TSTP Solution File: GRP492-1 by iProver---3.9

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : iProver---3.9
% Problem  : GRP492-1 : TPTP v8.1.2. Released v2.6.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : run_iprover %s %d THM

% Computer : n007.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Fri May  3 02:22:44 EDT 2024

% Result   : Unsatisfiable 0.64s 1.11s
% Output   : CNFRefutation 0.64s
% Verified : 
% SZS Type : ERROR: Analysing output (Could not find formula named definition)

% Comments : 
%------------------------------------------------------------------------------
cnf(c_49,plain,
    double_divide(double_divide(identity,X0),double_divide(identity,double_divide(double_divide(double_divide(X0,X1),identity),double_divide(X2,X1)))) = X2,
    file('/export/starexec/sandbox2/benchmark/theBenchmark.p',single_axiom) ).

cnf(c_50,plain,
    double_divide(double_divide(X0,X1),identity) = multiply(X1,X0),
    file('/export/starexec/sandbox2/benchmark/theBenchmark.p',multiply) ).

cnf(c_51,plain,
    double_divide(X0,identity) = inverse(X0),
    file('/export/starexec/sandbox2/benchmark/theBenchmark.p',inverse) ).

cnf(c_52,plain,
    double_divide(X0,inverse(X0)) = identity,
    file('/export/starexec/sandbox2/benchmark/theBenchmark.p',identity) ).

cnf(c_53,negated_conjecture,
    multiply(multiply(a3,b3),c3) != multiply(a3,multiply(b3,c3)),
    file('/export/starexec/sandbox2/benchmark/theBenchmark.p',prove_these_axioms_3) ).

cnf(c_68,plain,
    inverse(double_divide(X0,X1)) = multiply(X1,X0),
    inference(demodulation,[status(thm)],[c_50,c_51]) ).

cnf(c_69,plain,
    double_divide(double_divide(identity,X0),double_divide(identity,double_divide(multiply(X1,X0),double_divide(X2,X1)))) = X2,
    inference(demodulation,[status(thm)],[c_49,c_51,c_68]) ).

cnf(c_77,plain,
    multiply(a3,b3) = sP0_iProver_def,
    definition ).

cnf(c_78,plain,
    multiply(sP0_iProver_def,c3) = sP1_iProver_def,
    definition ).

cnf(c_79,plain,
    multiply(b3,c3) = sP2_iProver_def,
    definition ).

cnf(c_80,plain,
    multiply(a3,sP2_iProver_def) = sP3_iProver_def,
    definition ).

cnf(c_81,negated_conjecture,
    sP1_iProver_def != sP3_iProver_def,
    inference(demodulation,[status(thm)],[c_53,c_79,c_80,c_77,c_78]) ).

cnf(c_133,plain,
    multiply(identity,X0) = inverse(inverse(X0)),
    inference(superposition,[status(thm)],[c_51,c_68]) ).

cnf(c_134,plain,
    multiply(inverse(X0),X0) = inverse(identity),
    inference(superposition,[status(thm)],[c_52,c_68]) ).

cnf(c_135,plain,
    double_divide(double_divide(X0,X1),multiply(X1,X0)) = identity,
    inference(superposition,[status(thm)],[c_68,c_52]) ).

cnf(c_139,plain,
    double_divide(inverse(identity),double_divide(identity,double_divide(multiply(X0,identity),double_divide(X1,X0)))) = X1,
    inference(superposition,[status(thm)],[c_51,c_69]) ).

cnf(c_140,plain,
    double_divide(identity,double_divide(identity,double_divide(multiply(X0,inverse(identity)),double_divide(X1,X0)))) = X1,
    inference(superposition,[status(thm)],[c_52,c_69]) ).

cnf(c_145,plain,
    double_divide(double_divide(identity,X0),double_divide(identity,double_divide(multiply(identity,X0),inverse(X1)))) = X1,
    inference(superposition,[status(thm)],[c_51,c_69]) ).

