TSTP Solution File: GRP500-1 by Otter---3.3

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Otter---3.3
% Problem  : GRP500-1 : TPTP v8.1.0. Released v2.6.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : otter-tptp-script %s

% Computer : n018.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Wed Jul 27 12:57:08 EDT 2022

% Result   : Unsatisfiable 1.78s 1.99s
% Output   : Refutation 1.78s
% Verified : 
% SZS Type : Refutation
%            Derivation depth      :   32
%            Number of leaves      :    3
% Syntax   : Number of clauses     :   61 (  61 unt;   0 nHn;   2 RR)
%            Number of literals    :   61 (  60 equ;   1 neg)
%            Maximal clause size   :    1 (   1 avg)
%            Maximal term depth    :    8 (   2 avg)
%            Number of predicates  :    2 (   0 usr;   1 prp; 0-2 aty)
%            Number of functors    :    5 (   5 usr;   2 con; 0-2 aty)
%            Number of variables   :  224 (   0 sgn)

% Comments : 
%------------------------------------------------------------------------------
cnf(1,axiom,
    multiply(multiply(inverse(b2),b2),a2) != a2,
    file('GRP500-1.p',unknown),
    [] ).

cnf(3,axiom,
    double_divide(inverse(A),inverse(double_divide(inverse(double_divide(A,double_divide(B,C))),double_divide(D,double_divide(B,D))))) = C,
    file('GRP500-1.p',unknown),
    [] ).

cnf(5,axiom,
    multiply(A,B) = inverse(double_divide(B,A)),
    file('GRP500-1.p',unknown),
    [] ).

cnf(7,plain,
    inverse(double_divide(A,B)) = multiply(B,A),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[5])]),
    [iquote('copy,5,flip.1')] ).

cnf(8,plain,
    double_divide(inverse(A),multiply(double_divide(B,double_divide(C,B)),multiply(double_divide(C,D),A))) = D,
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[3]),7,7]),
    [iquote('back_demod,3,demod,7,7')] ).

cnf(14,plain,
    double_divide(inverse(A),multiply(double_divide(B,double_divide(inverse(C),B)),multiply(D,A))) = multiply(double_divide(E,double_divide(F,E)),multiply(double_divide(F,D),C)),
    inference(para_into,[status(thm),theory(equality)],[8,8]),
    [iquote('para_into,8.1.1.2.2.1,8.1.1')] ).

cnf(15,plain,
    multiply(double_divide(A,double_divide(B,A)),multiply(double_divide(B,C),D)) = double_divide(inverse(E),multiply(double_divide(F,double_divide(inverse(D),F)),multiply(C,E))),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[14])]),
    [iquote('copy,14,flip.1')] ).

cnf(16,plain,
    inverse(A) = multiply(multiply(double_divide(B,double_divide(C,B)),multiply(double_divide(C,A),D)),inverse(D)),
    inference(para_from,[status(thm),theory(equality)],[8,7]),
    [iquote('para_from,8.1.1,6.1.1.1')] ).

cnf(19,plain,
    multiply(multiply(double_divide(A,double_divide(B,A)),multiply(double_divide(B,double_divide(C,D)),E)),inverse(E)) = multiply(D,C),
    inference(flip,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[16,7])]),
    [iquote('para_into,16.1.1,6.1.1,flip.1')] ).

cnf(58,plain,
    multiply(multiply(double_divide(A,double_divide(B,A)),multiply(double_divide(B,double_divide(C,D)),double_divide(E,F))),multiply(F,E)) = multiply(D,C),
    inference(para_into,[status(thm),theory(equality)],[19,7]),
    [iquote('para_into,19.1.1.2,6.1.1')] ).

cnf(151,plain,
    multiply(double_divide(A,double_divide(B,A)),multiply(double_divide(B,double_divide(inverse(C),D)),C)) = D,
    inference(flip,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[14,8])]),
    [iquote('para_into,14.1.1,8.1.1,flip.1')] ).

cnf(230,plain,
    double_divide(inverse(multiply(double_divide(A,double_divide(inverse(B),C)),B)),multiply(double_divide(D,double_divide(E,D)),C)) = double_divide(A,E),
    inference(para_from,[status(thm),theory(equality)],[151,8]),
    [iquote('para_from,150.1.1,8.1.1.2.2')] ).

