TSTP Solution File: GRP574-1 by iProver---3.9

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : iProver---3.9
% Problem  : GRP574-1 : TPTP v8.1.2. Released v2.6.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : run_iprover %s %d THM

% Computer : n022.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Fri May  3 02:22:58 EDT 2024

% Result   : Unsatisfiable 3.70s 1.15s
% Output   : CNFRefutation 3.70s
% Verified : 
% SZS Type : ERROR: Analysing output (Could not find formula named definition)

% Comments : 
%------------------------------------------------------------------------------
cnf(c_49,plain,
    double_divide(double_divide(X0,double_divide(double_divide(X1,double_divide(X2,X0)),double_divide(X2,identity))),double_divide(identity,identity)) = X1,
    file('/export/starexec/sandbox/benchmark/theBenchmark.p',single_axiom) ).

cnf(c_50,plain,
    double_divide(double_divide(X0,X1),identity) = multiply(X1,X0),
    file('/export/starexec/sandbox/benchmark/theBenchmark.p',multiply) ).

cnf(c_51,plain,
    double_divide(X0,identity) = inverse(X0),
    file('/export/starexec/sandbox/benchmark/theBenchmark.p',inverse) ).

cnf(c_52,plain,
    double_divide(X0,inverse(X0)) = identity,
    file('/export/starexec/sandbox/benchmark/theBenchmark.p',identity) ).

cnf(c_53,negated_conjecture,
    multiply(identity,a2) != a2,
    file('/export/starexec/sandbox/benchmark/theBenchmark.p',prove_these_axioms_2) ).

cnf(c_68,plain,
    inverse(double_divide(X0,X1)) = multiply(X1,X0),
    inference(demodulation,[status(thm)],[c_50,c_51]) ).

cnf(c_69,plain,
    double_divide(double_divide(X0,double_divide(double_divide(X1,double_divide(X2,X0)),inverse(X2))),inverse(identity)) = X1,
    inference(demodulation,[status(thm)],[c_49,c_51]) ).

cnf(c_77,plain,
    multiply(identity,a2) = sP0_iProver_def,
    definition ).

cnf(c_78,negated_conjecture,
    sP0_iProver_def != a2,
    inference(demodulation,[status(thm)],[c_53,c_77]) ).

cnf(c_124,plain,
    multiply(identity,X0) = inverse(inverse(X0)),
    inference(superposition,[status(thm)],[c_51,c_68]) ).

cnf(c_126,plain,
    double_divide(double_divide(X0,X1),multiply(X1,X0)) = identity,
    inference(superposition,[status(thm)],[c_68,c_52]) ).

cnf(c_130,plain,
    multiply(identity,double_divide(X0,X1)) = inverse(multiply(X1,X0)),
    inference(superposition,[status(thm)],[c_68,c_124]) ).

cnf(c_131,plain,
    multiply(identity,inverse(X0)) = inverse(multiply(identity,X0)),
    inference(superposition,[status(thm)],[c_124,c_124]) ).

cnf(c_133,plain,
    double_divide(inverse(X0),multiply(identity,X0)) = identity,
    inference(superposition,[status(thm)],[c_124,c_52]) ).

cnf(c_143,plain,
    double_divide(inverse(a2),sP0_iProver_def) = identity,
    inference(superposition,[status(thm)],[c_77,c_133]) ).

cnf(c_147,plain,
    double_divide(double_divide(identity,double_divide(double_divide(X0,inverse(X1)),inverse(X1))),inverse(identity)) = X0,
    inference(superposition,[status(thm)],[c_51,c_69]) ).

cnf(c_148,plain,
    double_divide(double_divide(inverse(X0),double_divide(double_divide(X1,identity),inverse(X0))),inverse(identity)) = X1,
    inference(superposition,[status(thm)],[c_52,c_69]) ).

cnf(c_151,plain,
    double_divide(double_divide(X0,double_divide(double_divide(X1,double_divide(double_divide(X2,X3),X0)),multiply(X3,X2))),inverse(identity)) = X1,
    inference(superposition,[status(thm)],[c_68,c_69]) ).

cnf(c_153,plain,
    double_divide(double_divide(inverse(identity),double_divide(double_divide(X0,X1),inverse(double_divide(X2,double_divide(double_divide(X1,double_divide(X3,X2)),inverse(X3)))))),inverse(identity)) = X0,
    inference(superposition,[status(thm)],[c_69,c_69]) ).

