).

cnf(642,plain,
    double_divide(A,double_divide(B,A)) = B,
    inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[552,118]),368]),
    [iquote('para_from,552.1.1,118.1.1.1,demod,368')] ).

cnf(656,plain,
    double_divide(double_divide(A,B),A) = B,
    inference(para_into,[status(thm),theory(equality)],[642,642]),
    [iquote('para_into,642.1.1.2,642.1.1')] ).

cnf(658,plain,
    multiply(inverse(A),inverse(B)) = double_divide(A,B),
    inference(flip,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[642,354])]),
    [iquote('para_into,642.1.1.2,354.1.1,flip.1')] ).

cnf(665,plain,
    double_divide(A,B) = double_divide(B,A),
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[642,108]),658]),
    [iquote('para_into,642.1.1.2,108.1.1,demod,658')] ).

cnf(671,plain,
    multiply(A,multiply(inverse(B),C)) = double_divide(double_divide(C,A),B),
    inference(flip,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[642,9])]),
    [iquote('para_into,642.1.1.2,8.1.1,flip.1')] ).

cnf(831,plain,
    multiply(A,B) = multiply(B,A),
    inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[665,7]),7]),
    [iquote('para_from,665.1.1,6.1.1.1,demod,7')] ).

cnf(843,plain,
    a2 != a2,
    inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[831,1]),671,656]),
    [iquote('para_from,831.1.1,1.1.1,demod,671,656')] ).

cnf(844,plain,
    $false,
    inference(binary,[status(thm)],[843,2]),
    [iquote('binary,843.1,2.1')] ).

