TSTP Solution File: GRP566-1 by Bliksem---1.12

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Bliksem---1.12
% Problem  : GRP566-1 : TPTP v8.1.0. Released v2.6.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : bliksem %s

% Computer : n025.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 0s
% DateTime : Sat Jul 16 07:37:39 EDT 2022

% Result   : Unsatisfiable 0.67s 1.09s
% Output   : Refutation 0.67s
% Verified : 
% SZS Type : -

% Comments : 
%------------------------------------------------------------------------------
%----WARNING: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.11/0.12  % Problem  : GRP566-1 : TPTP v8.1.0. Released v2.6.0.
% 0.11/0.12  % Command  : bliksem %s
% 0.12/0.33  % Computer : n025.cluster.edu
% 0.12/0.33  % Model    : x86_64 x86_64
% 0.12/0.33  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.12/0.33  % Memory   : 8042.1875MB
% 0.12/0.33  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.12/0.33  % CPULimit : 300
% 0.12/0.33  % DateTime : Tue Jun 14 01:44:54 EDT 2022
% 0.12/0.33  % CPUTime  : 
% 0.67/1.09  *** allocated 10000 integers for termspace/termends
% 0.67/1.09  *** allocated 10000 integers for clauses
% 0.67/1.09  *** allocated 10000 integers for justifications
% 0.67/1.09  Bliksem 1.12
% 0.67/1.09  
% 0.67/1.09  
% 0.67/1.09  Automatic Strategy Selection
% 0.67/1.09  
% 0.67/1.09  Clauses:
% 0.67/1.09  [
% 0.67/1.09     [ =( 'double_divide'( 'double_divide'( X, 'double_divide'( 
% 0.67/1.09    'double_divide'( Y, 'double_divide'( X, Z ) ), 'double_divide'( identity
% 0.67/1.09    , Z ) ) ), 'double_divide'( identity, identity ) ), Y ) ],
% 0.67/1.09     [ =( multiply( X, Y ), 'double_divide'( 'double_divide'( Y, X ), 
% 0.67/1.09    identity ) ) ],
% 0.67/1.09     [ =( inverse( X ), 'double_divide'( X, identity ) ) ],
% 0.67/1.09     [ =( identity, 'double_divide'( X, inverse( X ) ) ) ],
% 0.67/1.09     [ ~( =( multiply( identity, a2 ), a2 ) ) ]
% 0.67/1.09  ] .
% 0.67/1.09  
% 0.67/1.09  
% 0.67/1.09  percentage equality = 1.000000, percentage horn = 1.000000
% 0.67/1.09  This is a pure equality problem
% 0.67/1.09  
% 0.67/1.09  
% 0.67/1.09  
% 0.67/1.09  Options Used:
% 0.67/1.09  
% 0.67/1.09  useres =            1
% 0.67/1.09  useparamod =        1
% 0.67/1.09  useeqrefl =         1
% 0.67/1.09  useeqfact =         1
% 0.67/1.09  usefactor =         1
% 0.67/1.09  usesimpsplitting =  0
% 0.67/1.09  usesimpdemod =      5
% 0.67/1.09  usesimpres =        3
% 0.67/1.09  
% 0.67/1.09  resimpinuse      =  1000
% 0.67/1.09  resimpclauses =     20000
% 0.67/1.09  substype =          eqrewr
% 0.67/1.09  backwardsubs =      1
% 0.67/1.09  selectoldest =      5
% 0.67/1.09  
% 0.67/1.09  litorderings [0] =  split
% 0.67/1.09  litorderings [1] =  extend the termordering, first sorting on arguments
% 0.67/1.09  
% 0.67/1.09  termordering =      kbo
% 0.67/1.09  
% 0.67/1.09  litapriori =        0
% 0.67/1.09  termapriori =       1
% 0.67/1.09  litaposteriori =    0
% 0.67/1.09  termaposteriori =   0
% 0.67/1.09  demodaposteriori =  0
% 0.67/1.09  ordereqreflfact =   0
% 0.67/1.09  
% 0.67/1.09  litselect =         negord
% 0.67/1.09  
% 0.67/1.09  maxweight =         15
% 0.67/1.09  maxdepth =          30000
% 0.67/1.09  maxlength =         115
% 0.67/1.09  maxnrvars =         195
% 0.67/1.09  excuselevel =       1
% 0.67/1.09  increasemaxweight = 1
% 0.67/1.09  
% 0.67/1.09  maxselected =       10000000
% 0.67/1.09  maxnrclauses =      10000000
% 0.67/1.09  
% 0.67/1.09  showgenerated =    0
% 0.67/1.09  showkept =         0
% 0.67/1.09  showselected =     0
% 0.67/1.09  showdeleted =      0
% 0.67/1.09  showresimp =       1
% 0.67/1.09  showstatus =       2000
% 0.67/1.09  
% 0.67/1.09  prologoutput =     1
% 0.67/1.09  nrgoals =          5000000
% 0.67/1.09  totalproof =       1
% 0.67/1.09  
% 0.67/1.09  Symbols occurring in the translation:
% 0.67/1.09  
% 0.67/1.09  {}  [0, 0]      (w:1, o:2, a:1, s:1, b:0), 
% 0.67/1.09  .  [1, 2]      (w:1, o:20, a:1, s:1, b:0), 
% 0.67/1.09  !  [4, 1]      (w:0, o:14, a:1, s:1, b:0), 
% 0.67/1.09  =  [13, 2]      (w:1, o:0, a:0, s:1, b:0), 
% 0.67/1.09  ==>  [14, 2]      (w:1, o:0, a:0, s:1, b:0), 
% 0.67/1.09  'double_divide'  [42, 2]      (w:1, o:45, a:1, s:1, b:0), 
% 0.67/1.09  identity  [43, 0]      (w:1, o:12, a:1, s:1, b:0), 
% 0.67/1.09  multiply  [44, 2]      (w:1, o:46, a:1, s:1, b:0), 
% 0.67/1.09  inverse  [45, 1]      (w:1, o:19, a:1, s:1, b:0), 
% 0.67/1.09  a2  [46, 0]      (w:1, o:13, a:1, s:1, b:0).