cnf(c_146,plain,
    double_divide(double_divide(identity,X0),double_divide(identity,double_divide(multiply(inverse(X1),X0),identity))) = X1,
    inference(superposition,[status(thm)],[c_52,c_69]) ).

cnf(c_148,plain,
    multiply(double_divide(identity,double_divide(multiply(X0,X1),double_divide(X2,X0))),double_divide(identity,X1)) = inverse(X2),
    inference(superposition,[status(thm)],[c_69,c_68]) ).

cnf(c_149,plain,
    double_divide(double_divide(identity,X0),double_divide(identity,double_divide(multiply(double_divide(identity,double_divide(multiply(X1,X2),double_divide(X3,X1))),X0),X3))) = double_divide(identity,X2),
    inference(superposition,[status(thm)],[c_69,c_69]) ).

cnf(c_160,plain,
    multiply(identity,double_divide(X0,X1)) = inverse(multiply(X1,X0)),
    inference(superposition,[status(thm)],[c_68,c_133]) ).

cnf(c_163,plain,
    double_divide(inverse(X0),multiply(identity,X0)) = identity,
    inference(superposition,[status(thm)],[c_133,c_52]) ).

cnf(c_168,plain,
    multiply(multiply(identity,X0),inverse(X0)) = inverse(identity),
    inference(superposition,[status(thm)],[c_133,c_134]) ).

cnf(c_178,plain,
    double_divide(double_divide(identity,X0),double_divide(identity,double_divide(multiply(multiply(identity,X1),X0),identity))) = inverse(X1),
    inference(superposition,[status(thm)],[c_163,c_69]) ).

cnf(c_317,plain,
    double_divide(inverse(identity),double_divide(identity,double_divide(multiply(identity,identity),inverse(X0)))) = X0,
    inference(superposition,[status(thm)],[c_51,c_139]) ).

cnf(c_318,plain,
    double_divide(inverse(identity),double_divide(identity,double_divide(multiply(inverse(X0),identity),identity))) = X0,
    inference(superposition,[status(thm)],[c_52,c_139]) ).

cnf(c_328,plain,
    multiply(double_divide(identity,double_divide(multiply(X0,identity),double_divide(X1,X0))),inverse(identity)) = inverse(X1),
    inference(superposition,[status(thm)],[c_139,c_68]) ).

cnf(c_641,plain,
    double_divide(identity,double_divide(identity,double_divide(multiply(double_divide(identity,double_divide(multiply(X0,identity),double_divide(X1,X0))),inverse(identity)),X1))) = inverse(identity),
    inference(superposition,[status(thm)],[c_139,c_140]) ).

cnf(c_662,plain,
    double_divide(identity,double_divide(identity,double_divide(inverse(X0),X0))) = inverse(identity),
    inference(light_normalisation,[status(thm)],[c_641,c_328]) ).

cnf(c_786,plain,
    double_divide(inverse(identity),double_divide(identity,identity)) = multiply(identity,identity),
    inference(superposition,[status(thm)],[c_52,c_317]) ).

cnf(c_823,plain,
    double_divide(inverse(identity),inverse(identity)) = multiply(identity,identity),
    inference(demodulation,[status(thm)],[c_786,c_51]) ).

cnf(c_860,plain,
    double_divide(inverse(identity),double_divide(identity,inverse(multiply(inverse(X0),identity)))) = X0,
    inference(demodulation,[status(thm)],[c_318,c_51]) ).

cnf(c_861,plain,
    double_divide(inverse(identity),double_divide(identity,inverse(inverse(identity)))) = identity,
    inference(superposition,[status(thm)],[c_134,c_860]) ).

cnf(c_913,plain,
    double_divide(inverse(identity),double_divide(identity,multiply(identity,identity))) = identity,
    inference(demodulation,[status(thm)],[c_861,c_133]) ).

