TSTP Solution File: GRP490-1 by Bliksem---1.12

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Bliksem---1.12
% Problem  : GRP490-1 : TPTP v8.1.0. Released v2.6.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : bliksem %s

% Computer : n020.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 0s
% DateTime : Sat Jul 16 07:37:17 EDT 2022

% Result   : Unsatisfiable 0.72s 1.12s
% Output   : Refutation 0.72s
% Verified : 
% SZS Type : -

% Comments : 
%------------------------------------------------------------------------------
%----WARNING: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.03/0.13  % Problem  : GRP490-1 : TPTP v8.1.0. Released v2.6.0.
% 0.03/0.13  % Command  : bliksem %s
% 0.13/0.35  % Computer : n020.cluster.edu
% 0.13/0.35  % Model    : x86_64 x86_64
% 0.13/0.35  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.13/0.35  % Memory   : 8042.1875MB
% 0.13/0.35  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.13/0.35  % CPULimit : 300
% 0.13/0.35  % DateTime : Tue Jun 14 11:17:20 EDT 2022
% 0.13/0.35  % CPUTime  : 
% 0.72/1.12  *** allocated 10000 integers for termspace/termends
% 0.72/1.12  *** allocated 10000 integers for clauses
% 0.72/1.12  *** allocated 10000 integers for justifications
% 0.72/1.12  Bliksem 1.12
% 0.72/1.12  
% 0.72/1.12  
% 0.72/1.12  Automatic Strategy Selection
% 0.72/1.12  
% 0.72/1.12  Clauses:
% 0.72/1.12  [
% 0.72/1.12     [ =( 'double_divide'( 'double_divide'( identity, X ), 'double_divide'( 
% 0.72/1.12    identity, 'double_divide'( 'double_divide'( 'double_divide'( X, Y ), 
% 0.72/1.12    identity ), 'double_divide'( Z, Y ) ) ) ), Z ) ],
% 0.72/1.12     [ =( multiply( X, Y ), 'double_divide'( 'double_divide'( Y, X ), 
% 0.72/1.12    identity ) ) ],
% 0.72/1.12     [ =( inverse( X ), 'double_divide'( X, identity ) ) ],
% 0.72/1.12     [ =( identity, 'double_divide'( X, inverse( X ) ) ) ],
% 0.72/1.12     [ ~( =( multiply( inverse( a1 ), a1 ), identity ) ) ]
% 0.72/1.12  ] .
% 0.72/1.12  
% 0.72/1.12  
% 0.72/1.12  percentage equality = 1.000000, percentage horn = 1.000000
% 0.72/1.12  This is a pure equality problem
% 0.72/1.12  
% 0.72/1.12  
% 0.72/1.12  
% 0.72/1.12  Options Used:
% 0.72/1.12  
% 0.72/1.12  useres =            1
% 0.72/1.12  useparamod =        1
% 0.72/1.12  useeqrefl =         1
% 0.72/1.12  useeqfact =         1
% 0.72/1.12  usefactor =         1
% 0.72/1.12  usesimpsplitting =  0
% 0.72/1.12  usesimpdemod =      5
% 0.72/1.12  usesimpres =        3
% 0.72/1.12  
% 0.72/1.12  resimpinuse      =  1000
% 0.72/1.12  resimpclauses =     20000
% 0.72/1.12  substype =          eqrewr
% 0.72/1.12  backwardsubs =      1
% 0.72/1.12  selectoldest =      5
% 0.72/1.12  
% 0.72/1.12  litorderings [0] =  split
% 0.72/1.12  litorderings [1] =  extend the termordering, first sorting on arguments
% 0.72/1.12  
% 0.72/1.12  termordering =      kbo
% 0.72/1.12  
% 0.72/1.12  litapriori =        0
% 0.72/1.12  termapriori =       1
% 0.72/1.12  litaposteriori =    0
% 0.72/1.12  termaposteriori =   0
% 0.72/1.12  demodaposteriori =  0
% 0.72/1.12  ordereqreflfact =   0
% 0.72/1.12  
% 0.72/1.12  litselect =         negord
% 0.72/1.12  
% 0.72/1.12  maxweight =         15
% 0.72/1.12  maxdepth =          30000
% 0.72/1.12  maxlength =         115
% 0.72/1.12  maxnrvars =         195
% 0.72/1.12  excuselevel =       1
% 0.72/1.12  increasemaxweight = 1
% 0.72/1.12  
% 0.72/1.12  maxselected =       10000000
% 0.72/1.12  maxnrclauses =      10000000
% 0.72/1.12  
% 0.72/1.12  showgenerated =    0
% 0.72/1.12  showkept =         0
% 0.72/1.12  showselected =     0
% 0.72/1.12  showdeleted =      0
% 0.72/1.12  showresimp =       1
% 0.72/1.12  showstatus =       2000
% 0.72/1.12  
% 0.72/1.12  prologoutput =     1
% 0.72/1.12  nrgoals =          5000000
% 0.72/1.12  totalproof =       1
% 0.72/1.12  
% 0.72/1.12  Symbols occurring in the translation:
% 0.72/1.12  
% 0.72/1.12  {}  [0, 0]      (w:1, o:2, a:1, s:1, b:0), 
% 0.72/1.12  .  [1, 2]      (w:1, o:20, a:1, s:1, b:0), 
% 0.72/1.12  !  [4, 1]      (w:0, o:14, a:1, s:1, b:0), 
% 0.72/1.12  =  [13, 2]      (w:1, o:0, a:0, s:1, b:0), 
% 0.72/1.12  ==>  [14, 2]      (w:1, o:0, a:0, s:1, b:0), 
% 0.72/1.12  identity  [39, 0]      (w:1, o:9, a:1, s:1, b:0), 
% 0.72/1.12  'double_divide'  [41, 2]      (w:1, o:45, a:1, s:1, b:0), 
% 0.72/1.12  multiply  [44, 2]      (w:1, o:46, a:1, s:1, b:0), 
% 0.72/1.12  inverse  [45, 1]      (w:1, o:19, a:1, s:1, b:0), 
% 0.72/1.12  a1  [46, 0]      (w:1, o:13, a:1, s:1, b:0).
