TSTP Solution File: GRP498-1 by Otter---3.3

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Otter---3.3
% Problem  : GRP498-1 : TPTP v8.1.0. Released v2.6.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : otter-tptp-script %s

% Computer : n017.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Wed Jul 27 12:57:07 EDT 2022

% Result   : Unsatisfiable 1.78s 2.01s
% Output   : Refutation 1.78s
% Verified : 
% SZS Type : Refutation
%            Derivation depth      :   20
%            Number of leaves      :    5
% Syntax   : Number of clauses     :   56 (  56 unt;   0 nHn;   7 RR)
%            Number of literals    :   56 (  55 equ;   5 neg)
%            Maximal clause size   :    1 (   1 avg)
%            Maximal term depth    :    8 (   2 avg)
%            Number of predicates  :    2 (   0 usr;   1 prp; 0-2 aty)
%            Number of functors    :    7 (   7 usr;   4 con; 0-2 aty)
%            Number of variables   :   98 (   0 sgn)

% Comments : 
%------------------------------------------------------------------------------
cnf(1,axiom,
    multiply(multiply(a3,b3),c3) != multiply(a3,multiply(b3,c3)),
    file('GRP498-1.p',unknown),
    [] ).

cnf(3,axiom,
    double_divide(double_divide(identity,double_divide(A,double_divide(B,identity))),double_divide(double_divide(B,double_divide(C,A)),identity)) = C,
    file('GRP498-1.p',unknown),
    [] ).

cnf(6,axiom,
    multiply(A,B) = double_divide(double_divide(B,A),identity),
    file('GRP498-1.p',unknown),
    [] ).

cnf(8,axiom,
    inverse(A) = double_divide(A,identity),
    file('GRP498-1.p',unknown),
    [] ).

cnf(9,axiom,
    identity = double_divide(A,inverse(A)),
    file('GRP498-1.p',unknown),
    [] ).

cnf(10,plain,
    double_divide(A,double_divide(A,identity)) = identity,
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(copy,[status(thm)],[9]),8])]),
    [iquote('copy,9,demod,8,flip.1')] ).

cnf(12,plain,
    double_divide(double_divide(double_divide(double_divide(c3,b3),identity),a3),identity) != double_divide(double_divide(c3,double_divide(double_divide(b3,a3),identity)),identity),
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[1]),6,6,6,6])]),
    [iquote('back_demod,1,demod,6,6,6,6,flip.1')] ).

cnf(13,plain,
    double_divide(double_divide(identity,identity),double_divide(double_divide(A,double_divide(B,A)),identity)) = B,
    inference(para_into,[status(thm),theory(equality)],[3,10]),
    [iquote('para_into,3.1.1.1.2,10.1.1')] ).

cnf(15,plain,
    double_divide(double_divide(identity,A),double_divide(double_divide(double_divide(B,double_divide(A,C)),double_divide(D,double_divide(identity,double_divide(C,double_divide(B,identity))))),identity)) = D,
    inference(para_into,[status(thm),theory(equality)],[3,3]),
    [iquote('para_into,3.1.1.1.2,3.1.1')] ).

cnf(17,plain,
    double_divide(double_divide(identity,double_divide(double_divide(A,identity),double_divide(B,identity))),double_divide(double_divide(B,identity),identity)) = A,
    inference(para_into,[status(thm),theory(equality)],[3,10]),
    [iquote('para_into,3.1.1.2.1.2,10.1.1')] ).

cnf(19,plain,
    double_divide(double_divide(identity,double_divide(double_divide(double_divide(A,double_divide(B,C)),identity),double_divide(D,identity))),double_divide(double_divide(D,B),identity)) = double_divide(identity,double_divide(C,double_divide(A,identity))),
    inference(para_into,[status(thm),theory(equality)],[3,3]),
    [iquote('para_into,3.1.1.2.1.2,3.1.1')] ).