cnf(c_916,plain,
    multiply(double_divide(identity,multiply(identity,identity)),inverse(identity)) = inverse(identity),
    inference(superposition,[status(thm)],[c_913,c_68]) ).

cnf(c_950,plain,
    double_divide(identity,double_divide(identity,inverse(inverse(identity)))) = inverse(identity),
    inference(superposition,[status(thm)],[c_51,c_662]) ).

cnf(c_1007,plain,
    double_divide(identity,double_divide(identity,multiply(identity,identity))) = inverse(identity),
    inference(demodulation,[status(thm)],[c_950,c_133]) ).

cnf(c_1013,plain,
    double_divide(identity,double_divide(identity,double_divide(multiply(double_divide(identity,multiply(identity,identity)),inverse(identity)),inverse(identity)))) = identity,
    inference(superposition,[status(thm)],[c_1007,c_140]) ).

cnf(c_1016,plain,
    inverse(identity) = identity,
    inference(light_normalisation,[status(thm)],[c_1013,c_823,c_916,c_1007]) ).

cnf(c_1029,plain,
    multiply(multiply(identity,X0),inverse(X0)) = identity,
    inference(demodulation,[status(thm)],[c_168,c_1016]) ).

cnf(c_1034,plain,
    multiply(inverse(X0),X0) = identity,
    inference(demodulation,[status(thm)],[c_134,c_1016]) ).

cnf(c_1059,plain,
    multiply(identity,identity) = identity,
    inference(superposition,[status(thm)],[c_1016,c_133]) ).

cnf(c_1060,plain,
    double_divide(identity,identity) = identity,
    inference(superposition,[status(thm)],[c_1016,c_52]) ).

cnf(c_1126,plain,
    double_divide(double_divide(identity,X0),double_divide(identity,identity)) = multiply(identity,X0),
    inference(superposition,[status(thm)],[c_52,c_145]) ).

cnf(c_1137,plain,
    double_divide(double_divide(identity,X0),identity) = multiply(identity,X0),
    inference(light_normalisation,[status(thm)],[c_1126,c_1060]) ).

cnf(c_1170,plain,
    multiply(X0,identity) = multiply(identity,X0),
    inference(demodulation,[status(thm)],[c_1137,c_51,c_68]) ).

cnf(c_1172,plain,
    double_divide(double_divide(identity,X0),multiply(identity,X0)) = identity,
    inference(superposition,[status(thm)],[c_1170,c_135]) ).

cnf(c_1288,plain,
    multiply(multiply(X0,identity),inverse(X0)) = identity,
    inference(superposition,[status(thm)],[c_1170,c_1029]) ).

cnf(c_1459,plain,
    double_divide(double_divide(identity,X0),double_divide(identity,double_divide(multiply(multiply(identity,X1),X0),identity))) = double_divide(identity,X1),
    inference(superposition,[status(thm)],[c_1172,c_69]) ).

cnf(c_1468,plain,
    double_divide(identity,X0) = inverse(X0),
    inference(light_normalisation,[status(thm)],[c_1459,c_178]) ).

cnf(c_1487,plain,
    multiply(X0,identity) = inverse(inverse(X0)),
    inference(superposition,[status(thm)],[c_1468,c_68]) ).

cnf(c_1494,plain,
    multiply(double_divide(X0,X1),identity) = inverse(multiply(X1,X0)),
    inference(superposition,[status(thm)],[c_68,c_1487]) ).

cnf(c_1553,plain,
    double_divide(inverse(X0),double_divide(identity,double_divide(multiply(inverse(X1),X0),identity))) = X1,
    inference(light_normalisation,[status(thm)],[c_146,c_1468]) ).

cnf(c_1554,plain,
    double_divide(inverse(X0),multiply(identity,multiply(inverse(X1),X0))) = X1,
    inference(demodulation,[status(thm)],[c_1553,c_68,c_1468]) ).