cnf(243,plain,
    double_divide(inverse(A),double_divide(inverse(B),multiply(double_divide(C,double_divide(inverse(A),C)),multiply(D,B)))) = D,
    inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[15,14]),151]),
    [iquote('para_from,15.1.1,14.1.1.2,demod,151')] ).

cnf(253,plain,
    double_divide(inverse(A),double_divide(B,inverse(A))) = double_divide(C,double_divide(B,C)),
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[243,151]),230]),
    [iquote('para_into,243.1.1.2.2.2,150.1.1,demod,230')] ).

cnf(259,plain,
    double_divide(A,double_divide(B,A)) = double_divide(C,double_divide(B,C)),
    inference(para_into,[status(thm),theory(equality)],[253,253]),
    [iquote('para_into,253.1.1,253.1.1')] ).

cnf(272,plain,
    multiply(double_divide(A,double_divide(B,A)),multiply(double_divide(C,double_divide(inverse(D),C)),D)) = B,
    inference(para_from,[status(thm),theory(equality)],[259,151]),
    [iquote('para_from,259.1.1,150.1.1.2.1')] ).

cnf(283,plain,
    multiply(double_divide(A,B),B) = multiply(double_divide(A,C),C),
    inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[259,58]),58]),
    [iquote('para_from,259.1.1,57.1.1.1.2.1.2,demod,58')] ).

cnf(300,plain,
    multiply(double_divide(A,double_divide(B,A)),double_divide(B,C)) = multiply(double_divide(C,D),D),
    inference(para_into,[status(thm),theory(equality)],[283,259]),
    [iquote('para_into,283.1.1.1,259.1.1')] ).

cnf(323,plain,
    double_divide(inverse(A),multiply(double_divide(B,double_divide(C,B)),multiply(double_divide(C,D),D))) = A,
    inference(para_from,[status(thm),theory(equality)],[283,8]),
    [iquote('para_from,283.1.1,8.1.1.2.2')] ).

cnf(443,plain,
    multiply(double_divide(A,double_divide(B,A)),inverse(multiply(double_divide(C,double_divide(inverse(D),C)),D))) = B,
    inference(para_into,[status(thm),theory(equality)],[272,272]),
    [iquote('para_into,272.1.1.2,272.1.1')] ).

cnf(465,plain,
    double_divide(inverse(A),double_divide(inverse(B),multiply(double_divide(C,double_divide(inverse(D),C)),multiply(D,B)))) = A,
    inference(para_into,[status(thm),theory(equality)],[323,15]),
    [iquote('para_into,323.1.1.2,15.1.1')] ).

cnf(547,plain,
    double_divide(inverse(inverse(multiply(double_divide(A,double_divide(inverse(B),A)),B))),multiply(double_divide(C,double_divide(D,C)),E)) = double_divide(E,D),
    inference(para_from,[status(thm),theory(equality)],[443,8]),
    [iquote('para_from,442.1.1,8.1.1.2.2')] ).

cnf(566,plain,
    double_divide(inverse(A),double_divide(B,multiply(double_divide(B,C),C))) = A,
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[465,443]),7,547]),
    [iquote('para_into,465.1.1.2.2.2,442.1.1,demod,7,547')] ).

cnf(579,plain,
    multiply(A,double_divide(inverse(B),multiply(double_divide(C,double_divide(inverse(D),C)),multiply(D,B)))) = multiply(double_divide(inverse(A),E),E),
    inference(para_from,[status(thm),theory(equality)],[465,283]),
    [iquote('para_from,465.1.1,283.1.1.1')] ).

cnf(587,plain,
    multiply(double_divide(inverse(A),B),B) = multiply(A,double_divide(inverse(C),multiply(double_divide(D,double_divide(inverse(E),D)),multiply(E,C)))),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[579])]),
    [iquote('copy,579,flip.1')] ).

cnf(595,plain,
    double_divide(multiply(A,B),double_divide(C,multiply(double_divide(C,D),D))) = double_divide(B,A),
    inference(para_into,[status(thm),theory(equality)],[566,7]),
    [iquote('para_into,566.1.1.1,6.1.1')] ).