cnf(21,plain,
    double_divide(double_divide(identity,double_divide(identity,double_divide(A,identity))),double_divide(identity,identity)) = A,
    inference(para_into,[status(thm),theory(equality)],[3,10]),
    [iquote('para_into,3.1.1.2.1,10.1.1')] ).

cnf(25,plain,
    double_divide(identity,identity) = identity,
    inference(flip,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[3,10])]),
    [iquote('para_into,3.1.1,10.1.1,flip.1')] ).

cnf(27,plain,
    double_divide(double_divide(identity,double_divide(identity,double_divide(A,identity))),identity) = A,
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[21]),25]),
    [iquote('back_demod,21,demod,25')] ).

cnf(29,plain,
    double_divide(identity,double_divide(double_divide(A,double_divide(B,A)),identity)) = B,
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[13]),25]),
    [iquote('back_demod,13,demod,25')] ).

cnf(33,plain,
    double_divide(double_divide(identity,double_divide(A,identity)),double_divide(double_divide(identity,double_divide(B,A)),identity)) = B,
    inference(para_from,[status(thm),theory(equality)],[25,3]),
    [iquote('para_from,24.1.1,3.1.1.1.2.2')] ).

cnf(36,plain,
    double_divide(double_divide(identity,double_divide(identity,A)),identity) = double_divide(identity,double_divide(identity,double_divide(A,identity))),
    inference(para_into,[status(thm),theory(equality)],[27,27]),
    [iquote('para_into,27.1.1.1.2.2,27.1.1')] ).

cnf(37,plain,
    double_divide(identity,double_divide(identity,double_divide(double_divide(A,identity),identity))) = A,
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[27]),36]),
    [iquote('back_demod,27,demod,36')] ).

cnf(41,plain,
    double_divide(identity,double_divide(double_divide(double_divide(A,identity),identity),identity)) = A,
    inference(para_into,[status(thm),theory(equality)],[29,10]),
    [iquote('para_into,29.1.1.2.1.2,10.1.1')] ).

cnf(77,plain,
    double_divide(double_divide(identity,A),double_divide(double_divide(identity,double_divide(B,double_divide(identity,double_divide(identity,double_divide(A,identity))))),identity)) = B,
    inference(para_into,[status(thm),theory(equality)],[15,10]),
    [iquote('para_into,15.1.1.2.1.1,10.1.1')] ).

cnf(91,plain,
    double_divide(double_divide(identity,double_divide(identity,double_divide(double_divide(identity,A),identity))),double_divide(B,identity)) = double_divide(double_divide(C,double_divide(A,D)),double_divide(B,double_divide(identity,double_divide(D,double_divide(C,identity))))),
    inference(para_from,[status(thm),theory(equality)],[15,3]),
    [iquote('para_from,15.1.1,3.1.1.2.1')] ).

cnf(92,plain,
    double_divide(double_divide(A,double_divide(B,C)),double_divide(D,double_divide(identity,double_divide(C,double_divide(A,identity))))) = double_divide(double_divide(identity,double_divide(identity,double_divide(double_divide(identity,B),identity))),double_divide(D,identity)),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[91])]),
    [iquote('copy,91,flip.1')] ).

cnf(93,plain,
    double_divide(identity,A) = double_divide(A,identity),
    inference(para_from,[status(thm),theory(equality)],[41,37]),
    [iquote('para_from,41.1.1,37.1.1.2')] ).

cnf(103,plain,
    double_divide(double_divide(A,identity),identity) = double_divide(identity,double_divide(A,identity)),
    inference(flip,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[41,29])]),
    [iquote('para_from,41.1.1,29.1.1.2.1,flip.1')] ).

cnf(104,plain,
    double_divide(A,identity) = double_divide(identity,A),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[93])]),
    [iquote('copy,93,flip.1')] ).

cnf(118,plain,
    double_divide(double_divide(identity,double_divide(double_divide(A,identity),double_divide(B,identity))),double_divide(identity,double_divide(B,identity))) = A,
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[17]),103]),
    [iquote('back_demod,17,demod,103')] ).

