TSTP Solution File: GRP498-1 by iProver---3.9

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : iProver---3.9
% Problem  : GRP498-1 : TPTP v8.1.2. Released v2.6.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : run_iprover %s %d THM

% Computer : n014.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Fri May  3 02:22:45 EDT 2024

% Result   : Unsatisfiable 3.81s 1.12s
% Output   : CNFRefutation 3.81s
% Verified : 
% SZS Type : ERROR: Analysing output (Could not find formula named definition)

% Comments : 
%------------------------------------------------------------------------------
cnf(c_49,plain,
    double_divide(double_divide(identity,double_divide(X0,double_divide(X1,identity))),double_divide(double_divide(X1,double_divide(X2,X0)),identity)) = X2,
    file('/export/starexec/sandbox2/benchmark/theBenchmark.p',single_axiom) ).

cnf(c_50,plain,
    double_divide(double_divide(X0,X1),identity) = multiply(X1,X0),
    file('/export/starexec/sandbox2/benchmark/theBenchmark.p',multiply) ).

cnf(c_51,plain,
    double_divide(X0,identity) = inverse(X0),
    file('/export/starexec/sandbox2/benchmark/theBenchmark.p',inverse) ).

cnf(c_52,plain,
    double_divide(X0,inverse(X0)) = identity,
    file('/export/starexec/sandbox2/benchmark/theBenchmark.p',identity) ).

cnf(c_53,negated_conjecture,
    multiply(multiply(a3,b3),c3) != multiply(a3,multiply(b3,c3)),
    file('/export/starexec/sandbox2/benchmark/theBenchmark.p',prove_these_axioms_3) ).

cnf(c_68,plain,
    inverse(double_divide(X0,X1)) = multiply(X1,X0),
    inference(demodulation,[status(thm)],[c_50,c_51]) ).

cnf(c_69,plain,
    double_divide(double_divide(identity,double_divide(X0,inverse(X1))),multiply(double_divide(X2,X0),X1)) = X2,
    inference(demodulation,[status(thm)],[c_49,c_51,c_68]) ).

cnf(c_77,plain,
    multiply(a3,b3) = sP0_iProver_def,
    definition ).

cnf(c_78,plain,
    multiply(sP0_iProver_def,c3) = sP1_iProver_def,
    definition ).

cnf(c_79,plain,
    multiply(b3,c3) = sP2_iProver_def,
    definition ).

cnf(c_80,plain,
    multiply(a3,sP2_iProver_def) = sP3_iProver_def,
    definition ).

cnf(c_81,negated_conjecture,
    sP1_iProver_def != sP3_iProver_def,
    inference(demodulation,[status(thm)],[c_53,c_79,c_80,c_77,c_78]) ).

cnf(c_133,plain,
    multiply(identity,X0) = inverse(inverse(X0)),
    inference(superposition,[status(thm)],[c_51,c_68]) ).

cnf(c_135,plain,
    double_divide(double_divide(X0,X1),multiply(X1,X0)) = identity,
    inference(superposition,[status(thm)],[c_68,c_52]) ).

cnf(c_139,plain,
    double_divide(double_divide(identity,identity),multiply(double_divide(X0,X1),X1)) = X0,
    inference(superposition,[status(thm)],[c_52,c_69]) ).

cnf(c_141,plain,
    double_divide(double_divide(identity,double_divide(identity,inverse(X0))),multiply(inverse(X1),X0)) = X1,
    inference(superposition,[status(thm)],[c_51,c_69]) ).

cnf(c_152,plain,
    multiply(identity,double_divide(X0,X1)) = inverse(multiply(X1,X0)),
    inference(superposition,[status(thm)],[c_68,c_133]) ).

cnf(c_153,plain,
    multiply(identity,inverse(X0)) = inverse(multiply(identity,X0)),
    inference(superposition,[status(thm)],[c_133,c_133]) ).

cnf(c_155,plain,
    double_divide(inverse(X0),multiply(identity,X0)) = identity,
    inference(superposition,[status(thm)],[c_133,c_52]) ).

cnf(c_156,plain,
    double_divide(double_divide(identity,double_divide(X0,multiply(identity,X1))),multiply(double_divide(X2,X0),inverse(X1))) = X2,
    inference(superposition,[status(thm)],[c_133,c_69]) ).

cnf(c_182,plain,
    double_divide(double_divide(c3,sP0_iProver_def),sP1_iProver_def) = identity,
    inference(superposition,[status(thm)],[c_78,c_135]) ).

cnf(c_183,plain,
    double_divide(double_divide(sP2_iProver_def,a3),sP3_iProver_def) = identity,
    inference(superposition,[status(thm)],[c_80,c_135]) ).

cnf(c_188,plain,
    inverse(identity) = identity,
    inference(superposition,[status(thm)],[c_135,c_69]) ).