cnf(618,plain,
    multiply(double_divide(A,double_divide(inverse(B),A)),multiply(B,C)) = multiply(double_divide(inverse(C),D),D),
    inference(para_from,[status(thm),theory(equality)],[566,151]),
    [iquote('para_from,566.1.1,150.1.1.2.1')] ).

cnf(641,plain,
    multiply(A,double_divide(B,multiply(double_divide(B,C),C))) = multiply(double_divide(inverse(A),D),D),
    inference(para_from,[status(thm),theory(equality)],[566,283]),
    [iquote('para_from,566.1.1,283.1.1.1')] ).

cnf(643,plain,
    multiply(double_divide(A,multiply(double_divide(A,B),B)),inverse(C)) = inverse(C),
    inference(flip,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[566,7])]),
    [iquote('para_from,566.1.1,6.1.1.1,flip.1')] ).

cnf(646,plain,
    double_divide(double_divide(A,multiply(double_divide(A,B),B)),C) = double_divide(D,double_divide(inverse(C),D)),
    inference(para_from,[status(thm),theory(equality)],[566,259]),
    [iquote('para_from,566.1.1,259.1.1.2')] ).

cnf(663,plain,
    multiply(double_divide(inverse(A),B),B) = multiply(double_divide(C,double_divide(inverse(D),C)),multiply(D,A)),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[618])]),
    [iquote('copy,618,flip.1')] ).

cnf(670,plain,
    multiply(double_divide(inverse(A),B),B) = multiply(A,double_divide(C,multiply(double_divide(C,D),D))),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[641])]),
    [iquote('copy,641,flip.1')] ).

cnf(699,plain,
    multiply(double_divide(A,multiply(double_divide(A,B),B)),multiply(C,D)) = multiply(C,D),
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[643,7]),7]),
    [iquote('para_into,643.1.1.2,6.1.1,demod,7')] ).

cnf(748,plain,
    multiply(double_divide(A,B),double_divide(C,multiply(double_divide(C,D),D))) = multiply(double_divide(multiply(B,A),E),E),
    inference(para_from,[status(thm),theory(equality)],[595,283]),
    [iquote('para_from,595.1.1,283.1.1.1')] ).

cnf(773,plain,
    multiply(double_divide(multiply(A,B),C),C) = multiply(double_divide(B,A),double_divide(D,multiply(double_divide(D,E),E))),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[748])]),
    [iquote('copy,748,flip.1')] ).

cnf(784,plain,
    multiply(double_divide(A,multiply(double_divide(A,B),B)),C) = C,
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[699,443]),443]),
    [iquote('para_into,699.1.1.2,442.1.1,demod,443')] ).

cnf(793,plain,
    multiply(double_divide(A,multiply(double_divide(B,double_divide(C,B)),double_divide(C,A))),D) = D,
    inference(para_into,[status(thm),theory(equality)],[784,259]),
    [iquote('para_into,783.1.1.1.2.1,259.1.1')] ).

cnf(798,plain,
    double_divide(inverse(A),multiply(double_divide(B,double_divide(C,B)),A)) = multiply(double_divide(C,D),D),
    inference(para_from,[status(thm),theory(equality)],[784,8]),
    [iquote('para_from,783.1.1,8.1.1.2.2')] ).

cnf(812,plain,
    double_divide(multiply(A,B),multiply(double_divide(A,C),C)) = multiply(double_divide(B,D),D),
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[798,300]),7]),
    [iquote('para_into,798.1.1.2,300.1.1,demod,7')] ).

cnf(817,plain,
    multiply(double_divide(A,B),B) = double_divide(multiply(C,A),multiply(double_divide(C,D),D)),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[812])]),
    [iquote('copy,812,flip.1')] ).

cnf(838,plain,
    multiply(double_divide(A,double_divide(multiply(B,A),multiply(double_divide(B,C),C))),D) = D,
    inference(para_from,[status(thm),theory(equality)],[817,793]),
    [iquote('para_from,817.1.1,793.1.1.1.2')] ).

cnf(858,plain,
    multiply(double_divide(A,double_divide(multiply(B,multiply(double_divide(B,C),C)),A)),D) = D,
    inference(para_into,[status(thm),theory(equality)],[838,259]),
    [iquote('para_into,838.1.1.1,259.1.1')] ).