cnf(c_154,plain,
    multiply(inverse(identity),double_divide(X0,double_divide(double_divide(X1,double_divide(X2,X0)),inverse(X2)))) = inverse(X1),
    inference(superposition,[status(thm)],[c_69,c_68]) ).

cnf(c_168,plain,
    double_divide(double_divide(sP0_iProver_def,double_divide(double_divide(X0,identity),inverse(inverse(a2)))),inverse(identity)) = X0,
    inference(superposition,[status(thm)],[c_143,c_69]) ).

cnf(c_170,plain,
    double_divide(double_divide(sP0_iProver_def,double_divide(inverse(X0),inverse(inverse(a2)))),inverse(identity)) = X0,
    inference(light_normalisation,[status(thm)],[c_168,c_51]) ).

cnf(c_174,plain,
    double_divide(X0,multiply(inverse(identity),double_divide(X1,double_divide(double_divide(X0,double_divide(X2,X1)),inverse(X2))))) = identity,
    inference(superposition,[status(thm)],[c_69,c_126]) ).

cnf(c_201,plain,
    multiply(identity,inverse(a2)) = inverse(sP0_iProver_def),
    inference(superposition,[status(thm)],[c_77,c_131]) ).

cnf(c_204,plain,
    multiply(identity,multiply(identity,X0)) = inverse(multiply(identity,inverse(X0))),
    inference(superposition,[status(thm)],[c_131,c_124]) ).

cnf(c_223,plain,
    multiply(identity,inverse(inverse(a2))) = inverse(inverse(sP0_iProver_def)),
    inference(superposition,[status(thm)],[c_201,c_131]) ).

cnf(c_313,plain,
    double_divide(double_divide(sP0_iProver_def,double_divide(inverse(X0),sP0_iProver_def)),inverse(identity)) = X0,
    inference(demodulation,[status(thm)],[c_170,c_77,c_124]) ).

cnf(c_314,plain,
    double_divide(double_divide(sP0_iProver_def,identity),inverse(identity)) = a2,
    inference(superposition,[status(thm)],[c_143,c_313]) ).

cnf(c_372,plain,
    double_divide(double_divide(identity,double_divide(identity,inverse(X0))),inverse(identity)) = X0,
    inference(superposition,[status(thm)],[c_52,c_147]) ).

cnf(c_373,plain,
    double_divide(X0,double_divide(double_divide(X1,double_divide(X2,X0)),inverse(X2))) = double_divide(double_divide(identity,double_divide(X1,inverse(identity))),inverse(identity)),
    inference(superposition,[status(thm)],[c_69,c_147]) ).

cnf(c_408,plain,
    double_divide(double_divide(identity,identity),inverse(identity)) = identity,
    inference(superposition,[status(thm)],[c_52,c_372]) ).

cnf(c_447,plain,
    double_divide(inverse(sP0_iProver_def),inverse(identity)) = a2,
    inference(demodulation,[status(thm)],[c_314,c_51]) ).

cnf(c_484,plain,
    double_divide(inverse(identity),inverse(identity)) = identity,
    inference(demodulation,[status(thm)],[c_408,c_51]) ).

cnf(c_489,plain,
    double_divide(double_divide(identity,double_divide(identity,inverse(identity))),inverse(identity)) = inverse(identity),
    inference(superposition,[status(thm)],[c_484,c_147]) ).

cnf(c_526,plain,
    double_divide(double_divide(inverse(X0),double_divide(inverse(X1),inverse(X0))),inverse(identity)) = X1,
    inference(demodulation,[status(thm)],[c_148,c_51]) ).

cnf(c_530,plain,
    double_divide(double_divide(inverse(inverse(X0)),identity),inverse(identity)) = X0,
    inference(superposition,[status(thm)],[c_52,c_526]) ).

cnf(c_532,plain,
    double_divide(double_divide(inverse(identity),identity),inverse(identity)) = identity,
    inference(superposition,[status(thm)],[c_484,c_526]) ).

cnf(c_544,plain,
    double_divide(double_divide(multiply(identity,X0),identity),inverse(identity)) = X0,
    inference(light_normalisation,[status(thm)],[c_530,c_124]) ).

cnf(c_575,plain,
    double_divide(multiply(identity,inverse(X0)),inverse(identity)) = X0,
    inference(demodulation,[status(thm)],[c_544,c_51,c_131]) ).

cnf(c_577,plain,
    double_divide(multiply(identity,multiply(X0,X1)),inverse(identity)) = double_divide(X1,X0),
    inference(superposition,[status(thm)],[c_68,c_575]) ).