% 0.67/1.09  
% 0.67/1.09  
% 0.67/1.09  Starting Search:
% 0.67/1.09  
% 0.67/1.09  
% 0.67/1.09  Bliksems!, er is een bewijs:
% 0.67/1.09  % SZS status Unsatisfiable
% 0.67/1.09  % SZS output start Refutation
% 0.67/1.09  
% 0.67/1.09  clause( 0, [ =( 'double_divide'( 'double_divide'( X, 'double_divide'( 
% 0.67/1.09    'double_divide'( Y, 'double_divide'( X, Z ) ), 'double_divide'( identity
% 0.67/1.09    , Z ) ) ), 'double_divide'( identity, identity ) ), Y ) ] )
% 0.67/1.09  .
% 0.67/1.09  clause( 1, [ =( 'double_divide'( 'double_divide'( Y, X ), identity ), 
% 0.67/1.09    multiply( X, Y ) ) ] )
% 0.67/1.09  .
% 0.67/1.09  clause( 2, [ =( 'double_divide'( X, identity ), inverse( X ) ) ] )
% 0.67/1.09  .
% 0.67/1.09  clause( 3, [ =( 'double_divide'( X, inverse( X ) ), identity ) ] )
% 0.67/1.09  .
% 0.67/1.09  clause( 4, [ ~( =( multiply( identity, a2 ), a2 ) ) ] )
% 0.67/1.09  .
% 0.67/1.09  clause( 5, [ =( inverse( 'double_divide'( Y, X ) ), multiply( X, Y ) ) ] )
% 0.67/1.09  .
% 0.67/1.09  clause( 8, [ =( multiply( identity, X ), inverse( inverse( X ) ) ) ] )
% 0.67/1.09  .
% 0.67/1.09  clause( 9, [ =( 'double_divide'( 'double_divide'( X, 'double_divide'( 
% 0.67/1.09    'double_divide'( Y, 'double_divide'( X, Z ) ), 'double_divide'( identity
% 0.67/1.09    , Z ) ) ), inverse( identity ) ), Y ) ] )
% 0.67/1.09  .
% 0.67/1.09  clause( 11, [ ~( =( inverse( inverse( a2 ) ), a2 ) ) ] )
% 0.67/1.09  .
% 0.67/1.09  clause( 13, [ =( 'double_divide'( 'double_divide'( X, multiply( 
% 0.67/1.09    'double_divide'( X, inverse( identity ) ), Y ) ), inverse( identity ) ), 
% 0.67/1.09    Y ) ] )
% 0.67/1.09  .
% 0.67/1.09  clause( 14, [ =( 'double_divide'( 'double_divide'( X, 'double_divide'( 
% 0.67/1.09    'double_divide'( Y, inverse( X ) ), inverse( identity ) ) ), inverse( 
% 0.67/1.09    identity ) ), Y ) ] )
% 0.67/1.09  .
% 0.67/1.09  clause( 17, [ =( 'double_divide'( 'double_divide'( identity, inverse( 
% 0.67/1.09    inverse( X ) ) ), inverse( identity ) ), X ) ] )
% 0.67/1.09  .
% 0.67/1.09  clause( 26, [ =( 'double_divide'( 'double_divide'( inverse( X ), X ), 
% 0.67/1.09    inverse( identity ) ), identity ) ] )
% 0.67/1.09  .
% 0.67/1.09  clause( 30, [ =( 'double_divide'( inverse( X ), inverse( identity ) ), X )
% 0.67/1.09     ] )
% 0.67/1.09  .
% 0.67/1.09  clause( 45, [ =( inverse( inverse( X ) ), X ) ] )
% 0.67/1.09  .
% 0.67/1.09  clause( 58, [] )
% 0.67/1.09  .
% 0.67/1.09  
% 0.67/1.09  
% 0.67/1.09  % SZS output end Refutation
% 0.67/1.09  found a proof!
% 0.67/1.09  
% 0.67/1.09  % ABCDEFGHIJKLMNOPQRSTUVWXYZ
% 0.67/1.09  
% 0.67/1.09  initialclauses(
% 0.67/1.09  [ clause( 60, [ =( 'double_divide'( 'double_divide'( X, 'double_divide'( 
% 0.67/1.09    'double_divide'( Y, 'double_divide'( X, Z ) ), 'double_divide'( identity
% 0.67/1.09    , Z ) ) ), 'double_divide'( identity, identity ) ), Y ) ] )
% 0.67/1.09  , clause( 61, [ =( multiply( X, Y ), 'double_divide'( 'double_divide'( Y, X
% 0.67/1.09     ), identity ) ) ] )
% 0.67/1.09  , clause( 62, [ =( inverse( X ), 'double_divide'( X, identity ) ) ] )
% 0.67/1.09  , clause( 63, [ =( identity, 'double_divide'( X, inverse( X ) ) ) ] )
% 0.67/1.09  , clause( 64, [ ~( =( multiply( identity, a2 ), a2 ) ) ] )
% 0.67/1.09  ] ).
% 0.67/1.09  
% 0.67/1.09  
% 0.67/1.09  
% 0.67/1.09  subsumption(
% 0.67/1.09  clause( 0, [ =( 'double_divide'( 'double_divide'( X, 'double_divide'( 
% 0.67/1.09    'double_divide'( Y, 'double_divide'( X, Z ) ), 'double_divide'( identity
% 0.67/1.09    , Z ) ) ), 'double_divide'( identity, identity ) ), Y ) ] )
% 0.67/1.09  , clause( 60, [ =( 'double_divide'( 'double_divide'( X, 'double_divide'( 
% 0.67/1.09    'double_divide'( Y, 'double_divide'( X, Z ) ), 'double_divide'( identity
% 0.67/1.09    , Z ) ) ), 'double_divide'( identity, identity ) ), Y ) ] )
% 0.67/1.09  , substitution( 0, [ :=( X, X ), :=( Y, Y ), :=( Z, Z )] ), 
% 0.67/1.09    permutation( 0, [ ==>( 0, 0 )] ) ).
% 0.67/1.09  
% 0.67/1.09  
% 0.67/1.09  eqswap(
% 0.67/1.09  clause( 67, [ =( 'double_divide'( 'double_divide'( Y, X ), identity ), 
% 0.67/1.09    multiply( X, Y ) ) ] )
% 0.67/1.09  , clause( 61, [ =( multiply( X, Y ), 'double_divide'( 'double_divide'( Y, X
% 0.67/1.09     ), identity ) ) ] )
% 0.67/1.09  , 0, substitution( 0, [ :=( X, X ), :=( Y, Y )] )).