cnf(860,plain,
    multiply(double_divide(A,B),B) = double_divide(multiply(C,multiply(double_divide(C,D),D)),A),
    inference(para_into,[status(thm),theory(equality)],[838,300]),
    [iquote('para_into,838.1.1,300.1.1')] ).

cnf(865,plain,
    double_divide(multiply(A,multiply(double_divide(A,B),B)),C) = multiply(double_divide(C,D),D),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[860])]),
    [iquote('copy,860,flip.1')] ).

cnf(881,plain,
    multiply(double_divide(A,double_divide(multiply(double_divide(B,double_divide(inverse(C),B)),C),A)),D) = D,
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[858,646]),784]),
    [iquote('para_into,857.1.1.1.2.1.2.1,646.1.1,demod,784')] ).

cnf(936,plain,
    double_divide(inverse(A),multiply(multiply(double_divide(B,C),C),B)) = A,
    inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[865,323]),858]),
    [iquote('para_from,865.1.1,323.1.1.2.2.1,demod,858')] ).

cnf(941,plain,
    multiply(double_divide(multiply(A,multiply(double_divide(A,B),B)),multiply(multiply(double_divide(C,D),D),C)),E) = E,
    inference(para_from,[status(thm),theory(equality)],[865,784]),
    [iquote('para_from,865.1.1,783.1.1.1.2.1')] ).

cnf(969,plain,
    double_divide(multiply(A,B),multiply(multiply(double_divide(C,D),D),C)) = double_divide(B,A),
    inference(para_into,[status(thm),theory(equality)],[936,7]),
    [iquote('para_into,936.1.1.1,6.1.1')] ).

cnf(974,plain,
    multiply(double_divide(multiply(double_divide(A,B),B),A),C) = C,
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[941]),969]),
    [iquote('back_demod,941,demod,969')] ).

cnf(1005,plain,
    multiply(double_divide(multiply(double_divide(A,B),B),C),C) = A,
    inference(para_into,[status(thm),theory(equality)],[974,283]),
    [iquote('para_into,974.1.1,283.1.1')] ).

cnf(1027,plain,
    double_divide(inverse(A),double_divide(inverse(B),B)) = A,
    inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[974,465]),7,858]),
    [iquote('para_from,974.1.1,465.1.1.2.2.2,demod,7,858')] ).

cnf(1048,plain,
    multiply(A,double_divide(inverse(B),B)) = multiply(A,double_divide(C,multiply(double_divide(C,D),D))),
    inference(para_from,[status(thm),theory(equality)],[1027,670]),
    [iquote('para_from,1027.1.1,670.1.1.1')] ).

cnf(1053,plain,
    multiply(double_divide(A,double_divide(inverse(B),A)),multiply(B,C)) = C,
    inference(para_from,[status(thm),theory(equality)],[1027,151]),
    [iquote('para_from,1027.1.1,150.1.1.2.1')] ).

cnf(1098,plain,
    multiply(A,double_divide(B,multiply(double_divide(B,C),C))) = multiply(A,double_divide(inverse(D),D)),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[1048])]),
    [iquote('copy,1048,flip.1')] ).

cnf(1105,plain,
    multiply(double_divide(inverse(A),B),B) = A,
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[663]),1053]),
    [iquote('back_demod,663,demod,1053')] ).

cnf(1112,plain,
    multiply(A,double_divide(inverse(B),B)) = A,
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[587]),1105,1053])]),
    [iquote('back_demod,587,demod,1105,1053,flip.1')] ).

cnf(1125,plain,
    multiply(A,double_divide(B,multiply(double_divide(B,C),C))) = A,
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[1098])]),1112])]),
    [iquote('copy,1098,flip.1,demod,1112,flip.1')] ).

cnf(1150,plain,
    multiply(double_divide(multiply(A,B),C),C) = double_divide(B,A),
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[773]),1125]),
    [iquote('back_demod,773,demod,1125')] ).

cnf(1162,plain,
    double_divide(A,double_divide(B,A)) = B,
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[1005]),1150]),
    [iquote('back_demod,1005,demod,1150')] ).

cnf(1250,plain,
    multiply(multiply(inverse(A),A),B) = B,
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[881]),1162,1162]),
    [iquote('back_demod,881,demod,1162,1162')] ).

cnf(1252,plain,
    $false,
    inference(binary,[status(thm)],[1250,1]),
    [iquote('binary,1250.1,1.1')] ).