cnf(127,plain,
    double_divide(double_divide(A,identity),double_divide(double_divide(double_divide(B,double_divide(A,C)),double_divide(D,double_divide(identity,double_divide(C,double_divide(B,identity))))),identity)) = D,
    inference(para_from,[status(thm),theory(equality)],[93,15]),
    [iquote('para_from,93.1.1,15.1.1.1')] ).

cnf(141,plain,
    double_divide(identity,double_divide(double_divide(double_divide(c3,b3),identity),a3)) != double_divide(double_divide(c3,double_divide(double_divide(b3,a3),identity)),identity),
    inference(para_from,[status(thm),theory(equality)],[104,12]),
    [iquote('para_from,104.1.1,12.1.1')] ).

cnf(143,plain,
    double_divide(A,double_divide(identity,A)) = identity,
    inference(para_from,[status(thm),theory(equality)],[104,10]),
    [iquote('para_from,104.1.1,10.1.1.2')] ).

cnf(160,plain,
    double_divide(identity,double_divide(identity,double_divide(double_divide(identity,A),identity))) = A,
    inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[143,29]),103]),
    [iquote('para_from,143.1.1,29.1.1.2.1.2,demod,103')] ).

cnf(162,plain,
    double_divide(double_divide(identity,double_divide(double_divide(identity,A),double_divide(B,identity))),double_divide(identity,double_divide(B,identity))) = A,
    inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[143,3]),103]),
    [iquote('para_from,143.1.1,3.1.1.2.1.2,demod,103')] ).

cnf(164,plain,
    double_divide(double_divide(A,double_divide(B,C)),double_divide(D,double_divide(identity,double_divide(C,double_divide(A,identity))))) = double_divide(B,double_divide(D,identity)),
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[92]),160]),
    [iquote('back_demod,92,demod,160')] ).

cnf(171,plain,
    double_divide(double_divide(A,identity),double_divide(double_divide(A,double_divide(B,identity)),identity)) = B,
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[127]),164]),
    [iquote('back_demod,127,demod,164')] ).

cnf(188,plain,
    double_divide(A,double_divide(B,identity)) = double_divide(identity,double_divide(B,double_divide(A,identity))),
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[19,93]),103,118]),
    [iquote('para_into,19.1.1.1.2.1.1.2,93.1.1,demod,103,118')] ).

cnf(189,plain,
    double_divide(A,B) = double_divide(identity,double_divide(double_divide(double_divide(C,double_divide(B,C)),identity),double_divide(A,identity))),
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[19,29]),103,118]),
    [iquote('para_into,19.1.1.1.2.1.1.2,29.1.1,demod,103,118')] ).

cnf(191,plain,
    double_divide(identity,double_divide(identity,double_divide(A,identity))) = double_divide(A,identity),
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[19,25]),103,103,162])]),
    [iquote('para_into,19.1.1.1.2.1.1.2,24.1.1,demod,103,103,162,flip.1')] ).

cnf(201,plain,
    double_divide(double_divide(A,identity),double_divide(double_divide(A,B),identity)) = double_divide(B,identity),
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[19,10]),25,191,191]),
    [iquote('para_into,19.1.1.1.2.1.1,10.1.1,demod,25,191,191')] ).

cnf(230,plain,
    double_divide(identity,double_divide(A,double_divide(B,identity))) = double_divide(B,double_divide(A,identity)),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[188])]),
    [iquote('copy,188,flip.1')] ).

cnf(231,plain,
    double_divide(identity,double_divide(double_divide(double_divide(A,double_divide(B,A)),identity),double_divide(C,identity))) = double_divide(C,B),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[189])]),
    [iquote('copy,189,flip.1')] ).

cnf(235,plain,
    double_divide(double_divide(identity,A),identity) = A,
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[160]),191]),
    [iquote('back_demod,159,demod,191')] ).