% 0.67/1.09  
% 0.67/1.09  
% 0.67/1.09  subsumption(
% 0.67/1.09  clause( 1, [ =( 'double_divide'( 'double_divide'( Y, X ), identity ), 
% 0.67/1.09    multiply( X, Y ) ) ] )
% 0.67/1.09  , clause( 67, [ =( 'double_divide'( 'double_divide'( Y, X ), identity ), 
% 0.67/1.09    multiply( X, Y ) ) ] )
% 0.67/1.09  , substitution( 0, [ :=( X, X ), :=( Y, Y )] ), permutation( 0, [ ==>( 0, 0
% 0.67/1.09     )] ) ).
% 0.67/1.09  
% 0.67/1.09  
% 0.67/1.09  eqswap(
% 0.67/1.09  clause( 70, [ =( 'double_divide'( X, identity ), inverse( X ) ) ] )
% 0.67/1.09  , clause( 62, [ =( inverse( X ), 'double_divide'( X, identity ) ) ] )
% 0.67/1.09  , 0, substitution( 0, [ :=( X, X )] )).
% 0.67/1.09  
% 0.67/1.09  
% 0.67/1.09  subsumption(
% 0.67/1.09  clause( 2, [ =( 'double_divide'( X, identity ), inverse( X ) ) ] )
% 0.67/1.09  , clause( 70, [ =( 'double_divide'( X, identity ), inverse( X ) ) ] )
% 0.67/1.09  , substitution( 0, [ :=( X, X )] ), permutation( 0, [ ==>( 0, 0 )] ) ).
% 0.67/1.09  
% 0.67/1.09  
% 0.67/1.09  eqswap(
% 0.67/1.09  clause( 74, [ =( 'double_divide'( X, inverse( X ) ), identity ) ] )
% 0.67/1.09  , clause( 63, [ =( identity, 'double_divide'( X, inverse( X ) ) ) ] )
% 0.67/1.09  , 0, substitution( 0, [ :=( X, X )] )).
% 0.67/1.09  
% 0.67/1.09  
% 0.67/1.09  subsumption(
% 0.67/1.09  clause( 3, [ =( 'double_divide'( X, inverse( X ) ), identity ) ] )
% 0.67/1.09  , clause( 74, [ =( 'double_divide'( X, inverse( X ) ), identity ) ] )
% 0.67/1.09  , substitution( 0, [ :=( X, X )] ), permutation( 0, [ ==>( 0, 0 )] ) ).
% 0.67/1.09  
% 0.67/1.09  
% 0.67/1.09  subsumption(
% 0.67/1.09  clause( 4, [ ~( =( multiply( identity, a2 ), a2 ) ) ] )
% 0.67/1.09  , clause( 64, [ ~( =( multiply( identity, a2 ), a2 ) ) ] )
% 0.67/1.09  , substitution( 0, [] ), permutation( 0, [ ==>( 0, 0 )] ) ).
% 0.67/1.09  
% 0.67/1.09  
% 0.67/1.09  paramod(
% 0.67/1.09  clause( 82, [ =( inverse( 'double_divide'( X, Y ) ), multiply( Y, X ) ) ]
% 0.67/1.09     )
% 0.67/1.09  , clause( 2, [ =( 'double_divide'( X, identity ), inverse( X ) ) ] )
% 0.67/1.09  , 0, clause( 1, [ =( 'double_divide'( 'double_divide'( Y, X ), identity ), 
% 0.67/1.09    multiply( X, Y ) ) ] )
% 0.67/1.09  , 0, 1, substitution( 0, [ :=( X, 'double_divide'( X, Y ) )] ), 
% 0.67/1.09    substitution( 1, [ :=( X, Y ), :=( Y, X )] )).
% 0.67/1.09  
% 0.67/1.09  
% 0.67/1.09  subsumption(
% 0.67/1.09  clause( 5, [ =( inverse( 'double_divide'( Y, X ) ), multiply( X, Y ) ) ] )
% 0.67/1.09  , clause( 82, [ =( inverse( 'double_divide'( X, Y ) ), multiply( Y, X ) ) ]
% 0.67/1.09     )
% 0.67/1.09  , substitution( 0, [ :=( X, Y ), :=( Y, X )] ), permutation( 0, [ ==>( 0, 0
% 0.67/1.09     )] ) ).
% 0.67/1.09  
% 0.67/1.09  
% 0.67/1.09  eqswap(
% 0.67/1.09  clause( 85, [ =( multiply( Y, X ), inverse( 'double_divide'( X, Y ) ) ) ]
% 0.67/1.09     )
% 0.67/1.09  , clause( 5, [ =( inverse( 'double_divide'( Y, X ) ), multiply( X, Y ) ) ]
% 0.67/1.09     )
% 0.67/1.09  , 0, substitution( 0, [ :=( X, Y ), :=( Y, X )] )).
% 0.67/1.09  
% 0.67/1.09  
% 0.67/1.09  paramod(
% 0.67/1.09  clause( 88, [ =( multiply( identity, X ), inverse( inverse( X ) ) ) ] )
% 0.67/1.09  , clause( 2, [ =( 'double_divide'( X, identity ), inverse( X ) ) ] )
% 0.67/1.09  , 0, clause( 85, [ =( multiply( Y, X ), inverse( 'double_divide'( X, Y ) )
% 0.67/1.09     ) ] )
% 0.67/1.09  , 0, 5, substitution( 0, [ :=( X, X )] ), substitution( 1, [ :=( X, X ), 
% 0.67/1.09    :=( Y, identity )] )).
% 0.67/1.09  
% 0.67/1.09  
% 0.67/1.09  subsumption(
% 0.67/1.09  clause( 8, [ =( multiply( identity, X ), inverse( inverse( X ) ) ) ] )
% 0.67/1.09  , clause( 88, [ =( multiply( identity, X ), inverse( inverse( X ) ) ) ] )
% 0.67/1.09  , substitution( 0, [ :=( X, X )] ), permutation( 0, [ ==>( 0, 0 )] ) ).