% 0.72/1.12  
% 0.72/1.12  
% 0.72/1.12  Starting Search:
% 0.72/1.12  
% 0.72/1.12  
% 0.72/1.12  Bliksems!, er is een bewijs:
% 0.72/1.12  % SZS status Unsatisfiable
% 0.72/1.12  % SZS output start Refutation
% 0.72/1.12  
% 0.72/1.12  clause( 0, [ =( 'double_divide'( 'double_divide'( identity, X ), 
% 0.72/1.12    'double_divide'( identity, 'double_divide'( 'double_divide'( 
% 0.72/1.12    'double_divide'( X, Y ), identity ), 'double_divide'( Z, Y ) ) ) ), Z ) ]
% 0.72/1.12     )
% 0.72/1.12  .
% 0.72/1.12  clause( 1, [ =( 'double_divide'( 'double_divide'( Y, X ), identity ), 
% 0.72/1.12    multiply( X, Y ) ) ] )
% 0.72/1.12  .
% 0.72/1.12  clause( 2, [ =( 'double_divide'( X, identity ), inverse( X ) ) ] )
% 0.72/1.12  .
% 0.72/1.12  clause( 3, [ =( 'double_divide'( X, inverse( X ) ), identity ) ] )
% 0.72/1.12  .
% 0.72/1.12  clause( 4, [ ~( =( multiply( inverse( a1 ), a1 ), identity ) ) ] )
% 0.72/1.12  .
% 0.72/1.12  clause( 5, [ =( inverse( 'double_divide'( Y, X ) ), multiply( X, Y ) ) ] )
% 0.72/1.12  .
% 0.72/1.12  clause( 7, [ =( multiply( inverse( X ), X ), inverse( identity ) ) ] )
% 0.72/1.12  .
% 0.72/1.12  clause( 9, [ =( 'double_divide'( 'double_divide'( identity, X ), 
% 0.72/1.12    'double_divide'( identity, 'double_divide'( multiply( Y, X ), 
% 0.72/1.12    'double_divide'( Z, Y ) ) ) ), Z ) ] )
% 0.72/1.12  .
% 0.72/1.12  clause( 11, [ ~( =( inverse( identity ), identity ) ) ] )
% 0.72/1.12  .
% 0.72/1.12  clause( 15, [ =( 'double_divide'( 'double_divide'( identity, Y ), 
% 0.72/1.12    'double_divide'( identity, inverse( multiply( inverse( X ), Y ) ) ) ), X
% 0.72/1.12     ) ] )
% 0.72/1.12  .
% 0.72/1.12  clause( 18, [ =( 'double_divide'( 'double_divide'( identity, X ), 
% 0.72/1.12    'double_divide'( identity, inverse( inverse( identity ) ) ) ), X ) ] )
% 0.72/1.12  .
% 0.72/1.12  clause( 25, [ =( 'double_divide'( identity, 'double_divide'( identity, 
% 0.72/1.12    inverse( inverse( identity ) ) ) ), inverse( identity ) ) ] )
% 0.72/1.12  .
% 0.72/1.12  clause( 26, [ =( 'double_divide'( inverse( identity ), 'double_divide'( 
% 0.72/1.12    identity, inverse( inverse( identity ) ) ) ), identity ) ] )
% 0.72/1.12  .
% 0.72/1.12  clause( 27, [ =( 'double_divide'( identity, inverse( inverse( identity ) )
% 0.72/1.12     ), identity ) ] )
% 0.72/1.12  .
% 0.72/1.12  clause( 35, [] )
% 0.72/1.12  .
% 0.72/1.12  
% 0.72/1.12  
% 0.72/1.12  % SZS output end Refutation
% 0.72/1.12  found a proof!
% 0.72/1.12  
% 0.72/1.12  % ABCDEFGHIJKLMNOPQRSTUVWXYZ
% 0.72/1.12  
% 0.72/1.12  initialclauses(
% 0.72/1.12  [ clause( 37, [ =( 'double_divide'( 'double_divide'( identity, X ), 
% 0.72/1.12    'double_divide'( identity, 'double_divide'( 'double_divide'( 
% 0.72/1.12    'double_divide'( X, Y ), identity ), 'double_divide'( Z, Y ) ) ) ), Z ) ]
% 0.72/1.12     )
% 0.72/1.12  , clause( 38, [ =( multiply( X, Y ), 'double_divide'( 'double_divide'( Y, X
% 0.72/1.12     ), identity ) ) ] )
% 0.72/1.12  , clause( 39, [ =( inverse( X ), 'double_divide'( X, identity ) ) ] )
% 0.72/1.12  , clause( 40, [ =( identity, 'double_divide'( X, inverse( X ) ) ) ] )
% 0.72/1.12  , clause( 41, [ ~( =( multiply( inverse( a1 ), a1 ), identity ) ) ] )
% 0.72/1.12  ] ).