cnf(c_1561,plain,
    double_divide(inverse(X0),multiply(identity,identity)) = X0,
    inference(superposition,[status(thm)],[c_1034,c_1554]) ).

cnf(c_1573,plain,
    double_divide(inverse(X0),identity) = X0,
    inference(light_normalisation,[status(thm)],[c_1561,c_1059]) ).

cnf(c_1676,plain,
    multiply(X0,identity) = X0,
    inference(demodulation,[status(thm)],[c_1573,c_51,c_1487]) ).

cnf(c_1678,plain,
    inverse(inverse(X0)) = X0,
    inference(demodulation,[status(thm)],[c_1487,c_1676]) ).

cnf(c_1679,plain,
    multiply(X0,inverse(X0)) = identity,
    inference(demodulation,[status(thm)],[c_1288,c_1676]) ).

cnf(c_1681,plain,
    multiply(identity,X0) = X0,
    inference(demodulation,[status(thm)],[c_1170,c_1676]) ).

cnf(c_1689,plain,
    inverse(multiply(X0,X1)) = double_divide(X1,X0),
    inference(demodulation,[status(thm)],[c_160,c_1681]) ).

cnf(c_1711,plain,
    multiply(double_divide(X0,X1),multiply(X1,X0)) = identity,
    inference(superposition,[status(thm)],[c_68,c_1679]) ).

cnf(c_1734,plain,
    double_divide(b3,a3) = inverse(sP0_iProver_def),
    inference(superposition,[status(thm)],[c_77,c_1689]) ).

cnf(c_1736,plain,
    double_divide(c3,sP0_iProver_def) = inverse(sP1_iProver_def),
    inference(superposition,[status(thm)],[c_78,c_1689]) ).

cnf(c_1779,plain,
    multiply(multiply(double_divide(X0,X1),multiply(X1,X2)),inverse(X2)) = inverse(X0),
    inference(demodulation,[status(thm)],[c_148,c_68,c_1468]) ).

cnf(c_1788,plain,
    multiply(multiply(double_divide(X0,b3),sP2_iProver_def),inverse(c3)) = inverse(X0),
    inference(superposition,[status(thm)],[c_79,c_1779]) ).

cnf(c_1795,plain,
    multiply(multiply(double_divide(X0,X1),identity),inverse(inverse(X1))) = inverse(X0),
    inference(superposition,[status(thm)],[c_1679,c_1779]) ).

cnf(c_1807,plain,
    multiply(inverse(multiply(X0,X1)),inverse(inverse(X0))) = inverse(X1),
    inference(light_normalisation,[status(thm)],[c_1795,c_1494]) ).

cnf(c_1808,plain,
    multiply(double_divide(X0,X1),X1) = inverse(X0),
    inference(light_normalisation,[status(thm)],[c_1807,c_1678,c_1689]) ).

cnf(c_2055,plain,
    multiply(inverse(sP0_iProver_def),a3) = inverse(b3),
    inference(superposition,[status(thm)],[c_1734,c_1808]) ).

cnf(c_2057,plain,
    multiply(inverse(sP1_iProver_def),sP0_iProver_def) = inverse(c3),
    inference(superposition,[status(thm)],[c_1736,c_1808]) ).

cnf(c_2062,plain,
    double_divide(X0,double_divide(X1,X0)) = inverse(inverse(X1)),
    inference(superposition,[status(thm)],[c_1808,c_1689]) ).

cnf(c_2118,plain,
    double_divide(a3,inverse(sP0_iProver_def)) = inverse(inverse(b3)),
    inference(superposition,[status(thm)],[c_2055,c_1689]) ).

cnf(c_2255,plain,
    double_divide(a3,inverse(sP0_iProver_def)) = b3,
    inference(demodulation,[status(thm)],[c_2118,c_1678]) ).

cnf(c_2256,plain,
    multiply(b3,inverse(sP0_iProver_def)) = inverse(a3),
    inference(superposition,[status(thm)],[c_2255,c_1808]) ).