% 0.67/1.09  
% 0.67/1.09  
% 0.67/1.09  paramod(
% 0.67/1.09  clause( 92, [ =( 'double_divide'( 'double_divide'( X, 'double_divide'( 
% 0.67/1.09    'double_divide'( Y, 'double_divide'( X, Z ) ), 'double_divide'( identity
% 0.67/1.09    , Z ) ) ), inverse( identity ) ), Y ) ] )
% 0.67/1.09  , clause( 2, [ =( 'double_divide'( X, identity ), inverse( X ) ) ] )
% 0.67/1.09  , 0, clause( 0, [ =( 'double_divide'( 'double_divide'( X, 'double_divide'( 
% 0.67/1.09    'double_divide'( Y, 'double_divide'( X, Z ) ), 'double_divide'( identity
% 0.67/1.09    , Z ) ) ), 'double_divide'( identity, identity ) ), Y ) ] )
% 0.67/1.09  , 0, 13, substitution( 0, [ :=( X, identity )] ), substitution( 1, [ :=( X
% 0.67/1.09    , X ), :=( Y, Y ), :=( Z, Z )] )).
% 0.67/1.09  
% 0.67/1.09  
% 0.67/1.09  subsumption(
% 0.67/1.09  clause( 9, [ =( 'double_divide'( 'double_divide'( X, 'double_divide'( 
% 0.67/1.09    'double_divide'( Y, 'double_divide'( X, Z ) ), 'double_divide'( identity
% 0.67/1.09    , Z ) ) ), inverse( identity ) ), Y ) ] )
% 0.67/1.09  , clause( 92, [ =( 'double_divide'( 'double_divide'( X, 'double_divide'( 
% 0.67/1.09    'double_divide'( Y, 'double_divide'( X, Z ) ), 'double_divide'( identity
% 0.67/1.09    , Z ) ) ), inverse( identity ) ), Y ) ] )
% 0.67/1.09  , substitution( 0, [ :=( X, X ), :=( Y, Y ), :=( Z, Z )] ), 
% 0.67/1.09    permutation( 0, [ ==>( 0, 0 )] ) ).
% 0.67/1.09  
% 0.67/1.09  
% 0.67/1.09  eqswap(
% 0.67/1.09  clause( 95, [ ~( =( a2, multiply( identity, a2 ) ) ) ] )
% 0.67/1.09  , clause( 4, [ ~( =( multiply( identity, a2 ), a2 ) ) ] )
% 0.67/1.09  , 0, substitution( 0, [] )).
% 0.67/1.09  
% 0.67/1.09  
% 0.67/1.09  paramod(
% 0.67/1.09  clause( 96, [ ~( =( a2, inverse( inverse( a2 ) ) ) ) ] )
% 0.67/1.09  , clause( 8, [ =( multiply( identity, X ), inverse( inverse( X ) ) ) ] )
% 0.67/1.09  , 0, clause( 95, [ ~( =( a2, multiply( identity, a2 ) ) ) ] )
% 0.67/1.09  , 0, 3, substitution( 0, [ :=( X, a2 )] ), substitution( 1, [] )).
% 0.67/1.09  
% 0.67/1.09  
% 0.67/1.09  eqswap(
% 0.67/1.09  clause( 97, [ ~( =( inverse( inverse( a2 ) ), a2 ) ) ] )
% 0.67/1.09  , clause( 96, [ ~( =( a2, inverse( inverse( a2 ) ) ) ) ] )
% 0.67/1.09  , 0, substitution( 0, [] )).
% 0.67/1.09  
% 0.67/1.09  
% 0.67/1.09  subsumption(
% 0.67/1.09  clause( 11, [ ~( =( inverse( inverse( a2 ) ), a2 ) ) ] )
% 0.67/1.09  , clause( 97, [ ~( =( inverse( inverse( a2 ) ), a2 ) ) ] )
% 0.67/1.09  , substitution( 0, [] ), permutation( 0, [ ==>( 0, 0 )] ) ).
% 0.67/1.09  
% 0.67/1.09  
% 0.67/1.09  eqswap(
% 0.67/1.09  clause( 99, [ =( Y, 'double_divide'( 'double_divide'( X, 'double_divide'( 
% 0.67/1.09    'double_divide'( Y, 'double_divide'( X, Z ) ), 'double_divide'( identity
% 0.67/1.09    , Z ) ) ), inverse( identity ) ) ) ] )
% 0.67/1.09  , clause( 9, [ =( 'double_divide'( 'double_divide'( X, 'double_divide'( 
% 0.67/1.09    'double_divide'( Y, 'double_divide'( X, Z ) ), 'double_divide'( identity
% 0.67/1.09    , Z ) ) ), inverse( identity ) ), Y ) ] )
% 0.67/1.09  , 0, substitution( 0, [ :=( X, X ), :=( Y, Y ), :=( Z, Z )] )).
% 0.67/1.09  
% 0.67/1.09  
% 0.67/1.09  paramod(
% 0.67/1.09  clause( 103, [ =( X, 'double_divide'( 'double_divide'( Y, 'double_divide'( 
% 0.67/1.09    'double_divide'( X, 'double_divide'( Y, inverse( identity ) ) ), identity
% 0.67/1.09     ) ), inverse( identity ) ) ) ] )
% 0.67/1.09  , clause( 3, [ =( 'double_divide'( X, inverse( X ) ), identity ) ] )
% 0.67/1.09  , 0, clause( 99, [ =( Y, 'double_divide'( 'double_divide'( X, 
% 0.67/1.09    'double_divide'( 'double_divide'( Y, 'double_divide'( X, Z ) ), 
% 0.67/1.09    'double_divide'( identity, Z ) ) ), inverse( identity ) ) ) ] )
% 0.67/1.09  , 0, 12, substitution( 0, [ :=( X, identity )] ), substitution( 1, [ :=( X
% 0.67/1.09    , Y ), :=( Y, X ), :=( Z, inverse( identity ) )] )).
% 0.67/1.09  
% 0.67/1.09  
% 0.67/1.09  paramod(
% 0.67/1.09  clause( 104, [ =( X, 'double_divide'( 'double_divide'( Y, inverse( 
% 0.67/1.09    'double_divide'( X, 'double_divide'( Y, inverse( identity ) ) ) ) ), 
% 0.67/1.09    inverse( identity ) ) ) ] )
% 0.67/1.09  , clause( 2, [ =( 'double_divide'( X, identity ), inverse( X ) ) ] )
% 0.67/1.09  , 0, clause( 103, [ =( X, 'double_divide'( 'double_divide'( Y, 
% 0.67/1.09    'double_divide'( 'double_divide'( X, 'double_divide'( Y, inverse( 
% 0.67/1.09    identity ) ) ), identity ) ), inverse( identity ) ) ) ] )
% 0.67/1.09  , 0, 5, substitution( 0, [ :=( X, 'double_divide'( X, 'double_divide'( Y, 
% 0.67/1.09    inverse( identity ) ) ) )] ), substitution( 1, [ :=( X, X ), :=( Y, Y )] )
% 0.67/1.09    ).