% 0.72/1.12  
% 0.72/1.12  
% 0.72/1.12  
% 0.72/1.12  subsumption(
% 0.72/1.12  clause( 0, [ =( 'double_divide'( 'double_divide'( identity, X ), 
% 0.72/1.12    'double_divide'( identity, 'double_divide'( 'double_divide'( 
% 0.72/1.12    'double_divide'( X, Y ), identity ), 'double_divide'( Z, Y ) ) ) ), Z ) ]
% 0.72/1.12     )
% 0.72/1.12  , clause( 37, [ =( 'double_divide'( 'double_divide'( identity, X ), 
% 0.72/1.12    'double_divide'( identity, 'double_divide'( 'double_divide'( 
% 0.72/1.12    'double_divide'( X, Y ), identity ), 'double_divide'( Z, Y ) ) ) ), Z ) ]
% 0.72/1.12     )
% 0.72/1.12  , substitution( 0, [ :=( X, X ), :=( Y, Y ), :=( Z, Z )] ), 
% 0.72/1.12    permutation( 0, [ ==>( 0, 0 )] ) ).
% 0.72/1.12  
% 0.72/1.12  
% 0.72/1.12  eqswap(
% 0.72/1.12  clause( 44, [ =( 'double_divide'( 'double_divide'( Y, X ), identity ), 
% 0.72/1.12    multiply( X, Y ) ) ] )
% 0.72/1.12  , clause( 38, [ =( multiply( X, Y ), 'double_divide'( 'double_divide'( Y, X
% 0.72/1.12     ), identity ) ) ] )
% 0.72/1.12  , 0, substitution( 0, [ :=( X, X ), :=( Y, Y )] )).
% 0.72/1.12  
% 0.72/1.12  
% 0.72/1.12  subsumption(
% 0.72/1.12  clause( 1, [ =( 'double_divide'( 'double_divide'( Y, X ), identity ), 
% 0.72/1.12    multiply( X, Y ) ) ] )
% 0.72/1.12  , clause( 44, [ =( 'double_divide'( 'double_divide'( Y, X ), identity ), 
% 0.72/1.12    multiply( X, Y ) ) ] )
% 0.72/1.12  , substitution( 0, [ :=( X, X ), :=( Y, Y )] ), permutation( 0, [ ==>( 0, 0
% 0.72/1.12     )] ) ).
% 0.72/1.12  
% 0.72/1.12  
% 0.72/1.12  eqswap(
% 0.72/1.12  clause( 47, [ =( 'double_divide'( X, identity ), inverse( X ) ) ] )
% 0.72/1.12  , clause( 39, [ =( inverse( X ), 'double_divide'( X, identity ) ) ] )
% 0.72/1.12  , 0, substitution( 0, [ :=( X, X )] )).
% 0.72/1.12  
% 0.72/1.12  
% 0.72/1.12  subsumption(
% 0.72/1.12  clause( 2, [ =( 'double_divide'( X, identity ), inverse( X ) ) ] )
% 0.72/1.12  , clause( 47, [ =( 'double_divide'( X, identity ), inverse( X ) ) ] )
% 0.72/1.12  , substitution( 0, [ :=( X, X )] ), permutation( 0, [ ==>( 0, 0 )] ) ).
% 0.72/1.12  
% 0.72/1.12  
% 0.72/1.12  eqswap(
% 0.72/1.12  clause( 51, [ =( 'double_divide'( X, inverse( X ) ), identity ) ] )
% 0.72/1.12  , clause( 40, [ =( identity, 'double_divide'( X, inverse( X ) ) ) ] )
% 0.72/1.12  , 0, substitution( 0, [ :=( X, X )] )).
% 0.72/1.12  
% 0.72/1.12  
% 0.72/1.12  subsumption(
% 0.72/1.12  clause( 3, [ =( 'double_divide'( X, inverse( X ) ), identity ) ] )
% 0.72/1.12  , clause( 51, [ =( 'double_divide'( X, inverse( X ) ), identity ) ] )
% 0.72/1.12  , substitution( 0, [ :=( X, X )] ), permutation( 0, [ ==>( 0, 0 )] ) ).
% 0.72/1.12  
% 0.72/1.12  
% 0.72/1.12  subsumption(
% 0.72/1.12  clause( 4, [ ~( =( multiply( inverse( a1 ), a1 ), identity ) ) ] )
% 0.72/1.12  , clause( 41, [ ~( =( multiply( inverse( a1 ), a1 ), identity ) ) ] )
% 0.72/1.12  , substitution( 0, [] ), permutation( 0, [ ==>( 0, 0 )] ) ).
% 0.72/1.12  
% 0.72/1.12  
% 0.72/1.12  paramod(
% 0.72/1.12  clause( 59, [ =( inverse( 'double_divide'( X, Y ) ), multiply( Y, X ) ) ]
% 0.72/1.12     )
% 0.72/1.12  , clause( 2, [ =( 'double_divide'( X, identity ), inverse( X ) ) ] )
% 0.72/1.12  , 0, clause( 1, [ =( 'double_divide'( 'double_divide'( Y, X ), identity ), 
% 0.72/1.12    multiply( X, Y ) ) ] )
% 0.72/1.12  , 0, 1, substitution( 0, [ :=( X, 'double_divide'( X, Y ) )] ), 
% 0.72/1.12    substitution( 1, [ :=( X, Y ), :=( Y, X )] )).
% 0.72/1.12  
% 0.72/1.12  
% 0.72/1.12  subsumption(
% 0.72/1.12  clause( 5, [ =( inverse( 'double_divide'( Y, X ) ), multiply( X, Y ) ) ] )
% 0.72/1.12  , clause( 59, [ =( inverse( 'double_divide'( X, Y ) ), multiply( Y, X ) ) ]
% 0.72/1.12     )
% 0.72/1.12  , substitution( 0, [ :=( X, Y ), :=( Y, X )] ), permutation( 0, [ ==>( 0, 0
% 0.72/1.12     )] ) ).