cnf(c_217,plain,
    double_divide(identity,identity) = identity,
    inference(superposition,[status(thm)],[c_188,c_52]) ).

cnf(c_218,plain,
    double_divide(double_divide(identity,double_divide(X0,identity)),multiply(double_divide(X1,X0),identity)) = X1,
    inference(superposition,[status(thm)],[c_188,c_69]) ).

cnf(c_219,plain,
    double_divide(double_divide(identity,inverse(X0)),multiply(double_divide(X1,X0),identity)) = X1,
    inference(light_normalisation,[status(thm)],[c_218,c_51]) ).

cnf(c_295,plain,
    double_divide(identity,multiply(double_divide(X0,X1),X1)) = X0,
    inference(light_normalisation,[status(thm)],[c_139,c_217]) ).

cnf(c_296,plain,
    double_divide(identity,multiply(inverse(X0),identity)) = X0,
    inference(superposition,[status(thm)],[c_51,c_295]) ).

cnf(c_297,plain,
    double_divide(identity,multiply(identity,inverse(X0))) = X0,
    inference(superposition,[status(thm)],[c_52,c_295]) ).

cnf(c_369,plain,
    multiply(multiply(identity,inverse(X0)),identity) = inverse(X0),
    inference(superposition,[status(thm)],[c_297,c_68]) ).

cnf(c_452,plain,
    double_divide(identity,multiply(multiply(identity,inverse(X0)),identity)) = multiply(identity,X0),
    inference(superposition,[status(thm)],[c_153,c_296]) ).

cnf(c_459,plain,
    double_divide(identity,inverse(X0)) = multiply(identity,X0),
    inference(light_normalisation,[status(thm)],[c_452,c_369]) ).

cnf(c_477,plain,
    double_divide(identity,multiply(identity,inverse(X0))) = multiply(identity,multiply(identity,X0)),
    inference(superposition,[status(thm)],[c_153,c_459]) ).

cnf(c_482,plain,
    multiply(inverse(X0),identity) = inverse(multiply(identity,X0)),
    inference(superposition,[status(thm)],[c_459,c_68]) ).

cnf(c_486,plain,
    multiply(inverse(X0),identity) = multiply(identity,inverse(X0)),
    inference(light_normalisation,[status(thm)],[c_482,c_153]) ).

cnf(c_488,plain,
    multiply(identity,multiply(identity,X0)) = X0,
    inference(light_normalisation,[status(thm)],[c_477,c_297]) ).

cnf(c_869,plain,
    multiply(multiply(identity,multiply(identity,X0)),identity) = multiply(identity,X0),
    inference(superposition,[status(thm)],[c_133,c_369]) ).

cnf(c_875,plain,
    multiply(X0,identity) = multiply(identity,X0),
    inference(light_normalisation,[status(thm)],[c_869,c_488]) ).

cnf(c_948,plain,
    multiply(identity,multiply(X0,identity)) = X0,
    inference(superposition,[status(thm)],[c_875,c_488]) ).

cnf(c_951,plain,
    double_divide(inverse(X0),multiply(X0,identity)) = identity,
    inference(superposition,[status(thm)],[c_875,c_155]) ).

cnf(c_1046,plain,
    double_divide(identity,multiply(identity,multiply(X0,identity))) = inverse(X0),
    inference(superposition,[status(thm)],[c_951,c_295]) ).

cnf(c_1056,plain,
    double_divide(identity,X0) = inverse(X0),
    inference(light_normalisation,[status(thm)],[c_1046,c_948]) ).

cnf(c_1062,plain,
    inverse(multiply(double_divide(X0,X1),X1)) = X0,
    inference(demodulation,[status(thm)],[c_295,c_1056]) ).

cnf(c_1083,plain,
    multiply(X0,identity) = inverse(inverse(X0)),
    inference(superposition,[status(thm)],[c_1056,c_68]) ).

cnf(c_1089,plain,
    multiply(double_divide(X0,X1),identity) = inverse(multiply(X1,X0)),
    inference(superposition,[status(thm)],[c_68,c_1083]) ).

cnf(c_1125,plain,
    inverse(multiply(identity,sP1_iProver_def)) = double_divide(c3,sP0_iProver_def),
    inference(superposition,[status(thm)],[c_182,c_1062]) ).

cnf(c_1126,plain,
    inverse(multiply(identity,sP3_iProver_def)) = double_divide(sP2_iProver_def,a3),
    inference(superposition,[status(thm)],[c_183,c_1062]) ).

cnf(c_1191,plain,
    double_divide(multiply(identity,inverse(X0)),multiply(inverse(X1),X0)) = X1,
    inference(demodulation,[status(thm)],[c_141,c_68,c_486,c_1056]) ).