cnf(c_713,plain,
    double_divide(multiply(identity,identity),inverse(identity)) = identity,
    inference(demodulation,[status(thm)],[c_532,c_51,c_124]) ).

cnf(c_718,plain,
    double_divide(double_divide(identity,double_divide(identity,inverse(identity))),inverse(identity)) = multiply(identity,identity),
    inference(superposition,[status(thm)],[c_713,c_147]) ).

cnf(c_719,plain,
    multiply(identity,identity) = inverse(identity),
    inference(light_normalisation,[status(thm)],[c_718,c_489]) ).

cnf(c_746,plain,
    multiply(identity,inverse(identity)) = inverse(inverse(identity)),
    inference(superposition,[status(thm)],[c_719,c_131]) ).

cnf(c_754,plain,
    multiply(identity,inverse(identity)) = inverse(identity),
    inference(demodulation,[status(thm)],[c_746,c_124,c_719]) ).

cnf(c_755,plain,
    double_divide(inverse(identity),inverse(identity)) = double_divide(inverse(identity),identity),
    inference(superposition,[status(thm)],[c_754,c_577]) ).

cnf(c_767,plain,
    double_divide(inverse(identity),identity) = identity,
    inference(light_normalisation,[status(thm)],[c_755,c_484]) ).

cnf(c_786,plain,
    inverse(identity) = identity,
    inference(demodulation,[status(thm)],[c_767,c_51,c_124,c_719]) ).

cnf(c_792,plain,
    double_divide(multiply(identity,inverse(X0)),identity) = X0,
    inference(demodulation,[status(thm)],[c_575,c_786]) ).

cnf(c_796,plain,
    double_divide(identity,identity) = identity,
    inference(demodulation,[status(thm)],[c_484,c_786]) ).

cnf(c_797,plain,
    double_divide(inverse(sP0_iProver_def),identity) = a2,
    inference(demodulation,[status(thm)],[c_447,c_786]) ).

cnf(c_827,plain,
    multiply(identity,sP0_iProver_def) = a2,
    inference(demodulation,[status(thm)],[c_797,c_51,c_124]) ).

cnf(c_865,plain,
    double_divide(double_divide(X0,double_divide(double_divide(X1,double_divide(double_divide(X2,X3),X0)),multiply(X3,X2))),identity) = X1,
    inference(light_normalisation,[status(thm)],[c_151,c_786]) ).

cnf(c_866,plain,
    multiply(double_divide(double_divide(X0,double_divide(double_divide(X1,X2),X3)),multiply(X2,X1)),X3) = X0,
    inference(demodulation,[status(thm)],[c_865,c_51,c_68]) ).

cnf(c_877,plain,
    multiply(double_divide(double_divide(X0,double_divide(double_divide(a2,identity),X1)),sP0_iProver_def),X1) = X0,
    inference(superposition,[status(thm)],[c_77,c_866]) ).

cnf(c_1066,plain,
    multiply(identity,multiply(identity,X0)) = X0,
    inference(demodulation,[status(thm)],[c_792,c_51,c_204]) ).

cnf(c_1075,plain,
    double_divide(inverse(multiply(identity,X0)),X0) = identity,
    inference(superposition,[status(thm)],[c_1066,c_133]) ).

cnf(c_1077,plain,
    double_divide(multiply(identity,inverse(X0)),X0) = identity,
    inference(light_normalisation,[status(thm)],[c_1075,c_131]) ).

cnf(c_1162,plain,
    multiply(double_divide(double_divide(X0,double_divide(inverse(a2),X1)),sP0_iProver_def),X1) = X0,
    inference(demodulation,[status(thm)],[c_877,c_51]) ).

cnf(c_1163,plain,
    multiply(double_divide(double_divide(X0,inverse(inverse(a2))),sP0_iProver_def),identity) = X0,
    inference(superposition,[status(thm)],[c_51,c_1162]) ).

cnf(c_1176,plain,
    multiply(double_divide(double_divide(X0,sP0_iProver_def),sP0_iProver_def),identity) = X0,
    inference(demodulation,[status(thm)],[c_1163,c_77,c_124]) ).

cnf(c_1177,plain,
    multiply(double_divide(identity,sP0_iProver_def),identity) = inverse(a2),
    inference(superposition,[status(thm)],[c_143,c_1176]) ).