cnf(244,plain,
    double_divide(double_divide(identity,A),double_divide(B,double_divide(A,identity))) = B,
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[77]),191,235]),
    [iquote('back_demod,77,demod,191,235')] ).

cnf(251,plain,
    double_divide(identity,double_divide(A,identity)) = A,
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[171]),201,103]),
    [iquote('back_demod,171,demod,201,103')] ).

cnf(271,plain,
    double_divide(A,double_divide(B,A)) = B,
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[33]),251,235]),
    [iquote('back_demod,33,demod,251,235')] ).

cnf(293,plain,
    double_divide(identity,double_divide(double_divide(A,identity),double_divide(B,identity))) = double_divide(B,A),
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[231]),271]),
    [iquote('back_demod,231,demod,271')] ).

cnf(306,plain,
    double_divide(double_divide(A,identity),identity) = A,
    inference(para_into,[status(thm),theory(equality)],[235,93]),
    [iquote('para_into,234.1.1.1,93.1.1')] ).

cnf(322,plain,
    double_divide(double_divide(A,B),A) = B,
    inference(para_into,[status(thm),theory(equality)],[271,271]),
    [iquote('para_into,270.1.1.2,270.1.1')] ).

cnf(351,plain,
    double_divide(double_divide(A,double_divide(B,C)),identity) = double_divide(B,double_divide(identity,double_divide(C,double_divide(A,identity)))),
    inference(flip,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[322,3])]),
    [iquote('para_into,321.1.1.1,3.1.1,flip.1')] ).

cnf(398,plain,
    double_divide(identity,double_divide(double_divide(double_divide(c3,b3),identity),a3)) != double_divide(double_divide(b3,a3),double_divide(identity,c3)),
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[141]),351,271]),
    [iquote('back_demod,141,demod,351,271')] ).

cnf(403,plain,
    double_divide(double_divide(identity,A),B) = double_divide(double_divide(A,identity),B),
    inference(para_into,[status(thm),theory(equality)],[244,322]),
    [iquote('para_into,244.1.1.2,321.1.1')] ).

cnf(601,plain,
    double_divide(identity,double_divide(A,double_divide(identity,B))) = double_divide(B,double_divide(identity,A)),
    inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[230,201]),25,351,271,351,271]),
    [iquote('para_from,230.1.1,200.1.1.2.1,demod,25,351,271,351,271')] ).

cnf(612,plain,
    double_divide(A,double_divide(identity,B)) = double_divide(identity,double_divide(B,double_divide(identity,A))),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[601])]),
    [iquote('copy,601,flip.1')] ).

cnf(631,plain,
    double_divide(identity,double_divide(double_divide(A,identity),B)) = double_divide(double_divide(identity,B),A),
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[293,403]),306]),
    [iquote('para_into,293.1.1.2.2,403.1.1,demod,306')] ).

cnf(634,plain,
    double_divide(double_divide(identity,A),B) = double_divide(identity,double_divide(double_divide(B,identity),A)),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[631])]),
    [iquote('copy,631,flip.1')] ).

cnf(2026,plain,
    double_divide(double_divide(double_divide(A,B),identity),C) = double_divide(A,double_divide(identity,double_divide(B,C))),
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[351,634]),322,322]),
    [iquote('para_into,350.1.1.1,634.1.1,demod,322,322')] ).

cnf(2070,plain,
    double_divide(double_divide(b3,a3),double_divide(identity,c3)) != double_divide(identity,double_divide(c3,double_divide(identity,double_divide(b3,a3)))),
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[398]),2026])]),
    [iquote('back_demod,398,demod,2026,flip.1')] ).

cnf(2071,plain,
    $false,
    inference(binary,[status(thm)],[2070,612]),
    [iquote('binary,2070.1,612.1')] ).