% 0.67/1.09  
% 0.67/1.09  
% 0.67/1.09  paramod(
% 0.67/1.09  clause( 105, [ =( X, 'double_divide'( 'double_divide'( Y, multiply( 
% 0.67/1.09    'double_divide'( Y, inverse( identity ) ), X ) ), inverse( identity ) ) )
% 0.67/1.09     ] )
% 0.67/1.09  , clause( 5, [ =( inverse( 'double_divide'( Y, X ) ), multiply( X, Y ) ) ]
% 0.67/1.09     )
% 0.67/1.09  , 0, clause( 104, [ =( X, 'double_divide'( 'double_divide'( Y, inverse( 
% 0.67/1.09    'double_divide'( X, 'double_divide'( Y, inverse( identity ) ) ) ) ), 
% 0.67/1.09    inverse( identity ) ) ) ] )
% 0.67/1.09  , 0, 5, substitution( 0, [ :=( X, 'double_divide'( Y, inverse( identity ) )
% 0.67/1.09     ), :=( Y, X )] ), substitution( 1, [ :=( X, X ), :=( Y, Y )] )).
% 0.67/1.09  
% 0.67/1.09  
% 0.67/1.09  eqswap(
% 0.67/1.09  clause( 106, [ =( 'double_divide'( 'double_divide'( Y, multiply( 
% 0.67/1.09    'double_divide'( Y, inverse( identity ) ), X ) ), inverse( identity ) ), 
% 0.67/1.09    X ) ] )
% 0.67/1.09  , clause( 105, [ =( X, 'double_divide'( 'double_divide'( Y, multiply( 
% 0.67/1.09    'double_divide'( Y, inverse( identity ) ), X ) ), inverse( identity ) ) )
% 0.67/1.09     ] )
% 0.67/1.09  , 0, substitution( 0, [ :=( X, X ), :=( Y, Y )] )).
% 0.67/1.09  
% 0.67/1.09  
% 0.67/1.09  subsumption(
% 0.67/1.09  clause( 13, [ =( 'double_divide'( 'double_divide'( X, multiply( 
% 0.67/1.09    'double_divide'( X, inverse( identity ) ), Y ) ), inverse( identity ) ), 
% 0.67/1.09    Y ) ] )
% 0.67/1.09  , clause( 106, [ =( 'double_divide'( 'double_divide'( Y, multiply( 
% 0.67/1.09    'double_divide'( Y, inverse( identity ) ), X ) ), inverse( identity ) ), 
% 0.67/1.09    X ) ] )
% 0.67/1.09  , substitution( 0, [ :=( X, Y ), :=( Y, X )] ), permutation( 0, [ ==>( 0, 0
% 0.67/1.09     )] ) ).
% 0.67/1.09  
% 0.67/1.09  
% 0.67/1.09  eqswap(
% 0.67/1.09  clause( 108, [ =( Y, 'double_divide'( 'double_divide'( X, 'double_divide'( 
% 0.67/1.09    'double_divide'( Y, 'double_divide'( X, Z ) ), 'double_divide'( identity
% 0.67/1.09    , Z ) ) ), inverse( identity ) ) ) ] )
% 0.67/1.09  , clause( 9, [ =( 'double_divide'( 'double_divide'( X, 'double_divide'( 
% 0.67/1.09    'double_divide'( Y, 'double_divide'( X, Z ) ), 'double_divide'( identity
% 0.67/1.09    , Z ) ) ), inverse( identity ) ), Y ) ] )
% 0.67/1.09  , 0, substitution( 0, [ :=( X, X ), :=( Y, Y ), :=( Z, Z )] )).
% 0.67/1.09  
% 0.67/1.09  
% 0.67/1.09  paramod(
% 0.67/1.09  clause( 111, [ =( X, 'double_divide'( 'double_divide'( Y, 'double_divide'( 
% 0.67/1.09    'double_divide'( X, 'double_divide'( Y, identity ) ), inverse( identity )
% 0.67/1.09     ) ), inverse( identity ) ) ) ] )
% 0.67/1.09  , clause( 2, [ =( 'double_divide'( X, identity ), inverse( X ) ) ] )
% 0.67/1.09  , 0, clause( 108, [ =( Y, 'double_divide'( 'double_divide'( X, 
% 0.67/1.09    'double_divide'( 'double_divide'( Y, 'double_divide'( X, Z ) ), 
% 0.67/1.09    'double_divide'( identity, Z ) ) ), inverse( identity ) ) ) ] )
% 0.67/1.09  , 0, 11, substitution( 0, [ :=( X, identity )] ), substitution( 1, [ :=( X
% 0.67/1.09    , Y ), :=( Y, X ), :=( Z, identity )] )).
% 0.67/1.09  
% 0.67/1.09  
% 0.67/1.09  paramod(
% 0.67/1.09  clause( 113, [ =( X, 'double_divide'( 'double_divide'( Y, 'double_divide'( 
% 0.67/1.09    'double_divide'( X, inverse( Y ) ), inverse( identity ) ) ), inverse( 
% 0.67/1.09    identity ) ) ) ] )
% 0.67/1.09  , clause( 2, [ =( 'double_divide'( X, identity ), inverse( X ) ) ] )
% 0.67/1.09  , 0, clause( 111, [ =( X, 'double_divide'( 'double_divide'( Y, 
% 0.67/1.09    'double_divide'( 'double_divide'( X, 'double_divide'( Y, identity ) ), 
% 0.67/1.09    inverse( identity ) ) ), inverse( identity ) ) ) ] )
% 0.67/1.09  , 0, 8, substitution( 0, [ :=( X, Y )] ), substitution( 1, [ :=( X, X ), 
% 0.67/1.09    :=( Y, Y )] )).