% 0.72/1.12  
% 0.72/1.12  
% 0.72/1.12  eqswap(
% 0.72/1.12  clause( 62, [ =( multiply( Y, X ), inverse( 'double_divide'( X, Y ) ) ) ]
% 0.72/1.12     )
% 0.72/1.12  , clause( 5, [ =( inverse( 'double_divide'( Y, X ) ), multiply( X, Y ) ) ]
% 0.72/1.12     )
% 0.72/1.12  , 0, substitution( 0, [ :=( X, Y ), :=( Y, X )] )).
% 0.72/1.12  
% 0.72/1.12  
% 0.72/1.12  paramod(
% 0.72/1.12  clause( 65, [ =( multiply( inverse( X ), X ), inverse( identity ) ) ] )
% 0.72/1.12  , clause( 3, [ =( 'double_divide'( X, inverse( X ) ), identity ) ] )
% 0.72/1.12  , 0, clause( 62, [ =( multiply( Y, X ), inverse( 'double_divide'( X, Y ) )
% 0.72/1.12     ) ] )
% 0.72/1.12  , 0, 6, substitution( 0, [ :=( X, X )] ), substitution( 1, [ :=( X, X ), 
% 0.72/1.12    :=( Y, inverse( X ) )] )).
% 0.72/1.12  
% 0.72/1.12  
% 0.72/1.12  subsumption(
% 0.72/1.12  clause( 7, [ =( multiply( inverse( X ), X ), inverse( identity ) ) ] )
% 0.72/1.12  , clause( 65, [ =( multiply( inverse( X ), X ), inverse( identity ) ) ] )
% 0.72/1.12  , substitution( 0, [ :=( X, X )] ), permutation( 0, [ ==>( 0, 0 )] ) ).
% 0.72/1.12  
% 0.72/1.12  
% 0.72/1.12  paramod(
% 0.72/1.12  clause( 70, [ =( 'double_divide'( 'double_divide'( identity, X ), 
% 0.72/1.12    'double_divide'( identity, 'double_divide'( inverse( 'double_divide'( X, 
% 0.72/1.12    Y ) ), 'double_divide'( Z, Y ) ) ) ), Z ) ] )
% 0.72/1.12  , clause( 2, [ =( 'double_divide'( X, identity ), inverse( X ) ) ] )
% 0.72/1.12  , 0, clause( 0, [ =( 'double_divide'( 'double_divide'( identity, X ), 
% 0.72/1.12    'double_divide'( identity, 'double_divide'( 'double_divide'( 
% 0.72/1.12    'double_divide'( X, Y ), identity ), 'double_divide'( Z, Y ) ) ) ), Z ) ]
% 0.72/1.12     )
% 0.72/1.12  , 0, 8, substitution( 0, [ :=( X, 'double_divide'( X, Y ) )] ), 
% 0.72/1.12    substitution( 1, [ :=( X, X ), :=( Y, Y ), :=( Z, Z )] )).
% 0.72/1.12  
% 0.72/1.12  
% 0.72/1.12  paramod(
% 0.72/1.12  clause( 71, [ =( 'double_divide'( 'double_divide'( identity, X ), 
% 0.72/1.12    'double_divide'( identity, 'double_divide'( multiply( Y, X ), 
% 0.72/1.12    'double_divide'( Z, Y ) ) ) ), Z ) ] )
% 0.72/1.12  , clause( 5, [ =( inverse( 'double_divide'( Y, X ) ), multiply( X, Y ) ) ]
% 0.72/1.12     )
% 0.72/1.12  , 0, clause( 70, [ =( 'double_divide'( 'double_divide'( identity, X ), 
% 0.72/1.12    'double_divide'( identity, 'double_divide'( inverse( 'double_divide'( X, 
% 0.72/1.12    Y ) ), 'double_divide'( Z, Y ) ) ) ), Z ) ] )
% 0.72/1.12  , 0, 8, substitution( 0, [ :=( X, Y ), :=( Y, X )] ), substitution( 1, [ 
% 0.72/1.12    :=( X, X ), :=( Y, Y ), :=( Z, Z )] )).
% 0.72/1.12  
% 0.72/1.12  
% 0.72/1.12  subsumption(
% 0.72/1.12  clause( 9, [ =( 'double_divide'( 'double_divide'( identity, X ), 
% 0.72/1.12    'double_divide'( identity, 'double_divide'( multiply( Y, X ), 
% 0.72/1.12    'double_divide'( Z, Y ) ) ) ), Z ) ] )
% 0.72/1.12  , clause( 71, [ =( 'double_divide'( 'double_divide'( identity, X ), 
% 0.72/1.12    'double_divide'( identity, 'double_divide'( multiply( Y, X ), 
% 0.72/1.12    'double_divide'( Z, Y ) ) ) ), Z ) ] )
% 0.72/1.12  , substitution( 0, [ :=( X, X ), :=( Y, Y ), :=( Z, Z )] ), 
% 0.72/1.12    permutation( 0, [ ==>( 0, 0 )] ) ).
% 0.72/1.12  
% 0.72/1.12  
% 0.72/1.12  eqswap(
% 0.72/1.12  clause( 74, [ ~( =( identity, multiply( inverse( a1 ), a1 ) ) ) ] )
% 0.72/1.12  , clause( 4, [ ~( =( multiply( inverse( a1 ), a1 ), identity ) ) ] )
% 0.72/1.12  , 0, substitution( 0, [] )).
% 0.72/1.12  
% 0.72/1.12  
% 0.72/1.12  paramod(
% 0.72/1.12  clause( 75, [ ~( =( identity, inverse( identity ) ) ) ] )
% 0.72/1.12  , clause( 7, [ =( multiply( inverse( X ), X ), inverse( identity ) ) ] )
% 0.72/1.12  , 0, clause( 74, [ ~( =( identity, multiply( inverse( a1 ), a1 ) ) ) ] )
% 0.72/1.12  , 0, 3, substitution( 0, [ :=( X, a1 )] ), substitution( 1, [] )).