%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.07/0.11  % Problem  : GRP498-1 : TPTP v8.1.0. Released v2.6.0.
% 0.07/0.12  % Command  : otter-tptp-script %s
% 0.12/0.33  % Computer : n017.cluster.edu
% 0.12/0.33  % Model    : x86_64 x86_64
% 0.12/0.33  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.12/0.33  % Memory   : 8042.1875MB
% 0.12/0.33  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.12/0.33  % CPULimit : 300
% 0.12/0.33  % WCLimit  : 300
% 0.12/0.33  % DateTime : Wed Jul 27 04:32:18 EDT 2022
% 0.12/0.33  % CPUTime  : 
% 1.78/2.01  ----- Otter 3.3f, August 2004 -----
% 1.78/2.01  The process was started by sandbox2 on n017.cluster.edu,
% 1.78/2.01  Wed Jul 27 04:32:18 2022
% 1.78/2.01  The command was "./otter".  The process ID is 20895.
% 1.78/2.01  
% 1.78/2.01  set(prolog_style_variables).
% 1.78/2.01  set(auto).
% 1.78/2.01     dependent: set(auto1).
% 1.78/2.01     dependent: set(process_input).
% 1.78/2.01     dependent: clear(print_kept).
% 1.78/2.01     dependent: clear(print_new_demod).
% 1.78/2.01     dependent: clear(print_back_demod).
% 1.78/2.01     dependent: clear(print_back_sub).
% 1.78/2.01     dependent: set(control_memory).
% 1.78/2.01     dependent: assign(max_mem, 12000).
% 1.78/2.01     dependent: assign(pick_given_ratio, 4).
% 1.78/2.01     dependent: assign(stats_level, 1).
% 1.78/2.01     dependent: assign(max_seconds, 10800).
% 1.78/2.01  clear(print_given).
% 1.78/2.01  
% 1.78/2.01  list(usable).
% 1.78/2.01  0 [] A=A.
% 1.78/2.01  0 [] double_divide(double_divide(identity,double_divide(A,double_divide(B,identity))),double_divide(double_divide(B,double_divide(C,A)),identity))=C.
% 1.78/2.01  0 [] multiply(A,B)=double_divide(double_divide(B,A),identity).
% 1.78/2.01  0 [] inverse(A)=double_divide(A,identity).
% 1.78/2.01  0 [] identity=double_divide(A,inverse(A)).
% 1.78/2.01  0 [] multiply(multiply(a3,b3),c3)!=multiply(a3,multiply(b3,c3)).
% 1.78/2.01  end_of_list.
% 1.78/2.01  
% 1.78/2.01  SCAN INPUT: prop=0, horn=1, equality=1, symmetry=0, max_lits=1.
% 1.78/2.01  
% 1.78/2.01  All clauses are units, and equality is present; the
% 1.78/2.01  strategy will be Knuth-Bendix with positive clauses in sos.
% 1.78/2.01  
% 1.78/2.01     dependent: set(knuth_bendix).
% 1.78/2.01     dependent: set(anl_eq).
% 1.78/2.01     dependent: set(para_from).
% 1.78/2.01     dependent: set(para_into).
% 1.78/2.01     dependent: clear(para_from_right).
% 1.78/2.01     dependent: clear(para_into_right).
% 1.78/2.01     dependent: set(para_from_vars).
% 1.78/2.01     dependent: set(eq_units_both_ways).
% 1.78/2.01     dependent: set(dynamic_demod_all).
% 1.78/2.01     dependent: set(dynamic_demod).
% 1.78/2.01     dependent: set(order_eq).
% 1.78/2.01     dependent: set(back_demod).
% 1.78/2.01     dependent: set(lrpo).
% 1.78/2.01  
% 1.78/2.01  ------------> process usable:
% 1.78/2.01  ** KEPT (pick-wt=11): 1 [] multiply(multiply(a3,b3),c3)!=multiply(a3,multiply(b3,c3)).
% 1.78/2.01  
% 1.78/2.01  ------------> process sos:
% 1.78/2.01  ** KEPT (pick-wt=3): 2 [] A=A.