cnf(c_2286,plain,
    double_divide(inverse(sP0_iProver_def),b3) = inverse(inverse(a3)),
    inference(superposition,[status(thm)],[c_2256,c_1689]) ).

cnf(c_2438,plain,
    double_divide(inverse(X0),double_divide(identity,double_divide(multiply(double_divide(identity,double_divide(multiply(X1,X2),double_divide(X3,X1))),X0),X3))) = double_divide(identity,X2),
    inference(light_normalisation,[status(thm)],[c_149,c_1468]) ).

cnf(c_2439,plain,
    double_divide(inverse(X0),multiply(X1,multiply(multiply(double_divide(X1,X2),multiply(X2,X3)),X0))) = inverse(X3),
    inference(demodulation,[status(thm)],[c_2438,c_68,c_1468]) ).

cnf(c_2449,plain,
    double_divide(inverse(X0),multiply(X1,multiply(identity,X0))) = inverse(X1),
    inference(superposition,[status(thm)],[c_1711,c_2439]) ).

cnf(c_2492,plain,
    double_divide(inverse(X0),multiply(X1,X0)) = inverse(X1),
    inference(light_normalisation,[status(thm)],[c_2449,c_1681]) ).

cnf(c_2845,plain,
    double_divide(inverse(sP0_iProver_def),b3) = a3,
    inference(demodulation,[status(thm)],[c_2286,c_1678]) ).

cnf(c_2853,plain,
    multiply(multiply(a3,sP2_iProver_def),inverse(c3)) = inverse(inverse(sP0_iProver_def)),
    inference(superposition,[status(thm)],[c_2845,c_1788]) ).

cnf(c_2860,plain,
    multiply(sP3_iProver_def,inverse(c3)) = inverse(inverse(sP0_iProver_def)),
    inference(light_normalisation,[status(thm)],[c_2853,c_80]) ).

cnf(c_2937,plain,
    multiply(sP3_iProver_def,inverse(c3)) = sP0_iProver_def,
    inference(demodulation,[status(thm)],[c_2860,c_1678]) ).

cnf(c_2939,plain,
    double_divide(inverse(c3),sP3_iProver_def) = inverse(sP0_iProver_def),
    inference(superposition,[status(thm)],[c_2937,c_1689]) ).

cnf(c_2993,plain,
    multiply(inverse(sP0_iProver_def),sP3_iProver_def) = inverse(inverse(c3)),
    inference(superposition,[status(thm)],[c_2939,c_1808]) ).

cnf(c_3011,plain,
    multiply(inverse(sP0_iProver_def),sP3_iProver_def) = c3,
    inference(demodulation,[status(thm)],[c_2993,c_1678]) ).

cnf(c_3013,plain,
    double_divide(sP3_iProver_def,inverse(sP0_iProver_def)) = inverse(c3),
    inference(superposition,[status(thm)],[c_3011,c_1689]) ).

cnf(c_3112,plain,
    double_divide(X0,double_divide(X1,X0)) = X1,
    inference(demodulation,[status(thm)],[c_2062,c_1678]) ).

cnf(c_3135,plain,
    double_divide(inverse(sP0_iProver_def),inverse(c3)) = sP3_iProver_def,
    inference(superposition,[status(thm)],[c_3013,c_3112]) ).

cnf(c_3368,plain,
    double_divide(inverse(sP0_iProver_def),inverse(c3)) = inverse(inverse(sP1_iProver_def)),
    inference(superposition,[status(thm)],[c_2057,c_2492]) ).

cnf(c_3392,plain,
    inverse(inverse(sP1_iProver_def)) = sP3_iProver_def,
    inference(light_normalisation,[status(thm)],[c_3368,c_3135]) ).

cnf(c_3433,plain,
    sP1_iProver_def = sP3_iProver_def,
    inference(demodulation,[status(thm)],[c_3392,c_1678]) ).

cnf(c_3434,plain,
    $false,
    inference(forward_subsumption_resolution,[status(thm)],[c_3433,c_81]) ).