% 0.72/1.12  
% 0.72/1.12  
% 0.72/1.12  eqswap(
% 0.72/1.12  clause( 76, [ ~( =( inverse( identity ), identity ) ) ] )
% 0.72/1.12  , clause( 75, [ ~( =( identity, inverse( identity ) ) ) ] )
% 0.72/1.12  , 0, substitution( 0, [] )).
% 0.72/1.12  
% 0.72/1.12  
% 0.72/1.12  subsumption(
% 0.72/1.12  clause( 11, [ ~( =( inverse( identity ), identity ) ) ] )
% 0.72/1.12  , clause( 76, [ ~( =( inverse( identity ), identity ) ) ] )
% 0.72/1.12  , substitution( 0, [] ), permutation( 0, [ ==>( 0, 0 )] ) ).
% 0.72/1.12  
% 0.72/1.12  
% 0.72/1.12  eqswap(
% 0.72/1.12  clause( 78, [ =( Z, 'double_divide'( 'double_divide'( identity, X ), 
% 0.72/1.12    'double_divide'( identity, 'double_divide'( multiply( Y, X ), 
% 0.72/1.12    'double_divide'( Z, Y ) ) ) ) ) ] )
% 0.72/1.12  , clause( 9, [ =( 'double_divide'( 'double_divide'( identity, X ), 
% 0.72/1.12    'double_divide'( identity, 'double_divide'( multiply( Y, X ), 
% 0.72/1.12    'double_divide'( Z, Y ) ) ) ), Z ) ] )
% 0.72/1.12  , 0, substitution( 0, [ :=( X, X ), :=( Y, Y ), :=( Z, Z )] )).
% 0.72/1.12  
% 0.72/1.12  
% 0.72/1.12  paramod(
% 0.72/1.12  clause( 81, [ =( X, 'double_divide'( 'double_divide'( identity, Y ), 
% 0.72/1.12    'double_divide'( identity, 'double_divide'( multiply( inverse( X ), Y ), 
% 0.72/1.12    identity ) ) ) ) ] )
% 0.72/1.12  , clause( 3, [ =( 'double_divide'( X, inverse( X ) ), identity ) ] )
% 0.72/1.12  , 0, clause( 78, [ =( Z, 'double_divide'( 'double_divide'( identity, X ), 
% 0.72/1.12    'double_divide'( identity, 'double_divide'( multiply( Y, X ), 
% 0.72/1.12    'double_divide'( Z, Y ) ) ) ) ) ] )
% 0.72/1.12  , 0, 13, substitution( 0, [ :=( X, X )] ), substitution( 1, [ :=( X, Y ), 
% 0.72/1.12    :=( Y, inverse( X ) ), :=( Z, X )] )).
% 0.72/1.12  
% 0.72/1.12  
% 0.72/1.12  paramod(
% 0.72/1.12  clause( 82, [ =( X, 'double_divide'( 'double_divide'( identity, Y ), 
% 0.72/1.12    'double_divide'( identity, inverse( multiply( inverse( X ), Y ) ) ) ) ) ]
% 0.72/1.12     )
% 0.72/1.12  , clause( 2, [ =( 'double_divide'( X, identity ), inverse( X ) ) ] )
% 0.72/1.12  , 0, clause( 81, [ =( X, 'double_divide'( 'double_divide'( identity, Y ), 
% 0.72/1.12    'double_divide'( identity, 'double_divide'( multiply( inverse( X ), Y ), 
% 0.72/1.12    identity ) ) ) ) ] )
% 0.72/1.12  , 0, 8, substitution( 0, [ :=( X, multiply( inverse( X ), Y ) )] ), 
% 0.72/1.12    substitution( 1, [ :=( X, X ), :=( Y, Y )] )).
% 0.72/1.12  
% 0.72/1.12  
% 0.72/1.12  eqswap(
% 0.72/1.12  clause( 83, [ =( 'double_divide'( 'double_divide'( identity, Y ), 
% 0.72/1.12    'double_divide'( identity, inverse( multiply( inverse( X ), Y ) ) ) ), X
% 0.72/1.12     ) ] )
% 0.72/1.12  , clause( 82, [ =( X, 'double_divide'( 'double_divide'( identity, Y ), 
% 0.72/1.12    'double_divide'( identity, inverse( multiply( inverse( X ), Y ) ) ) ) ) ]
% 0.72/1.12     )
% 0.72/1.12  , 0, substitution( 0, [ :=( X, X ), :=( Y, Y )] )).
% 0.72/1.12  
% 0.72/1.12  
% 0.72/1.12  subsumption(
% 0.72/1.12  clause( 15, [ =( 'double_divide'( 'double_divide'( identity, Y ), 
% 0.72/1.12    'double_divide'( identity, inverse( multiply( inverse( X ), Y ) ) ) ), X
% 0.72/1.12     ) ] )
% 0.72/1.12  , clause( 83, [ =( 'double_divide'( 'double_divide'( identity, Y ), 
% 0.72/1.12    'double_divide'( identity, inverse( multiply( inverse( X ), Y ) ) ) ), X
% 0.72/1.12     ) ] )
% 0.72/1.12  , substitution( 0, [ :=( X, X ), :=( Y, Y )] ), permutation( 0, [ ==>( 0, 0
% 0.72/1.12     )] ) ).
% 0.72/1.12  
% 0.72/1.12  
% 0.72/1.12  eqswap(
% 0.72/1.12  clause( 85, [ =( Y, 'double_divide'( 'double_divide'( identity, X ), 
% 0.72/1.12    'double_divide'( identity, inverse( multiply( inverse( Y ), X ) ) ) ) ) ]
% 0.72/1.12     )
% 0.72/1.12  , clause( 15, [ =( 'double_divide'( 'double_divide'( identity, Y ), 
% 0.72/1.12    'double_divide'( identity, inverse( multiply( inverse( X ), Y ) ) ) ), X
% 0.72/1.12     ) ] )
% 0.72/1.12  , 0, substitution( 0, [ :=( X, Y ), :=( Y, X )] )).