% 1.78/2.01  ** KEPT (pick-wt=17): 3 [] double_divide(double_divide(identity,double_divide(A,double_divide(B,identity))),double_divide(double_divide(B,double_divide(C,A)),identity))=C.
% 1.78/2.01  ---> New Demodulator: 4 [new_demod,3] double_divide(double_divide(identity,double_divide(A,double_divide(B,identity))),double_divide(double_divide(B,double_divide(C,A)),identity))=C.
% 1.78/2.01  ** KEPT (pick-wt=9): 5 [] multiply(A,B)=double_divide(double_divide(B,A),identity).
% 1.78/2.01  ---> New Demodulator: 6 [new_demod,5] multiply(A,B)=double_divide(double_divide(B,A),identity).
% 1.78/2.01  ** KEPT (pick-wt=6): 7 [] inverse(A)=double_divide(A,identity).
% 1.78/2.01  ---> New Demodulator: 8 [new_demod,7] inverse(A)=double_divide(A,identity).
% 1.78/2.01  ** KEPT (pick-wt=7): 10 [copy,9,demod,8,flip.1] double_divide(A,double_divide(A,identity))=identity.
% 1.78/2.01  ---> New Demodulator: 11 [new_demod,10] double_divide(A,double_divide(A,identity))=identity.
% 1.78/2.01    Following clause subsumed by 2 during input processing: 0 [copy,2,flip.1] A=A.
% 1.78/2.01  >>>> Starting back demodulation with 4.
% 1.78/2.01  >>>> Starting back demodulation with 6.
% 1.78/2.01      >> back demodulating 1 with 6.
% 1.78/2.01  >>>> Starting back demodulation with 8.
% 1.78/2.01  >>>> Starting back demodulation with 11.
% 1.78/2.01  
% 1.78/2.01  ======= end of input processing =======
% 1.78/2.01  
% 1.78/2.01  =========== start of search ===========
% 1.78/2.01  
% 1.78/2.01  -------- PROOF -------- 
% 1.78/2.01  
% 1.78/2.01  ----> UNIT CONFLICT at   0.16 sec ----> 2071 [binary,2070.1,612.1] $F.
% 1.78/2.01  
% 1.78/2.01  Length of proof is 50.  Level of proof is 19.
% 1.78/2.01  
% 1.78/2.01  ---------------- PROOF ----------------
% 1.78/2.01  % SZS status Unsatisfiable
% 1.78/2.01  % SZS output start Refutation
% See solution above
% 1.78/2.01  ------------ end of proof -------------
% 1.78/2.01  
% 1.78/2.01  
% 1.78/2.01  Search stopped by max_proofs option.
% 1.78/2.01  
% 1.78/2.01  
% 1.78/2.01  Search stopped by max_proofs option.
% 1.78/2.01  
% 1.78/2.01  ============ end of search ============
% 1.78/2.01  
% 1.78/2.01  -------------- statistics -------------
% 1.78/2.01  clauses given                 91
% 1.78/2.01  clauses generated           7553
% 1.78/2.01  clauses kept                1553
% 1.78/2.01  clauses forward subsumed    7598
% 1.78/2.01  clauses back subsumed         23
% 1.78/2.01  Kbytes malloced             3906
% 1.78/2.01  
% 1.78/2.01  ----------- times (seconds) -----------
% 1.78/2.01  user CPU time          0.16          (0 hr, 0 min, 0 sec)
% 1.78/2.01  system CPU time        0.00          (0 hr, 0 min, 0 sec)
% 1.78/2.01  wall-clock time        1             (0 hr, 0 min, 1 sec)
% 1.78/2.01  
% 1.78/2.01  That finishes the proof of the theorem.
% 1.78/2.01  
% 1.78/2.01  Process 20895 finished Wed Jul 27 04:32:19 2022
% 1.78/2.01  Otter interrupted
% 1.78/2.01  PROOF FOUND
%------------------------------------------------------------------------------