TSTP Solution File: GRP540-1 by Moca---0.1

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Moca---0.1
% Problem  : GRP540-1 : TPTP v8.1.0. Bugfixed v2.7.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : moca.sh %s

% Computer : n019.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 600s
% DateTime : Sat Jul 16 10:56:08 EDT 2022

% Result   : Unsatisfiable 2.52s 2.61s
% Output   : Proof 2.52s
% Verified : 
% SZS Type : -

% Comments : 
%------------------------------------------------------------------------------
%----WARNING: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.03/0.12  % Problem  : GRP540-1 : TPTP v8.1.0. Bugfixed v2.7.0.
% 0.03/0.13  % Command  : moca.sh %s
% 0.13/0.34  % Computer : n019.cluster.edu
% 0.13/0.34  % Model    : x86_64 x86_64
% 0.13/0.34  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.13/0.34  % Memory   : 8042.1875MB
% 0.13/0.34  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.13/0.34  % CPULimit : 300
% 0.13/0.34  % WCLimit  : 600
% 0.13/0.34  % DateTime : Tue Jun 14 12:25:09 EDT 2022
% 0.13/0.34  % CPUTime  : 
% 2.52/2.61  % SZS status Unsatisfiable
% 2.52/2.61  % SZS output start Proof
% 2.52/2.61  The input problem is unsatisfiable because
% 2.52/2.61  
% 2.52/2.61  [1] the following set of Horn clauses is unsatisfiable:
% 2.52/2.61  
% 2.52/2.61  	divide(divide(A, B), divide(divide(A, C), B)) = C
% 2.52/2.61  	multiply(A, B) = divide(A, divide(divide(C, C), B))
% 2.52/2.61  	inverse(A) = divide(divide(B, B), A)
% 2.52/2.61  	identity = divide(A, A)
% 2.52/2.61  	multiply(a, b) = multiply(b, a) ==> \bottom
% 2.52/2.61  
% 2.52/2.61  This holds because
% 2.52/2.61  
% 2.52/2.61  [2] the following E entails the following G (Claessen-Smallbone's transformation (2018)):
% 2.52/2.61  
% 2.52/2.61  E:
% 2.52/2.61  	divide(divide(A, B), divide(divide(A, C), B)) = C
% 2.52/2.61  	f1(multiply(a, b)) = true__
% 2.52/2.61  	f1(multiply(b, a)) = false__
% 2.52/2.61  	identity = divide(A, A)
% 2.52/2.61  	inverse(A) = divide(divide(B, B), A)
% 2.52/2.61  	multiply(A, B) = divide(A, divide(divide(C, C), B))
% 2.52/2.61  G:
% 2.52/2.61  	true__ = false__
% 2.52/2.61  
% 2.52/2.61  This holds because
% 2.52/2.61  
% 2.52/2.61  [3] E entails the following ordered TRS and the lhs and rhs of G join by the TRS:
% 2.52/2.61  
% 2.52/2.61  	divide(Y0, X0) = divide(inverse(X0), inverse(Y0))
% 2.52/2.61  	divide(Y0, X1) = inverse(divide(X1, Y0))
% 2.52/2.61  	divide(Y0, inverse(X0)) = divide(X0, inverse(Y0))
% 2.52/2.61  	divide(A, A) -> identity
% 2.52/2.61  	divide(X0, inverse(divide(Y0, X0))) -> Y0
% 2.52/2.61  	divide(X2, divide(divide(divide(X0, X1), Y2), divide(divide(X0, X2), X1))) -> Y2
% 2.52/2.61  	divide(Y0, divide(Y0, Y1)) -> Y1
% 2.52/2.61  	divide(Y0, divide(divide(Y1, Y3), divide(Y1, Y0))) -> Y3
% 2.52/2.61  	divide(Y0, divide(divide(divide(Y0, Y2), Y3), divide(identity, Y2))) -> Y3
% 2.52/2.61  	divide(Y0, divide(divide(identity, Y3), divide(divide(Y2, Y0), Y2))) -> Y3
% 2.52/2.61  	divide(Y0, divide(identity, divide(divide(Y1, Y0), Y2))) -> divide(Y1, Y2)
% 2.52/2.61  	divide(Y0, divide(inverse(Y1), inverse(Y0))) -> Y1
% 2.52/2.61  	divide(Y0, identity) -> Y0
% 2.52/2.61  	divide(Y1, divide(X0, inverse(Y1))) -> inverse(X0)
% 2.52/2.61  	divide(divide(X0, X1), X0) -> inverse(X1)
% 2.52/2.61  	divide(divide(Y0, Y1), divide(X1, Y1)) -> divide(Y0, X1)
% 2.52/2.61  	divide(divide(Y0, divide(divide(Y0, Y2), X1)), X1) -> Y2
% 2.52/2.61  	divide(divide(Y0, inverse(X1)), X1) -> Y0
% 2.52/2.61  	divide(divide(Y1, X1), inverse(X1)) -> Y1
% 2.52/2.61  	divide(identity, Y1) -> inverse(Y1)
% 2.52/2.61  	divide(inverse(X0), inverse(divide(X0, X1))) -> inverse(X1)
% 2.52/2.61  	divide(inverse(X0), inverse(divide(X0, inverse(Y1)))) -> Y1
% 2.52/2.61  	divide(inverse(X1), divide(X0, X1)) -> inverse(X0)
% 2.52/2.61  	f1(divide(a, divide(identity, b))) -> true__
% 2.52/2.61  	f1(divide(b, inverse(a))) -> false__
% 2.52/2.61  	f1(divide(b, inverse(a))) -> true__
% 2.52/2.61  	f1(inverse(divide(inverse(b), a))) -> true__
% 2.52/2.61  	f1(multiply(a, b)) -> true__
% 2.52/2.61  	inverse(divide(X0, divide(Y0, inverse(X0)))) -> Y0
% 2.52/2.61  	inverse(divide(Y1, inverse(divide(inverse(Y1), Y0)))) -> Y0
% 2.52/2.61  	inverse(divide(inverse(Y1), divide(Y0, Y1))) -> Y0
% 2.52/2.61  	inverse(identity) -> identity
% 2.52/2.61  	inverse(inverse(X1)) -> X1
% 2.52/2.61  	multiply(Y0, Y2) -> divide(Y0, inverse(Y2))
% 2.52/2.61  	true__ -> false__
% 2.52/2.61  with the LPO induced by
% 2.52/2.61  	a > b > f1 > multiply > divide > inverse > identity > true__ > false__
% 2.52/2.61  
% 2.52/2.61  % SZS output end Proof
% 2.52/2.61  
%------------------------------------------------------------------------------