% 0.72/1.12  
% 0.72/1.12  
% 0.72/1.12  paramod(
% 0.72/1.12  clause( 86, [ =( X, 'double_divide'( 'double_divide'( identity, X ), 
% 0.72/1.12    'double_divide'( identity, inverse( inverse( identity ) ) ) ) ) ] )
% 0.72/1.12  , clause( 7, [ =( multiply( inverse( X ), X ), inverse( identity ) ) ] )
% 0.72/1.12  , 0, clause( 85, [ =( Y, 'double_divide'( 'double_divide'( identity, X ), 
% 0.72/1.12    'double_divide'( identity, inverse( multiply( inverse( Y ), X ) ) ) ) ) ]
% 0.72/1.12     )
% 0.72/1.12  , 0, 9, substitution( 0, [ :=( X, X )] ), substitution( 1, [ :=( X, X ), 
% 0.72/1.12    :=( Y, X )] )).
% 0.72/1.12  
% 0.72/1.12  
% 0.72/1.12  eqswap(
% 0.72/1.12  clause( 87, [ =( 'double_divide'( 'double_divide'( identity, X ), 
% 0.72/1.12    'double_divide'( identity, inverse( inverse( identity ) ) ) ), X ) ] )
% 0.72/1.12  , clause( 86, [ =( X, 'double_divide'( 'double_divide'( identity, X ), 
% 0.72/1.12    'double_divide'( identity, inverse( inverse( identity ) ) ) ) ) ] )
% 0.72/1.12  , 0, substitution( 0, [ :=( X, X )] )).
% 0.72/1.12  
% 0.72/1.12  
% 0.72/1.12  subsumption(
% 0.72/1.12  clause( 18, [ =( 'double_divide'( 'double_divide'( identity, X ), 
% 0.72/1.12    'double_divide'( identity, inverse( inverse( identity ) ) ) ), X ) ] )
% 0.72/1.12  , clause( 87, [ =( 'double_divide'( 'double_divide'( identity, X ), 
% 0.72/1.12    'double_divide'( identity, inverse( inverse( identity ) ) ) ), X ) ] )
% 0.72/1.12  , substitution( 0, [ :=( X, X )] ), permutation( 0, [ ==>( 0, 0 )] ) ).
% 0.72/1.12  
% 0.72/1.12  
% 0.72/1.12  eqswap(
% 0.72/1.12  clause( 89, [ =( X, 'double_divide'( 'double_divide'( identity, X ), 
% 0.72/1.12    'double_divide'( identity, inverse( inverse( identity ) ) ) ) ) ] )
% 0.72/1.12  , clause( 18, [ =( 'double_divide'( 'double_divide'( identity, X ), 
% 0.72/1.12    'double_divide'( identity, inverse( inverse( identity ) ) ) ), X ) ] )
% 0.72/1.12  , 0, substitution( 0, [ :=( X, X )] )).
% 0.72/1.12  
% 0.72/1.12  
% 0.72/1.12  paramod(
% 0.72/1.12  clause( 90, [ =( inverse( identity ), 'double_divide'( identity, 
% 0.72/1.12    'double_divide'( identity, inverse( inverse( identity ) ) ) ) ) ] )
% 0.72/1.12  , clause( 3, [ =( 'double_divide'( X, inverse( X ) ), identity ) ] )
% 0.72/1.12  , 0, clause( 89, [ =( X, 'double_divide'( 'double_divide'( identity, X ), 
% 0.72/1.12    'double_divide'( identity, inverse( inverse( identity ) ) ) ) ) ] )
% 0.72/1.12  , 0, 4, substitution( 0, [ :=( X, identity )] ), substitution( 1, [ :=( X, 
% 0.72/1.12    inverse( identity ) )] )).
% 0.72/1.12  
% 0.72/1.12  
% 0.72/1.12  eqswap(
% 0.72/1.12  clause( 91, [ =( 'double_divide'( identity, 'double_divide'( identity, 
% 0.72/1.12    inverse( inverse( identity ) ) ) ), inverse( identity ) ) ] )
% 0.72/1.12  , clause( 90, [ =( inverse( identity ), 'double_divide'( identity, 
% 0.72/1.12    'double_divide'( identity, inverse( inverse( identity ) ) ) ) ) ] )
% 0.72/1.12  , 0, substitution( 0, [] )).
% 0.72/1.12  
% 0.72/1.12  
% 0.72/1.12  subsumption(
% 0.72/1.12  clause( 25, [ =( 'double_divide'( identity, 'double_divide'( identity, 
% 0.72/1.12    inverse( inverse( identity ) ) ) ), inverse( identity ) ) ] )
% 0.72/1.12  , clause( 91, [ =( 'double_divide'( identity, 'double_divide'( identity, 
% 0.72/1.12    inverse( inverse( identity ) ) ) ), inverse( identity ) ) ] )
% 0.72/1.12  , substitution( 0, [] ), permutation( 0, [ ==>( 0, 0 )] ) ).
% 0.72/1.12  
% 0.72/1.12  
% 0.72/1.12  eqswap(
% 0.72/1.12  clause( 93, [ =( X, 'double_divide'( 'double_divide'( identity, X ), 
% 0.72/1.12    'double_divide'( identity, inverse( inverse( identity ) ) ) ) ) ] )
% 0.72/1.12  , clause( 18, [ =( 'double_divide'( 'double_divide'( identity, X ), 
% 0.72/1.12    'double_divide'( identity, inverse( inverse( identity ) ) ) ), X ) ] )
% 0.72/1.12  , 0, substitution( 0, [ :=( X, X )] )).