cnf(c_1196,plain,
    double_divide(multiply(identity,multiply(identity,X0)),multiply(inverse(X1),inverse(X0))) = X1,
    inference(superposition,[status(thm)],[c_133,c_1191]) ).

cnf(c_1216,plain,
    double_divide(X0,multiply(inverse(X1),inverse(X0))) = X1,
    inference(light_normalisation,[status(thm)],[c_1196,c_488]) ).

cnf(c_1367,plain,
    multiply(identity,inverse(sP1_iProver_def)) = double_divide(c3,sP0_iProver_def),
    inference(demodulation,[status(thm)],[c_1125,c_153]) ).

cnf(c_1393,plain,
    multiply(identity,inverse(sP3_iProver_def)) = double_divide(sP2_iProver_def,a3),
    inference(demodulation,[status(thm)],[c_1126,c_153]) ).

cnf(c_1678,plain,
    double_divide(X0,multiply(identity,inverse(X0))) = identity,
    inference(superposition,[status(thm)],[c_188,c_1216]) ).

cnf(c_1695,plain,
    multiply(multiply(inverse(X0),inverse(X1)),X1) = inverse(X0),
    inference(superposition,[status(thm)],[c_1216,c_68]) ).

cnf(c_1763,plain,
    multiply(multiply(identity,inverse(X0)),X0) = inverse(identity),
    inference(superposition,[status(thm)],[c_1678,c_68]) ).

cnf(c_1767,plain,
    multiply(multiply(identity,inverse(X0)),X0) = identity,
    inference(light_normalisation,[status(thm)],[c_1763,c_188]) ).

cnf(c_2198,plain,
    multiply(multiply(identity,multiply(identity,X0)),inverse(X0)) = identity,
    inference(superposition,[status(thm)],[c_133,c_1767]) ).

cnf(c_2219,plain,
    multiply(X0,inverse(X0)) = identity,
    inference(light_normalisation,[status(thm)],[c_2198,c_488]) ).

cnf(c_2345,plain,
    double_divide(inverse(X0),identity) = X0,
    inference(superposition,[status(thm)],[c_2219,c_1216]) ).

cnf(c_2374,plain,
    multiply(X0,identity) = X0,
    inference(demodulation,[status(thm)],[c_2345,c_51,c_1083]) ).

cnf(c_2376,plain,
    inverse(inverse(X0)) = X0,
    inference(demodulation,[status(thm)],[c_1083,c_2374]) ).

cnf(c_2379,plain,
    multiply(identity,X0) = X0,
    inference(demodulation,[status(thm)],[c_948,c_2374]) ).

cnf(c_2392,plain,
    inverse(multiply(X0,X1)) = double_divide(X1,X0),
    inference(demodulation,[status(thm)],[c_152,c_2379]) ).

cnf(c_2401,plain,
    double_divide(c3,sP0_iProver_def) = inverse(sP1_iProver_def),
    inference(demodulation,[status(thm)],[c_1367,c_2379]) ).

cnf(c_2402,plain,
    double_divide(sP2_iProver_def,a3) = inverse(sP3_iProver_def),
    inference(demodulation,[status(thm)],[c_1393,c_2379]) ).

cnf(c_2619,plain,
    multiply(multiply(X0,inverse(X1)),X1) = X0,
    inference(superposition,[status(thm)],[c_2376,c_1695]) ).

cnf(c_2668,plain,
    multiply(multiply(X0,X1),inverse(X1)) = X0,
    inference(superposition,[status(thm)],[c_2376,c_2619]) ).

cnf(c_2685,plain,
    multiply(sP0_iProver_def,inverse(b3)) = a3,
    inference(superposition,[status(thm)],[c_77,c_2668]) ).

cnf(c_2716,plain,
    double_divide(multiply(X0,X1),multiply(double_divide(X2,X1),inverse(X0))) = X2,
    inference(demodulation,[status(thm)],[c_156,c_68,c_1056,c_2379]) ).

cnf(c_2718,plain,
    double_divide(sP2_iProver_def,multiply(double_divide(X0,c3),inverse(b3))) = X0,
    inference(superposition,[status(thm)],[c_79,c_2716]) ).

cnf(c_3438,plain,
    double_divide(X0,double_divide(X1,X0)) = X1,
    inference(demodulation,[status(thm)],[c_219,c_1056,c_1089,c_2376,c_2392]) ).

cnf(c_3445,plain,
    double_divide(sP0_iProver_def,inverse(sP1_iProver_def)) = c3,
    inference(superposition,[status(thm)],[c_2401,c_3438]) ).

cnf(c_3747,plain,
    double_divide(inverse(sP1_iProver_def),c3) = sP0_iProver_def,
    inference(superposition,[status(thm)],[c_3445,c_3438]) ).