cnf(c_1215,plain,
    double_divide(multiply(identity,multiply(X0,X1)),double_divide(X1,X0)) = identity,
    inference(superposition,[status(thm)],[c_68,c_1077]) ).

cnf(c_1298,plain,
    double_divide(double_divide(identity,double_divide(double_divide(X0,X1),inverse(double_divide(X2,double_divide(double_divide(X1,double_divide(X3,X2)),inverse(X3)))))),identity) = X0,
    inference(light_normalisation,[status(thm)],[c_153,c_786]) ).

cnf(c_1299,plain,
    multiply(double_divide(double_divide(X0,X1),multiply(double_divide(double_divide(X1,double_divide(X2,X3)),inverse(X2)),X3)),identity) = X0,
    inference(demodulation,[status(thm)],[c_1298,c_51,c_68]) ).

cnf(c_1890,plain,
    multiply(identity,double_divide(double_divide(identity,double_divide(X0,identity)),identity)) = inverse(X0),
    inference(light_normalisation,[status(thm)],[c_154,c_373,c_786]) ).

cnf(c_1891,plain,
    multiply(identity,double_divide(double_divide(identity,inverse(X0)),identity)) = inverse(X0),
    inference(light_normalisation,[status(thm)],[c_1890,c_51]) ).

cnf(c_1892,plain,
    multiply(identity,multiply(inverse(X0),identity)) = inverse(X0),
    inference(demodulation,[status(thm)],[c_1891,c_68,c_130,c_131]) ).

cnf(c_1895,plain,
    multiply(identity,multiply(multiply(X0,X1),identity)) = multiply(X0,X1),
    inference(superposition,[status(thm)],[c_68,c_1892]) ).

cnf(c_1970,plain,
    multiply(identity,multiply(X0,identity)) = X0,
    inference(superposition,[status(thm)],[c_1299,c_1895]) ).

cnf(c_1990,plain,
    multiply(identity,inverse(a2)) = double_divide(identity,sP0_iProver_def),
    inference(superposition,[status(thm)],[c_1177,c_1970]) ).

cnf(c_1997,plain,
    multiply(X0,identity) = multiply(identity,X0),
    inference(superposition,[status(thm)],[c_1970,c_1066]) ).

cnf(c_2002,plain,
    double_divide(X0,double_divide(identity,X0)) = identity,
    inference(superposition,[status(thm)],[c_1970,c_1215]) ).

cnf(c_2004,plain,
    double_divide(identity,sP0_iProver_def) = inverse(sP0_iProver_def),
    inference(light_normalisation,[status(thm)],[c_1990,c_201]) ).

cnf(c_2009,plain,
    multiply(sP0_iProver_def,identity) = a2,
    inference(demodulation,[status(thm)],[c_827,c_1997]) ).

cnf(c_2067,plain,
    multiply(sP0_iProver_def,identity) = inverse(inverse(sP0_iProver_def)),
    inference(superposition,[status(thm)],[c_2004,c_68]) ).

cnf(c_2069,plain,
    inverse(inverse(sP0_iProver_def)) = a2,
    inference(light_normalisation,[status(thm)],[c_2067,c_2009]) ).

cnf(c_2309,plain,
    double_divide(X0,multiply(identity,double_divide(X1,double_divide(double_divide(X0,double_divide(X2,X1)),inverse(X2))))) = identity,
    inference(light_normalisation,[status(thm)],[c_174,c_786]) ).

cnf(c_2310,plain,
    double_divide(X0,inverse(multiply(double_divide(double_divide(X0,double_divide(X1,X2)),inverse(X1)),X2))) = identity,
    inference(demodulation,[status(thm)],[c_2309,c_130]) ).

cnf(c_2314,plain,
    double_divide(X0,inverse(multiply(double_divide(identity,inverse(identity)),X0))) = identity,
    inference(superposition,[status(thm)],[c_2002,c_2310]) ).

cnf(c_2346,plain,
    double_divide(X0,multiply(identity,inverse(X0))) = identity,
    inference(light_normalisation,[status(thm)],[c_2314,c_131,c_786,c_796]) ).

cnf(c_2737,plain,
    multiply(double_divide(double_divide(X0,identity),sP0_iProver_def),multiply(identity,inverse(inverse(a2)))) = X0,
    inference(superposition,[status(thm)],[c_2346,c_1162]) ).

cnf(c_2747,plain,
    multiply(double_divide(inverse(X0),sP0_iProver_def),a2) = X0,
    inference(light_normalisation,[status(thm)],[c_2737,c_51,c_223,c_2069]) ).