% 0.67/1.09  
% 0.67/1.09  
% 0.67/1.09  eqswap(
% 0.67/1.09  clause( 114, [ =( 'double_divide'( 'double_divide'( Y, 'double_divide'( 
% 0.67/1.09    'double_divide'( X, inverse( Y ) ), inverse( identity ) ) ), inverse( 
% 0.67/1.09    identity ) ), X ) ] )
% 0.67/1.09  , clause( 113, [ =( X, 'double_divide'( 'double_divide'( Y, 'double_divide'( 
% 0.67/1.09    'double_divide'( X, inverse( Y ) ), inverse( identity ) ) ), inverse( 
% 0.67/1.09    identity ) ) ) ] )
% 0.67/1.09  , 0, substitution( 0, [ :=( X, X ), :=( Y, Y )] )).
% 0.67/1.09  
% 0.67/1.09  
% 0.67/1.09  subsumption(
% 0.67/1.09  clause( 14, [ =( 'double_divide'( 'double_divide'( X, 'double_divide'( 
% 0.67/1.09    'double_divide'( Y, inverse( X ) ), inverse( identity ) ) ), inverse( 
% 0.67/1.09    identity ) ), Y ) ] )
% 0.67/1.09  , clause( 114, [ =( 'double_divide'( 'double_divide'( Y, 'double_divide'( 
% 0.67/1.09    'double_divide'( X, inverse( Y ) ), inverse( identity ) ) ), inverse( 
% 0.67/1.09    identity ) ), X ) ] )
% 0.67/1.09  , substitution( 0, [ :=( X, Y ), :=( Y, X )] ), permutation( 0, [ ==>( 0, 0
% 0.67/1.09     )] ) ).
% 0.67/1.09  
% 0.67/1.09  
% 0.67/1.09  eqswap(
% 0.67/1.09  clause( 116, [ =( Y, 'double_divide'( 'double_divide'( X, multiply( 
% 0.67/1.09    'double_divide'( X, inverse( identity ) ), Y ) ), inverse( identity ) ) )
% 0.67/1.09     ] )
% 0.67/1.09  , clause( 13, [ =( 'double_divide'( 'double_divide'( X, multiply( 
% 0.67/1.09    'double_divide'( X, inverse( identity ) ), Y ) ), inverse( identity ) ), 
% 0.67/1.09    Y ) ] )
% 0.67/1.09  , 0, substitution( 0, [ :=( X, X ), :=( Y, Y )] )).
% 0.67/1.09  
% 0.67/1.09  
% 0.67/1.09  paramod(
% 0.67/1.09  clause( 118, [ =( X, 'double_divide'( 'double_divide'( identity, multiply( 
% 0.67/1.09    identity, X ) ), inverse( identity ) ) ) ] )
% 0.67/1.09  , clause( 3, [ =( 'double_divide'( X, inverse( X ) ), identity ) ] )
% 0.67/1.09  , 0, clause( 116, [ =( Y, 'double_divide'( 'double_divide'( X, multiply( 
% 0.67/1.09    'double_divide'( X, inverse( identity ) ), Y ) ), inverse( identity ) ) )
% 0.67/1.09     ] )
% 0.67/1.09  , 0, 6, substitution( 0, [ :=( X, identity )] ), substitution( 1, [ :=( X, 
% 0.67/1.09    identity ), :=( Y, X )] )).
% 0.67/1.09  
% 0.67/1.09  
% 0.67/1.09  paramod(
% 0.67/1.09  clause( 119, [ =( X, 'double_divide'( 'double_divide'( identity, inverse( 
% 0.67/1.09    inverse( X ) ) ), inverse( identity ) ) ) ] )
% 0.67/1.09  , clause( 8, [ =( multiply( identity, X ), inverse( inverse( X ) ) ) ] )
% 0.67/1.09  , 0, clause( 118, [ =( X, 'double_divide'( 'double_divide'( identity, 
% 0.67/1.09    multiply( identity, X ) ), inverse( identity ) ) ) ] )
% 0.67/1.09  , 0, 5, substitution( 0, [ :=( X, X )] ), substitution( 1, [ :=( X, X )] )
% 0.67/1.09    ).
% 0.67/1.09  
% 0.67/1.09  
% 0.67/1.09  eqswap(
% 0.67/1.09  clause( 120, [ =( 'double_divide'( 'double_divide'( identity, inverse( 
% 0.67/1.09    inverse( X ) ) ), inverse( identity ) ), X ) ] )
% 0.67/1.09  , clause( 119, [ =( X, 'double_divide'( 'double_divide'( identity, inverse( 
% 0.67/1.09    inverse( X ) ) ), inverse( identity ) ) ) ] )
% 0.67/1.09  , 0, substitution( 0, [ :=( X, X )] )).
% 0.67/1.09  
% 0.67/1.09  
% 0.67/1.09  subsumption(
% 0.67/1.09  clause( 17, [ =( 'double_divide'( 'double_divide'( identity, inverse( 
% 0.67/1.09    inverse( X ) ) ), inverse( identity ) ), X ) ] )
% 0.67/1.09  , clause( 120, [ =( 'double_divide'( 'double_divide'( identity, inverse( 
% 0.67/1.09    inverse( X ) ) ), inverse( identity ) ), X ) ] )
% 0.67/1.09  , substitution( 0, [ :=( X, X )] ), permutation( 0, [ ==>( 0, 0 )] ) ).
% 0.67/1.09  
% 0.67/1.09  
% 0.67/1.09  eqswap(
% 0.67/1.09  clause( 122, [ =( Y, 'double_divide'( 'double_divide'( X, 'double_divide'( 
% 0.67/1.09    'double_divide'( Y, inverse( X ) ), inverse( identity ) ) ), inverse( 
% 0.67/1.09    identity ) ) ) ] )
% 0.67/1.09  , clause( 14, [ =( 'double_divide'( 'double_divide'( X, 'double_divide'( 
% 0.67/1.09    'double_divide'( Y, inverse( X ) ), inverse( identity ) ) ), inverse( 
% 0.67/1.09    identity ) ), Y ) ] )
% 0.67/1.09  , 0, substitution( 0, [ :=( X, X ), :=( Y, Y )] )).