%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.09/0.10  % Problem  : GRP492-1 : TPTP v8.1.2. Released v2.6.0.
% 0.09/0.11  % Command  : run_iprover %s %d THM
% 0.11/0.31  % Computer : n007.cluster.edu
% 0.11/0.31  % Model    : x86_64 x86_64
% 0.11/0.31  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.11/0.31  % Memory   : 8042.1875MB
% 0.11/0.31  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.11/0.31  % CPULimit : 300
% 0.11/0.31  % WCLimit  : 300
% 0.11/0.31  % DateTime : Thu May  2 23:49:05 EDT 2024
% 0.16/0.32  % CPUTime  : 
% 0.16/0.42  Running UEQ theorem proving
% 0.16/0.42  Running: /export/starexec/sandbox2/solver/bin/run_problem --schedule casc_24_ueq --heuristic_context casc_unsat --no_cores 8 /export/starexec/sandbox2/benchmark/theBenchmark.p 300
% 0.64/1.11  % SZS status Started for theBenchmark.p
% 0.64/1.11  % SZS status Unsatisfiable for theBenchmark.p
% 0.64/1.11  
% 0.64/1.11  %---------------- iProver v3.9 (pre CASC 2024/SMT-COMP 2024) ----------------%
% 0.64/1.11  
% 0.64/1.11  ------  iProver source info
% 0.64/1.11  
% 0.64/1.11  git: date: 2024-05-02 19:28:25 +0000
% 0.64/1.11  git: sha1: a33b5eb135c74074ba803943bb12f2ebd971352f
% 0.64/1.11  git: non_committed_changes: false
% 0.64/1.11  
% 0.64/1.11  ------ Parsing...successful
% 0.64/1.11  
% 0.64/1.11  
% 0.64/1.11  
% 0.64/1.11  ------ Preprocessing... sup_sim: 2  sf_s  rm: 0 0s  sf_e  pe_s  pe_e 
% 0.64/1.11  
% 0.64/1.11  ------ Preprocessing... gs_s  sp: 0 0s  gs_e  snvd_s sp: 0 0s snvd_e 
% 0.64/1.11  
% 0.64/1.11  ------ Preprocessing... sf_s  rm: 0 0s  sf_e 
% 0.64/1.11  ------ Proving...
% 0.64/1.11  ------ Problem Properties 
% 0.64/1.11  
% 0.64/1.11  
% 0.64/1.11  clauses                                 9
% 0.64/1.11  conjectures                             1
% 0.64/1.11  EPR                                     1
% 0.64/1.11  Horn                                    9
% 0.64/1.11  unary                                   9
% 0.64/1.11  binary                                  0
% 0.64/1.11  lits                                    9
% 0.64/1.11  lits eq                                 9
% 0.64/1.11  fd_pure                                 0
% 0.64/1.11  fd_pseudo                               0
% 0.64/1.11  fd_cond                                 0
% 0.64/1.11  fd_pseudo_cond                          0
% 0.64/1.11  AC symbols                              0
% 0.64/1.11  
% 0.64/1.11  ------ Input Options Time Limit: Unbounded
% 0.64/1.11  
% 0.64/1.11  
% 0.64/1.11  ------ 
% 0.64/1.11  Current options:
% 0.64/1.11  ------ 
% 0.64/1.11  
% 0.64/1.11  
% 0.64/1.11  
% 0.64/1.11  
% 0.64/1.11  ------ Proving...
% 0.64/1.11  
% 0.64/1.11  
% 0.64/1.11  % SZS status Unsatisfiable for theBenchmark.p
% 0.64/1.11  
% 0.64/1.11  % SZS output start CNFRefutation for theBenchmark.p
% See solution above
% 0.64/1.11  
% 0.64/1.12  
%------------------------------------------------------------------------------