cnf(c_3423,plain,
    multiply(identity,a2) = a2,
    inference(superposition,[status(thm)],[c_143,c_2747]) ).

cnf(c_3436,plain,
    a2 = sP0_iProver_def,
    inference(light_normalisation,[status(thm)],[c_3423,c_77]) ).

cnf(c_3453,plain,
    sP0_iProver_def != sP0_iProver_def,
    inference(demodulation,[status(thm)],[c_78,c_3436]) ).

cnf(c_3454,plain,
    $false,
    inference(equality_resolution_simp,[status(thm)],[c_3453]) ).


%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.07/0.13  % Problem  : GRP574-1 : TPTP v8.1.2. Released v2.6.0.
% 0.07/0.14  % Command  : run_iprover %s %d THM
% 0.13/0.35  % Computer : n022.cluster.edu
% 0.13/0.35  % Model    : x86_64 x86_64
% 0.13/0.35  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.13/0.35  % Memory   : 8042.1875MB
% 0.13/0.35  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.13/0.35  % CPULimit : 300
% 0.13/0.35  % WCLimit  : 300
% 0.13/0.35  % DateTime : Thu May  2 23:53:27 EDT 2024
% 0.13/0.35  % CPUTime  : 
% 0.20/0.48  Running UEQ theorem proving
% 0.20/0.48  Running: /export/starexec/sandbox/solver/bin/run_problem --schedule casc_24_ueq --heuristic_context casc_unsat --no_cores 8 /export/starexec/sandbox/benchmark/theBenchmark.p 300
% 3.70/1.15  % SZS status Started for theBenchmark.p
% 3.70/1.15  % SZS status Unsatisfiable for theBenchmark.p
% 3.70/1.15  
% 3.70/1.15  %---------------- iProver v3.9 (pre CASC 2024/SMT-COMP 2024) ----------------%
% 3.70/1.15  
% 3.70/1.15  ------  iProver source info
% 3.70/1.15  
% 3.70/1.15  git: date: 2024-05-02 19:28:25 +0000
% 3.70/1.15  git: sha1: a33b5eb135c74074ba803943bb12f2ebd971352f
% 3.70/1.15  git: non_committed_changes: false
% 3.70/1.15  
% 3.70/1.15  ------ Parsing...successful
% 3.70/1.15  
% 3.70/1.15  
% 3.70/1.15  
% 3.70/1.15  ------ Preprocessing... sup_sim: 2  sf_s  rm: 0 0s  sf_e  pe_s  pe_e 
% 3.70/1.15  
% 3.70/1.15  ------ Preprocessing... gs_s  sp: 0 0s  gs_e  snvd_s sp: 0 0s snvd_e 
% 3.70/1.15  
% 3.70/1.15  ------ Preprocessing... sf_s  rm: 0 0s  sf_e 
% 3.70/1.15  ------ Proving...
% 3.70/1.15  ------ Problem Properties 
% 3.70/1.15  
% 3.70/1.15  
% 3.70/1.15  clauses                                 6
% 3.70/1.15  conjectures                             1
% 3.70/1.15  EPR                                     1
% 3.70/1.15  Horn                                    6
% 3.70/1.15  unary                                   6
% 3.70/1.15  binary                                  0
% 3.70/1.15  lits                                    6
% 3.70/1.15  lits eq                                 6
% 3.70/1.15  fd_pure                                 0
% 3.70/1.15  fd_pseudo                               0
% 3.70/1.15  fd_cond                                 0
% 3.70/1.15  fd_pseudo_cond                          0
% 3.70/1.15  AC symbols                              0
% 3.70/1.15  
% 3.70/1.15  ------ Input Options Time Limit: Unbounded
% 3.70/1.15  
% 3.70/1.15  
% 3.70/1.15  ------ 
% 3.70/1.15  Current options:
% 3.70/1.15  ------ 
% 3.70/1.15  
% 3.70/1.15  
% 3.70/1.15  
% 3.70/1.15  
% 3.70/1.15  ------ Proving...
% 3.70/1.15  
% 3.70/1.15  
% 3.70/1.15  % SZS status Unsatisfiable for theBenchmark.p
% 3.70/1.15  
% 3.70/1.15  % SZS output start CNFRefutation for theBenchmark.p
% See solution above
% 3.70/1.15  
% 3.70/1.15  
%------------------------------------------------------------------------------