% 0.67/1.09  
% 0.67/1.09  
% 0.67/1.09  paramod(
% 0.67/1.09  clause( 123, [ =( identity, 'double_divide'( 'double_divide'( inverse( X )
% 0.67/1.09    , X ), inverse( identity ) ) ) ] )
% 0.67/1.09  , clause( 17, [ =( 'double_divide'( 'double_divide'( identity, inverse( 
% 0.67/1.09    inverse( X ) ) ), inverse( identity ) ), X ) ] )
% 0.67/1.09  , 0, clause( 122, [ =( Y, 'double_divide'( 'double_divide'( X, 
% 0.67/1.09    'double_divide'( 'double_divide'( Y, inverse( X ) ), inverse( identity )
% 0.67/1.09     ) ), inverse( identity ) ) ) ] )
% 0.67/1.09  , 0, 6, substitution( 0, [ :=( X, X )] ), substitution( 1, [ :=( X, inverse( 
% 0.67/1.09    X ) ), :=( Y, identity )] )).
% 0.67/1.09  
% 0.67/1.09  
% 0.67/1.09  eqswap(
% 0.67/1.09  clause( 125, [ =( 'double_divide'( 'double_divide'( inverse( X ), X ), 
% 0.67/1.09    inverse( identity ) ), identity ) ] )
% 0.67/1.09  , clause( 123, [ =( identity, 'double_divide'( 'double_divide'( inverse( X
% 0.67/1.09     ), X ), inverse( identity ) ) ) ] )
% 0.67/1.09  , 0, substitution( 0, [ :=( X, X )] )).
% 0.67/1.09  
% 0.67/1.09  
% 0.67/1.09  subsumption(
% 0.67/1.09  clause( 26, [ =( 'double_divide'( 'double_divide'( inverse( X ), X ), 
% 0.67/1.09    inverse( identity ) ), identity ) ] )
% 0.67/1.09  , clause( 125, [ =( 'double_divide'( 'double_divide'( inverse( X ), X ), 
% 0.67/1.09    inverse( identity ) ), identity ) ] )
% 0.67/1.09  , substitution( 0, [ :=( X, X )] ), permutation( 0, [ ==>( 0, 0 )] ) ).
% 0.67/1.09  
% 0.67/1.09  
% 0.67/1.09  eqswap(
% 0.67/1.09  clause( 128, [ =( Y, 'double_divide'( 'double_divide'( X, 'double_divide'( 
% 0.67/1.09    'double_divide'( Y, inverse( X ) ), inverse( identity ) ) ), inverse( 
% 0.67/1.09    identity ) ) ) ] )
% 0.67/1.09  , clause( 14, [ =( 'double_divide'( 'double_divide'( X, 'double_divide'( 
% 0.67/1.09    'double_divide'( Y, inverse( X ) ), inverse( identity ) ) ), inverse( 
% 0.67/1.09    identity ) ), Y ) ] )
% 0.67/1.09  , 0, substitution( 0, [ :=( X, X ), :=( Y, Y )] )).
% 0.67/1.09  
% 0.67/1.09  
% 0.67/1.09  paramod(
% 0.67/1.09  clause( 131, [ =( X, 'double_divide'( 'double_divide'( X, 'double_divide'( 
% 0.67/1.09    identity, inverse( identity ) ) ), inverse( identity ) ) ) ] )
% 0.67/1.09  , clause( 3, [ =( 'double_divide'( X, inverse( X ) ), identity ) ] )
% 0.67/1.09  , 0, clause( 128, [ =( Y, 'double_divide'( 'double_divide'( X, 
% 0.67/1.09    'double_divide'( 'double_divide'( Y, inverse( X ) ), inverse( identity )
% 0.67/1.09     ) ), inverse( identity ) ) ) ] )
% 0.67/1.09  , 0, 6, substitution( 0, [ :=( X, X )] ), substitution( 1, [ :=( X, X ), 
% 0.67/1.09    :=( Y, X )] )).
% 0.67/1.09  
% 0.67/1.09  
% 0.67/1.09  paramod(
% 0.67/1.09  clause( 133, [ =( X, 'double_divide'( 'double_divide'( X, identity ), 
% 0.67/1.09    inverse( identity ) ) ) ] )
% 0.67/1.09  , clause( 3, [ =( 'double_divide'( X, inverse( X ) ), identity ) ] )
% 0.67/1.09  , 0, clause( 131, [ =( X, 'double_divide'( 'double_divide'( X, 
% 0.67/1.09    'double_divide'( identity, inverse( identity ) ) ), inverse( identity ) )
% 0.67/1.09     ) ] )
% 0.67/1.09  , 0, 5, substitution( 0, [ :=( X, identity )] ), substitution( 1, [ :=( X, 
% 0.67/1.09    X )] )).
% 0.67/1.09  
% 0.67/1.09  
% 0.67/1.09  paramod(
% 0.67/1.09  clause( 134, [ =( X, 'double_divide'( inverse( X ), inverse( identity ) ) )
% 0.67/1.09     ] )
% 0.67/1.09  , clause( 2, [ =( 'double_divide'( X, identity ), inverse( X ) ) ] )
% 0.67/1.09  , 0, clause( 133, [ =( X, 'double_divide'( 'double_divide'( X, identity ), 
% 0.67/1.09    inverse( identity ) ) ) ] )
% 0.67/1.09  , 0, 3, substitution( 0, [ :=( X, X )] ), substitution( 1, [ :=( X, X )] )
% 0.67/1.09    ).
% 0.67/1.09  
% 0.67/1.09  
% 0.67/1.09  eqswap(
% 0.67/1.09  clause( 135, [ =( 'double_divide'( inverse( X ), inverse( identity ) ), X )
% 0.67/1.09     ] )
% 0.67/1.09  , clause( 134, [ =( X, 'double_divide'( inverse( X ), inverse( identity ) )
% 0.67/1.09     ) ] )
% 0.67/1.09  , 0, substitution( 0, [ :=( X, X )] )).
% 0.67/1.09  
% 0.67/1.09  
% 0.67/1.09  subsumption(
% 0.67/1.09  clause( 30, [ =( 'double_divide'( inverse( X ), inverse( identity ) ), X )
% 0.67/1.09     ] )
% 0.67/1.09  , clause( 135, [ =( 'double_divide'( inverse( X ), inverse( identity ) ), X
% 0.67/1.09     ) ] )
% 0.67/1.09  , substitution( 0, [ :=( X, X )] ), permutation( 0, [ ==>( 0, 0 )] ) ).