% 0.72/1.12  
% 0.72/1.12  
% 0.72/1.12  paramod(
% 0.72/1.12  clause( 94, [ =( identity, 'double_divide'( inverse( identity ), 
% 0.72/1.12    'double_divide'( identity, inverse( inverse( identity ) ) ) ) ) ] )
% 0.72/1.12  , clause( 2, [ =( 'double_divide'( X, identity ), inverse( X ) ) ] )
% 0.72/1.12  , 0, clause( 93, [ =( X, 'double_divide'( 'double_divide'( identity, X ), 
% 0.72/1.12    'double_divide'( identity, inverse( inverse( identity ) ) ) ) ) ] )
% 0.72/1.12  , 0, 3, substitution( 0, [ :=( X, identity )] ), substitution( 1, [ :=( X, 
% 0.72/1.12    identity )] )).
% 0.72/1.12  
% 0.72/1.12  
% 0.72/1.12  eqswap(
% 0.72/1.12  clause( 95, [ =( 'double_divide'( inverse( identity ), 'double_divide'( 
% 0.72/1.12    identity, inverse( inverse( identity ) ) ) ), identity ) ] )
% 0.72/1.12  , clause( 94, [ =( identity, 'double_divide'( inverse( identity ), 
% 0.72/1.12    'double_divide'( identity, inverse( inverse( identity ) ) ) ) ) ] )
% 0.72/1.12  , 0, substitution( 0, [] )).
% 0.72/1.12  
% 0.72/1.12  
% 0.72/1.12  subsumption(
% 0.72/1.12  clause( 26, [ =( 'double_divide'( inverse( identity ), 'double_divide'( 
% 0.72/1.12    identity, inverse( inverse( identity ) ) ) ), identity ) ] )
% 0.72/1.12  , clause( 95, [ =( 'double_divide'( inverse( identity ), 'double_divide'( 
% 0.72/1.12    identity, inverse( inverse( identity ) ) ) ), identity ) ] )
% 0.72/1.12  , substitution( 0, [] ), permutation( 0, [ ==>( 0, 0 )] ) ).
% 0.72/1.12  
% 0.72/1.12  
% 0.72/1.12  eqswap(
% 0.72/1.12  clause( 97, [ =( X, 'double_divide'( 'double_divide'( identity, X ), 
% 0.72/1.12    'double_divide'( identity, inverse( inverse( identity ) ) ) ) ) ] )
% 0.72/1.12  , clause( 18, [ =( 'double_divide'( 'double_divide'( identity, X ), 
% 0.72/1.12    'double_divide'( identity, inverse( inverse( identity ) ) ) ), X ) ] )
% 0.72/1.12  , 0, substitution( 0, [ :=( X, X )] )).
% 0.72/1.12  
% 0.72/1.12  
% 0.72/1.12  paramod(
% 0.72/1.12  clause( 99, [ =( 'double_divide'( identity, inverse( inverse( identity ) )
% 0.72/1.12     ), 'double_divide'( inverse( identity ), 'double_divide'( identity, 
% 0.72/1.12    inverse( inverse( identity ) ) ) ) ) ] )
% 0.72/1.12  , clause( 25, [ =( 'double_divide'( identity, 'double_divide'( identity, 
% 0.72/1.12    inverse( inverse( identity ) ) ) ), inverse( identity ) ) ] )
% 0.72/1.12  , 0, clause( 97, [ =( X, 'double_divide'( 'double_divide'( identity, X ), 
% 0.72/1.12    'double_divide'( identity, inverse( inverse( identity ) ) ) ) ) ] )
% 0.72/1.12  , 0, 7, substitution( 0, [] ), substitution( 1, [ :=( X, 'double_divide'( 
% 0.72/1.12    identity, inverse( inverse( identity ) ) ) )] )).
% 0.72/1.12  
% 0.72/1.12  
% 0.72/1.12  paramod(
% 0.72/1.12  clause( 100, [ =( 'double_divide'( identity, inverse( inverse( identity ) )
% 0.72/1.12     ), identity ) ] )
% 0.72/1.12  , clause( 26, [ =( 'double_divide'( inverse( identity ), 'double_divide'( 
% 0.72/1.12    identity, inverse( inverse( identity ) ) ) ), identity ) ] )
% 0.72/1.12  , 0, clause( 99, [ =( 'double_divide'( identity, inverse( inverse( identity
% 0.72/1.12     ) ) ), 'double_divide'( inverse( identity ), 'double_divide'( identity, 
% 0.72/1.12    inverse( inverse( identity ) ) ) ) ) ] )
% 0.72/1.12  , 0, 6, substitution( 0, [] ), substitution( 1, [] )).
% 0.72/1.12  
% 0.72/1.12  
% 0.72/1.12  subsumption(
% 0.72/1.12  clause( 27, [ =( 'double_divide'( identity, inverse( inverse( identity ) )
% 0.72/1.12     ), identity ) ] )
% 0.72/1.12  , clause( 100, [ =( 'double_divide'( identity, inverse( inverse( identity )
% 0.72/1.12     ) ), identity ) ] )
% 0.72/1.12  , substitution( 0, [] ), permutation( 0, [ ==>( 0, 0 )] ) ).
% 0.72/1.12  
% 0.72/1.12  
% 0.72/1.12  eqswap(
% 0.72/1.12  clause( 103, [ =( Z, 'double_divide'( 'double_divide'( identity, X ), 
% 0.72/1.12    'double_divide'( identity, 'double_divide'( multiply( Y, X ), 
% 0.72/1.12    'double_divide'( Z, Y ) ) ) ) ) ] )
% 0.72/1.12  , clause( 9, [ =( 'double_divide'( 'double_divide'( identity, X ), 
% 0.72/1.12    'double_divide'( identity, 'double_divide'( multiply( Y, X ), 
% 0.72/1.12    'double_divide'( Z, Y ) ) ) ), Z ) ] )
% 0.72/1.12  , 0, substitution( 0, [ :=( X, X ), :=( Y, Y ), :=( Z, Z )] )).