cnf(c_3822,plain,
    double_divide(sP2_iProver_def,multiply(sP0_iProver_def,inverse(b3))) = inverse(sP1_iProver_def),
    inference(superposition,[status(thm)],[c_3747,c_2718]) ).

cnf(c_3828,plain,
    inverse(sP1_iProver_def) = inverse(sP3_iProver_def),
    inference(light_normalisation,[status(thm)],[c_3822,c_2402,c_2685]) ).

cnf(c_3835,plain,
    inverse(inverse(sP1_iProver_def)) = sP3_iProver_def,
    inference(superposition,[status(thm)],[c_3828,c_2376]) ).

cnf(c_3855,plain,
    sP1_iProver_def = sP3_iProver_def,
    inference(demodulation,[status(thm)],[c_3835,c_2376]) ).

cnf(c_3856,plain,
    $false,
    inference(forward_subsumption_resolution,[status(thm)],[c_3855,c_81]) ).


%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.00/0.11  % Problem  : GRP498-1 : TPTP v8.1.2. Released v2.6.0.
% 0.00/0.12  % Command  : run_iprover %s %d THM
% 0.12/0.32  % Computer : n014.cluster.edu
% 0.12/0.32  % Model    : x86_64 x86_64
% 0.12/0.32  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.12/0.32  % Memory   : 8042.1875MB
% 0.12/0.32  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.12/0.32  % CPULimit : 300
% 0.12/0.32  % WCLimit  : 300
% 0.12/0.32  % DateTime : Thu May  2 23:39:47 EDT 2024
% 0.12/0.32  % CPUTime  : 
% 0.17/0.44  Running UEQ theorem proving
% 0.17/0.44  Running: /export/starexec/sandbox2/solver/bin/run_problem --schedule casc_24_ueq --heuristic_context casc_unsat --no_cores 8 /export/starexec/sandbox2/benchmark/theBenchmark.p 300
% 3.81/1.12  % SZS status Started for theBenchmark.p
% 3.81/1.12  % SZS status Unsatisfiable for theBenchmark.p
% 3.81/1.12  
% 3.81/1.12  %---------------- iProver v3.9 (pre CASC 2024/SMT-COMP 2024) ----------------%
% 3.81/1.12  
% 3.81/1.12  ------  iProver source info
% 3.81/1.12  
% 3.81/1.12  git: date: 2024-05-02 19:28:25 +0000
% 3.81/1.12  git: sha1: a33b5eb135c74074ba803943bb12f2ebd971352f
% 3.81/1.12  git: non_committed_changes: false
% 3.81/1.12  
% 3.81/1.12  ------ Parsing...successful
% 3.81/1.12  
% 3.81/1.12  
% 3.81/1.12  
% 3.81/1.12  ------ Preprocessing... sup_sim: 2  sf_s  rm: 0 0s  sf_e  pe_s  pe_e 
% 3.81/1.12  
% 3.81/1.12  ------ Preprocessing... gs_s  sp: 0 0s  gs_e  snvd_s sp: 0 0s snvd_e 
% 3.81/1.12  
% 3.81/1.12  ------ Preprocessing... sf_s  rm: 0 0s  sf_e 
% 3.81/1.12  ------ Proving...
% 3.81/1.12  ------ Problem Properties 
% 3.81/1.12  
% 3.81/1.12  
% 3.81/1.12  clauses                                 9
% 3.81/1.12  conjectures                             1
% 3.81/1.12  EPR                                     1
% 3.81/1.12  Horn                                    9
% 3.81/1.12  unary                                   9
% 3.81/1.12  binary                                  0
% 3.81/1.12  lits                                    9
% 3.81/1.12  lits eq                                 9
% 3.81/1.12  fd_pure                                 0
% 3.81/1.12  fd_pseudo                               0
% 3.81/1.12  fd_cond                                 0
% 3.81/1.12  fd_pseudo_cond                          0
% 3.81/1.12  AC symbols                              0
% 3.81/1.12  
% 3.81/1.12  ------ Input Options Time Limit: Unbounded
% 3.81/1.12  
% 3.81/1.12  
% 3.81/1.12  ------ 
% 3.81/1.12  Current options:
% 3.81/1.12  ------ 
% 3.81/1.12  
% 3.81/1.12  
% 3.81/1.12  
% 3.81/1.12  
% 3.81/1.12  ------ Proving...
% 3.81/1.12  
% 3.81/1.12  
% 3.81/1.12  % SZS status Unsatisfiable for theBenchmark.p
% 3.81/1.12  
% 3.81/1.12  % SZS output start CNFRefutation for theBenchmark.p
% See solution above
% 3.81/1.12  
% 3.81/1.13  
%------------------------------------------------------------------------------