%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.06/0.11  % Problem  : GRP500-1 : TPTP v8.1.0. Released v2.6.0.
% 0.06/0.12  % Command  : otter-tptp-script %s
% 0.12/0.33  % Computer : n018.cluster.edu
% 0.12/0.33  % Model    : x86_64 x86_64
% 0.12/0.33  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.12/0.33  % Memory   : 8042.1875MB
% 0.12/0.33  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.12/0.33  % CPULimit : 300
% 0.12/0.33  % WCLimit  : 300
% 0.12/0.33  % DateTime : Wed Jul 27 05:08:31 EDT 2022
% 0.12/0.33  % CPUTime  : 
% 1.78/1.99  ----- Otter 3.3f, August 2004 -----
% 1.78/1.99  The process was started by sandbox on n018.cluster.edu,
% 1.78/1.99  Wed Jul 27 05:08:31 2022
% 1.78/1.99  The command was "./otter".  The process ID is 28358.
% 1.78/1.99  
% 1.78/1.99  set(prolog_style_variables).
% 1.78/1.99  set(auto).
% 1.78/1.99     dependent: set(auto1).
% 1.78/1.99     dependent: set(process_input).
% 1.78/1.99     dependent: clear(print_kept).
% 1.78/1.99     dependent: clear(print_new_demod).
% 1.78/1.99     dependent: clear(print_back_demod).
% 1.78/1.99     dependent: clear(print_back_sub).
% 1.78/1.99     dependent: set(control_memory).
% 1.78/1.99     dependent: assign(max_mem, 12000).
% 1.78/1.99     dependent: assign(pick_given_ratio, 4).
% 1.78/1.99     dependent: assign(stats_level, 1).
% 1.78/1.99     dependent: assign(max_seconds, 10800).
% 1.78/1.99  clear(print_given).
% 1.78/1.99  
% 1.78/1.99  list(usable).
% 1.78/1.99  0 [] A=A.
% 1.78/1.99  0 [] double_divide(inverse(A),inverse(double_divide(inverse(double_divide(A,double_divide(B,C))),double_divide(D,double_divide(B,D)))))=C.
% 1.78/1.99  0 [] multiply(A,B)=inverse(double_divide(B,A)).
% 1.78/1.99  0 [] multiply(multiply(inverse(b2),b2),a2)!=a2.
% 1.78/1.99  end_of_list.
% 1.78/1.99  
% 1.78/1.99  SCAN INPUT: prop=0, horn=1, equality=1, symmetry=0, max_lits=1.
% 1.78/1.99  
% 1.78/1.99  All clauses are units, and equality is present; the
% 1.78/1.99  strategy will be Knuth-Bendix with positive clauses in sos.
% 1.78/1.99  
% 1.78/1.99     dependent: set(knuth_bendix).
% 1.78/1.99     dependent: set(anl_eq).
% 1.78/1.99     dependent: set(para_from).
% 1.78/1.99     dependent: set(para_into).
% 1.78/1.99     dependent: clear(para_from_right).
% 1.78/1.99     dependent: clear(para_into_right).
% 1.78/1.99     dependent: set(para_from_vars).
% 1.78/1.99     dependent: set(eq_units_both_ways).
% 1.78/1.99     dependent: set(dynamic_demod_all).
% 1.78/1.99     dependent: set(dynamic_demod).
% 1.78/1.99     dependent: set(order_eq).
% 1.78/1.99     dependent: set(back_demod).
% 1.78/1.99     dependent: set(lrpo).
% 1.78/1.99  
% 1.78/1.99  ------------> process usable:
% 1.78/1.99  ** KEPT (pick-wt=8): 1 [] multiply(multiply(inverse(b2),b2),a2)!=a2.
% 1.78/1.99  
% 1.78/1.99  ------------> process sos:
% 1.78/1.99  ** KEPT (pick-wt=3): 2 [] A=A.
% 1.78/1.99  ** KEPT (pick-wt=18): 3 [] double_divide(inverse(A),inverse(double_divide(inverse(double_divide(A,double_divide(B,C))),double_divide(D,double_divide(B,D)))))=C.