%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.06/0.12  % Problem  : GRP614-1 : TPTP v8.1.0. Released v2.6.0.
% 0.06/0.12  % Command  : otter-tptp-script %s
% 0.12/0.33  % Computer : n005.cluster.edu
% 0.12/0.33  % Model    : x86_64 x86_64
% 0.12/0.33  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.12/0.33  % Memory   : 8042.1875MB
% 0.12/0.33  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.12/0.33  % CPULimit : 300
% 0.12/0.33  % WCLimit  : 300
% 0.12/0.33  % DateTime : Wed Jul 27 05:10:05 EDT 2022
% 0.12/0.33  % CPUTime  : 
% 1.66/1.91  ----- Otter 3.3f, August 2004 -----
% 1.66/1.91  The process was started by sandbox2 on n005.cluster.edu,
% 1.66/1.91  Wed Jul 27 05:10:05 2022
% 1.66/1.91  The command was "./otter".  The process ID is 21099.
% 1.66/1.91  
% 1.66/1.91  set(prolog_style_variables).
% 1.66/1.91  set(auto).
% 1.66/1.91     dependent: set(auto1).
% 1.66/1.91     dependent: set(process_input).
% 1.66/1.91     dependent: clear(print_kept).
% 1.66/1.91     dependent: clear(print_new_demod).
% 1.66/1.91     dependent: clear(print_back_demod).
% 1.66/1.91     dependent: clear(print_back_sub).
% 1.66/1.91     dependent: set(control_memory).
% 1.66/1.91     dependent: assign(max_mem, 12000).
% 1.66/1.91     dependent: assign(pick_given_ratio, 4).
% 1.66/1.91     dependent: assign(stats_level, 1).
% 1.66/1.91     dependent: assign(max_seconds, 10800).
% 1.66/1.91  clear(print_given).
% 1.66/1.91  
% 1.66/1.91  list(usable).
% 1.66/1.91  0 [] A=A.
% 1.66/1.91  0 [] double_divide(inverse(double_divide(inverse(double_divide(A,inverse(B))),C)),double_divide(A,C))=B.
% 1.66/1.91  0 [] multiply(A,B)=inverse(double_divide(B,A)).
% 1.66/1.91  0 [] multiply(multiply(inverse(b2),b2),a2)!=a2.
% 1.66/1.91  end_of_list.
% 1.66/1.91  
% 1.66/1.91  SCAN INPUT: prop=0, horn=1, equality=1, symmetry=0, max_lits=1.
% 1.66/1.91  
% 1.66/1.91  All clauses are units, and equality is present; the
% 1.66/1.91  strategy will be Knuth-Bendix with positive clauses in sos.
% 1.66/1.91  
% 1.66/1.91     dependent: set(knuth_bendix).
% 1.66/1.91     dependent: set(anl_eq).
% 1.66/1.91     dependent: set(para_from).
% 1.66/1.91     dependent: set(para_into).
% 1.66/1.91     dependent: clear(para_from_right).
% 1.66/1.91     dependent: clear(para_into_right).
% 1.66/1.91     dependent: set(para_from_vars).
% 1.66/1.91     dependent: set(eq_units_both_ways).
% 1.66/1.91     dependent: set(dynamic_demod_all).
% 1.66/1.91     dependent: set(dynamic_demod).
% 1.66/1.91     dependent: set(order_eq).
% 1.66/1.91     dependent: set(back_demod).
% 1.66/1.91     dependent: set(lrpo).
% 1.66/1.91  
% 1.66/1.91  ------------> process usable:
% 1.66/1.91  ** KEPT (pick-wt=8): 1 [] multiply(multiply(inverse(b2),b2),a2)!=a2.
% 1.66/1.91  
% 1.66/1.91  ------------> process sos:
% 1.66/1.91  ** KEPT (pick-wt=3): 2 [] A=A.
% 1.66/1.91  ** KEPT (pick-wt=14): 3 [] double_divide(inverse(double_divide(inverse(double_divide(A,inverse(B))),C)),double_divide(A,C))=B.
% 1.66/1.91  ---> New Demodulator: 4 [new_demod,3] double_divide(inverse(double_divide(inverse(double_divide(A,inverse(B))),C)),double_divide(A,C))=B.
% 1.66/1.91  ** KEPT (pick-wt=8): 6 [copy,5,flip.1] inverse(double_divide(A,B))=multiply(B,A).
% 1.66/1.91  ---> New Demodulator: 7 [new_demod,6] inverse(double_divide(A,B))=multiply(B,A).
% 1.66/1.91    Following clause subsumed by 2 during input processing: 0 [copy,2,flip.1] A=A.
% 1.66/1.91  >>>> Starting back demodulation with 4.
% 1.66/1.91  >>>> Starting back demodulation with 7.
% 1.66/1.91      >> back demodulating 3 with 7.
% 1.66/1.91  >>>> Starting back demodulation with 9.
% 1.66/1.91  
% 1.66/1.91  ======= end of input processing =======
% 1.66/1.91  
% 1.66/1.91  =========== start of search ===========
% 1.66/1.91  
% 1.66/1.91  
% 1.66/1.91  Resetting weight limit to 9.
% 1.66/1.91  
% 1.66/1.91  
% 1.66/1.91  Resetting weight limit to 9.
% 1.66/1.91  
% 1.66/1.91  sos_size=199
% 1.66/1.91  
% 1.66/1.91  -------- PROOF -------- 
% 1.66/1.91  
% 1.66/1.91  ----> UNIT CONFLICT at   0.03 sec ----> 844 [binary,843.1,2.1] $F.
% 1.66/1.91  
% 1.66/1.91  Length of proof is 23.  Level of proof is 17.
% 1.66/1.91  
% 1.66/1.91  ---------------- PROOF ----------------
% 1.66/1.91  % SZS status Unsatisfiable
% 1.66/1.91  % SZS output start Refutation
% See solution above
% 1.66/1.91  ------------ end of proof -------------
% 1.66/1.91  
% 1.66/1.91  
% 1.66/1.91  Search stopped by max_proofs option.
% 1.66/1.91  
% 1.66/1.91  
% 1.66/1.91  Search stopped by max_proofs option.
% 1.66/1.91  
% 1.66/1.91  ============ end of search ============
% 1.66/1.91  
% 1.66/1.91  -------------- statistics -------------
% 1.66/1.91  clauses given                 37
% 1.66/1.91  clauses generated            669
% 1.66/1.91  clauses kept                 489
% 1.66/1.91  clauses forward subsumed     541
% 1.66/1.91  clauses back subsumed          4
% 1.66/1.91  Kbytes malloced             4882
% 1.66/1.91  
% 1.66/1.91  ----------- times (seconds) -----------
% 1.66/1.91  user CPU time          0.03          (0 hr, 0 min, 0 sec)
% 1.66/1.91  system CPU time        0.00          (0 hr, 0 min, 0 sec)
% 1.66/1.91  wall-clock time        2             (0 hr, 0 min, 2 sec)
% 1.66/1.91  
% 1.66/1.91  That finishes the proof of the theorem.
% 1.66/1.91  
% 1.66/1.91  Process 21099 finished Wed Jul 27 05:10:07 2022
% 1.66/1.91  Otter interrupted
% 1.66/1.91  PROOF FOUND
%------------------------------------------------------------------------------