% 0.67/1.09  
% 0.67/1.09  
% 0.67/1.09  eqswap(
% 0.67/1.09  clause( 137, [ =( Y, 'double_divide'( 'double_divide'( X, 'double_divide'( 
% 0.67/1.09    'double_divide'( Y, inverse( X ) ), inverse( identity ) ) ), inverse( 
% 0.67/1.09    identity ) ) ) ] )
% 0.67/1.09  , clause( 14, [ =( 'double_divide'( 'double_divide'( X, 'double_divide'( 
% 0.67/1.09    'double_divide'( Y, inverse( X ) ), inverse( identity ) ) ), inverse( 
% 0.67/1.09    identity ) ), Y ) ] )
% 0.67/1.09  , 0, substitution( 0, [ :=( X, X ), :=( Y, Y )] )).
% 0.67/1.09  
% 0.67/1.09  
% 0.67/1.09  paramod(
% 0.67/1.09  clause( 140, [ =( inverse( inverse( X ) ), 'double_divide'( 'double_divide'( 
% 0.67/1.09    X, identity ), inverse( identity ) ) ) ] )
% 0.67/1.09  , clause( 26, [ =( 'double_divide'( 'double_divide'( inverse( X ), X ), 
% 0.67/1.09    inverse( identity ) ), identity ) ] )
% 0.67/1.09  , 0, clause( 137, [ =( Y, 'double_divide'( 'double_divide'( X, 
% 0.67/1.09    'double_divide'( 'double_divide'( Y, inverse( X ) ), inverse( identity )
% 0.67/1.09     ) ), inverse( identity ) ) ) ] )
% 0.67/1.09  , 0, 7, substitution( 0, [ :=( X, inverse( X ) )] ), substitution( 1, [ 
% 0.67/1.09    :=( X, X ), :=( Y, inverse( inverse( X ) ) )] )).
% 0.67/1.09  
% 0.67/1.09  
% 0.67/1.09  paramod(
% 0.67/1.09  clause( 142, [ =( inverse( inverse( X ) ), 'double_divide'( inverse( X ), 
% 0.67/1.09    inverse( identity ) ) ) ] )
% 0.67/1.09  , clause( 2, [ =( 'double_divide'( X, identity ), inverse( X ) ) ] )
% 0.67/1.09  , 0, clause( 140, [ =( inverse( inverse( X ) ), 'double_divide'( 
% 0.67/1.09    'double_divide'( X, identity ), inverse( identity ) ) ) ] )
% 0.67/1.09  , 0, 5, substitution( 0, [ :=( X, X )] ), substitution( 1, [ :=( X, X )] )
% 0.67/1.09    ).
% 0.67/1.09  
% 0.67/1.09  
% 0.67/1.09  paramod(
% 0.67/1.09  clause( 143, [ =( inverse( inverse( X ) ), X ) ] )
% 0.67/1.09  , clause( 30, [ =( 'double_divide'( inverse( X ), inverse( identity ) ), X
% 0.67/1.09     ) ] )
% 0.67/1.09  , 0, clause( 142, [ =( inverse( inverse( X ) ), 'double_divide'( inverse( X
% 0.67/1.09     ), inverse( identity ) ) ) ] )
% 0.67/1.09  , 0, 4, substitution( 0, [ :=( X, X )] ), substitution( 1, [ :=( X, X )] )
% 0.67/1.09    ).
% 0.67/1.09  
% 0.67/1.09  
% 0.67/1.09  subsumption(
% 0.67/1.09  clause( 45, [ =( inverse( inverse( X ) ), X ) ] )
% 0.67/1.09  , clause( 143, [ =( inverse( inverse( X ) ), X ) ] )
% 0.67/1.09  , substitution( 0, [ :=( X, X )] ), permutation( 0, [ ==>( 0, 0 )] ) ).
% 0.67/1.09  
% 0.67/1.09  
% 0.67/1.09  eqswap(
% 0.67/1.09  clause( 145, [ =( X, inverse( inverse( X ) ) ) ] )
% 0.67/1.09  , clause( 45, [ =( inverse( inverse( X ) ), X ) ] )
% 0.67/1.09  , 0, substitution( 0, [ :=( X, X )] )).
% 0.67/1.09  
% 0.67/1.09  
% 0.67/1.09  eqswap(
% 0.67/1.09  clause( 146, [ ~( =( a2, inverse( inverse( a2 ) ) ) ) ] )
% 0.67/1.09  , clause( 11, [ ~( =( inverse( inverse( a2 ) ), a2 ) ) ] )
% 0.67/1.09  , 0, substitution( 0, [] )).
% 0.67/1.09  
% 0.67/1.09  
% 0.67/1.09  resolution(
% 0.67/1.09  clause( 147, [] )
% 0.67/1.09  , clause( 146, [ ~( =( a2, inverse( inverse( a2 ) ) ) ) ] )
% 0.67/1.09  , 0, clause( 145, [ =( X, inverse( inverse( X ) ) ) ] )
% 0.67/1.09  , 0, substitution( 0, [] ), substitution( 1, [ :=( X, a2 )] )).
% 0.67/1.09  
% 0.67/1.09  
% 0.67/1.09  subsumption(
% 0.67/1.09  clause( 58, [] )
% 0.67/1.09  , clause( 147, [] )
% 0.67/1.09  , substitution( 0, [] ), permutation( 0, [] ) ).
% 0.67/1.09  
% 0.67/1.09  
% 0.67/1.09  end.
% 0.67/1.09  
% 0.67/1.09  % ABCDEFGHIJKLMNOPQRSTUVWXYZ
% 0.67/1.09  
% 0.67/1.09  Memory use:
% 0.67/1.09  
% 0.67/1.09  space for terms:        710
% 0.67/1.09  space for clauses:      6835
% 0.67/1.09  
% 0.67/1.09  
% 0.67/1.09  clauses generated:      219
% 0.67/1.09  clauses kept:           59
% 0.67/1.09  clauses selected:       25
% 0.67/1.09  clauses deleted:        7
% 0.67/1.09  clauses inuse deleted:  0
% 0.67/1.09  
% 0.67/1.09  subsentry:          229
% 0.67/1.09  literals s-matched: 88
% 0.67/1.09  literals matched:   88
% 0.67/1.09  full subsumption:   0
% 0.67/1.09  
% 0.67/1.09  checksum:           22213178
% 0.67/1.09  
% 0.67/1.09  
% 0.67/1.09  Bliksem ended
%------------------------------------------------------------------------------