% 1.78/1.99  ---> New Demodulator: 4 [new_demod,3] double_divide(inverse(A),inverse(double_divide(inverse(double_divide(A,double_divide(B,C))),double_divide(D,double_divide(B,D)))))=C.
% 1.78/1.99  ** KEPT (pick-wt=8): 6 [copy,5,flip.1] inverse(double_divide(A,B))=multiply(B,A).
% 1.78/1.99  ---> New Demodulator: 7 [new_demod,6] inverse(double_divide(A,B))=multiply(B,A).
% 1.78/1.99    Following clause subsumed by 2 during input processing: 0 [copy,2,flip.1] A=A.
% 1.78/1.99  >>>> Starting back demodulation with 4.
% 1.78/1.99  >>>> Starting back demodulation with 7.
% 1.78/1.99      >> back demodulating 3 with 7.
% 1.78/1.99  >>>> Starting back demodulation with 9.
% 1.78/1.99  
% 1.78/1.99  ======= end of input processing =======
% 1.78/1.99  
% 1.78/1.99  =========== start of search ===========
% 1.78/1.99  
% 1.78/1.99  
% 1.78/1.99  Resetting weight limit to 26.
% 1.78/1.99  
% 1.78/1.99  
% 1.78/1.99  Resetting weight limit to 26.
% 1.78/1.99  
% 1.78/1.99  sos_size=161
% 1.78/1.99  
% 1.78/1.99  
% 1.78/1.99  Resetting weight limit to 19.
% 1.78/1.99  
% 1.78/1.99  
% 1.78/1.99  Resetting weight limit to 19.
% 1.78/1.99  
% 1.78/1.99  sos_size=527
% 1.78/1.99  
% 1.78/1.99  
% 1.78/1.99  Resetting weight limit to 16.
% 1.78/1.99  
% 1.78/1.99  
% 1.78/1.99  Resetting weight limit to 16.
% 1.78/1.99  
% 1.78/1.99  sos_size=628
% 1.78/1.99  
% 1.78/1.99  -------- PROOF -------- 
% 1.78/1.99  
% 1.78/1.99  ----> UNIT CONFLICT at   0.09 sec ----> 1252 [binary,1250.1,1.1] $F.
% 1.78/1.99  
% 1.78/1.99  Length of proof is 57.  Level of proof is 31.
% 1.78/1.99  
% 1.78/1.99  ---------------- PROOF ----------------
% 1.78/1.99  % SZS status Unsatisfiable
% 1.78/1.99  % SZS output start Refutation
% See solution above
% 1.78/1.99  ------------ end of proof -------------
% 1.78/1.99  
% 1.78/1.99  
% 1.78/1.99  Search stopped by max_proofs option.
% 1.78/1.99  
% 1.78/1.99  
% 1.78/1.99  Search stopped by max_proofs option.
% 1.78/1.99  
% 1.78/1.99  ============ end of search ============
% 1.78/1.99  
% 1.78/1.99  -------------- statistics -------------
% 1.78/1.99  clauses given                 60
% 1.78/1.99  clauses generated           3684
% 1.78/1.99  clauses kept                 897
% 1.78/1.99  clauses forward subsumed    1314
% 1.78/1.99  clauses back subsumed          7
% 1.78/1.99  Kbytes malloced             9765
% 1.78/1.99  
% 1.78/1.99  ----------- times (seconds) -----------
% 1.78/1.99  user CPU time          0.09          (0 hr, 0 min, 0 sec)
% 1.78/1.99  system CPU time        0.01          (0 hr, 0 min, 0 sec)
% 1.78/1.99  wall-clock time        1             (0 hr, 0 min, 1 sec)
% 1.78/1.99  
% 1.78/1.99  That finishes the proof of the theorem.
% 1.78/1.99  
% 1.78/1.99  Process 28358 finished Wed Jul 27 05:08:32 2022
% 1.78/1.99  Otter interrupted
% 1.78/1.99  PROOF FOUND
%------------------------------------------------------------------------------