% 0.72/1.12  
% 0.72/1.12  
% 0.72/1.12  eqswap(
% 0.72/1.12  clause( 106, [ ~( =( identity, inverse( identity ) ) ) ] )
% 0.72/1.12  , clause( 11, [ ~( =( inverse( identity ), identity ) ) ] )
% 0.72/1.12  , 0, substitution( 0, [] )).
% 0.72/1.12  
% 0.72/1.12  
% 0.72/1.12  paramod(
% 0.72/1.12  clause( 108, [ =( identity, 'double_divide'( 'double_divide'( identity, X )
% 0.72/1.12    , 'double_divide'( identity, 'double_divide'( multiply( inverse( inverse( 
% 0.72/1.12    identity ) ), X ), identity ) ) ) ) ] )
% 0.72/1.12  , clause( 27, [ =( 'double_divide'( identity, inverse( inverse( identity )
% 0.72/1.12     ) ), identity ) ] )
% 0.72/1.12  , 0, clause( 103, [ =( Z, 'double_divide'( 'double_divide'( identity, X ), 
% 0.72/1.12    'double_divide'( identity, 'double_divide'( multiply( Y, X ), 
% 0.72/1.12    'double_divide'( Z, Y ) ) ) ) ) ] )
% 0.72/1.12  , 0, 14, substitution( 0, [] ), substitution( 1, [ :=( X, X ), :=( Y, 
% 0.72/1.12    inverse( inverse( identity ) ) ), :=( Z, identity )] )).
% 0.72/1.12  
% 0.72/1.12  
% 0.72/1.12  paramod(
% 0.72/1.12  clause( 109, [ =( identity, 'double_divide'( 'double_divide'( identity, X )
% 0.72/1.12    , 'double_divide'( identity, inverse( multiply( inverse( inverse( 
% 0.72/1.12    identity ) ), X ) ) ) ) ) ] )
% 0.72/1.12  , clause( 2, [ =( 'double_divide'( X, identity ), inverse( X ) ) ] )
% 0.72/1.12  , 0, clause( 108, [ =( identity, 'double_divide'( 'double_divide'( identity
% 0.72/1.12    , X ), 'double_divide'( identity, 'double_divide'( multiply( inverse( 
% 0.72/1.12    inverse( identity ) ), X ), identity ) ) ) ) ] )
% 0.72/1.12  , 0, 8, substitution( 0, [ :=( X, multiply( inverse( inverse( identity ) )
% 0.72/1.12    , X ) )] ), substitution( 1, [ :=( X, X )] )).
% 0.72/1.12  
% 0.72/1.12  
% 0.72/1.12  paramod(
% 0.72/1.12  clause( 110, [ =( identity, inverse( identity ) ) ] )
% 0.72/1.12  , clause( 15, [ =( 'double_divide'( 'double_divide'( identity, Y ), 
% 0.72/1.12    'double_divide'( identity, inverse( multiply( inverse( X ), Y ) ) ) ), X
% 0.72/1.12     ) ] )
% 0.72/1.12  , 0, clause( 109, [ =( identity, 'double_divide'( 'double_divide'( identity
% 0.72/1.12    , X ), 'double_divide'( identity, inverse( multiply( inverse( inverse( 
% 0.72/1.12    identity ) ), X ) ) ) ) ) ] )
% 0.72/1.12  , 0, 2, substitution( 0, [ :=( X, inverse( identity ) ), :=( Y, X )] ), 
% 0.72/1.12    substitution( 1, [ :=( X, X )] )).
% 0.72/1.12  
% 0.72/1.12  
% 0.72/1.12  resolution(
% 0.72/1.12  clause( 111, [] )
% 0.72/1.12  , clause( 106, [ ~( =( identity, inverse( identity ) ) ) ] )
% 0.72/1.12  , 0, clause( 110, [ =( identity, inverse( identity ) ) ] )
% 0.72/1.12  , 0, substitution( 0, [] ), substitution( 1, [] )).
% 0.72/1.12  
% 0.72/1.12  
% 0.72/1.12  subsumption(
% 0.72/1.12  clause( 35, [] )
% 0.72/1.12  , clause( 111, [] )
% 0.72/1.12  , substitution( 0, [] ), permutation( 0, [] ) ).
% 0.72/1.12  
% 0.72/1.12  
% 0.72/1.12  end.
% 0.72/1.12  
% 0.72/1.12  % ABCDEFGHIJKLMNOPQRSTUVWXYZ
% 0.72/1.12  
% 0.72/1.12  Memory use:
% 0.72/1.12  
% 0.72/1.12  space for terms:        499
% 0.72/1.12  space for clauses:      4147
% 0.72/1.12  
% 0.72/1.12  
% 0.72/1.12  clauses generated:      105
% 0.72/1.12  clauses kept:           36
% 0.72/1.12  clauses selected:       15
% 0.72/1.12  clauses deleted:        2
% 0.72/1.12  clauses inuse deleted:  0
% 0.72/1.12  
% 0.72/1.12  subsentry:          200
% 0.72/1.12  literals s-matched: 81
% 0.72/1.12  literals matched:   81
% 0.72/1.12  full subsumption:   0
% 0.72/1.12  
% 0.72/1.12  checksum:           -656648979
% 0.72/1.12  
% 0.72/1.12  
% 0.72/1.12  Bliksem ended
%------------------------------------------------------------------------------