TSTP Solution File: GRP489-1 by Otter---3.3

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Otter---3.3
% Problem  : GRP489-1 : TPTP v8.1.0. Released v2.6.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : otter-tptp-script %s

% Computer : n011.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Wed Jul 27 12:57:06 EDT 2022

% Result   : Unsatisfiable 1.92s 2.16s
% Output   : Refutation 1.92s
% Verified : 
% SZS Type : Refutation
%            Derivation depth      :   19
%            Number of leaves      :    5
% Syntax   : Number of clauses     :   62 (  62 unt;   0 nHn;   9 RR)
%            Number of literals    :   62 (  61 equ;   5 neg)
%            Maximal clause size   :    1 (   1 avg)
%            Maximal term depth    :   10 (   2 avg)
%            Number of predicates  :    2 (   0 usr;   1 prp; 0-2 aty)
%            Number of functors    :    7 (   7 usr;   4 con; 0-2 aty)
%            Number of variables   :  112 (   0 sgn)

% Comments : 
%------------------------------------------------------------------------------
cnf(1,axiom,
    multiply(multiply(a3,b3),c3) != multiply(a3,multiply(b3,c3)),
    file('GRP489-1.p',unknown),
    [] ).

cnf(3,axiom,
    double_divide(A,double_divide(double_divide(double_divide(identity,double_divide(double_divide(A,identity),double_divide(B,C))),B),identity)) = C,
    file('GRP489-1.p',unknown),
    [] ).

cnf(6,axiom,
    multiply(A,B) = double_divide(double_divide(B,A),identity),
    file('GRP489-1.p',unknown),
    [] ).

cnf(8,axiom,
    inverse(A) = double_divide(A,identity),
    file('GRP489-1.p',unknown),
    [] ).

cnf(9,axiom,
    identity = double_divide(A,inverse(A)),
    file('GRP489-1.p',unknown),
    [] ).

cnf(11,plain,
    double_divide(A,double_divide(A,identity)) = identity,
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(copy,[status(thm)],[9]),8])]),
    [iquote('copy,9,demod,8,flip.1')] ).

cnf(12,plain,
    double_divide(double_divide(double_divide(double_divide(c3,b3),identity),a3),identity) != double_divide(double_divide(c3,double_divide(double_divide(b3,a3),identity)),identity),
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[1]),6,6,6,6])]),
    [iquote('back_demod,1,demod,6,6,6,6,flip.1')] ).

cnf(14,plain,
    double_divide(A,double_divide(double_divide(double_divide(identity,double_divide(double_divide(A,identity),identity)),B),identity)) = double_divide(B,identity),
    inference(para_into,[status(thm),theory(equality)],[3,11]),
    [iquote('para_into,3.1.1.2.1.1.2.2,10.1.1')] ).

cnf(16,plain,
    double_divide(A,double_divide(double_divide(double_divide(identity,identity),double_divide(A,identity)),identity)) = identity,
    inference(para_into,[status(thm),theory(equality)],[3,11]),
    [iquote('para_into,3.1.1.2.1.1.2,10.1.1')] ).

cnf(21,plain,
    double_divide(double_divide(identity,identity),double_divide(identity,identity)) = identity,
    inference(para_into,[status(thm),theory(equality)],[16,11]),
    [iquote('para_into,16.1.1.2.1,10.1.1')] ).

cnf(27,plain,
    double_divide(double_divide(double_divide(identity,identity),double_divide(A,identity)),identity) = double_divide(A,identity),
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[16,3]),14])]),
    [iquote('para_from,16.1.1,3.1.1.2.1.1.2.2,demod,14,flip.1')] ).

cnf(32,plain,
    double_divide(double_divide(identity,identity),identity) = double_divide(identity,identity),
    inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[21,3]),14]),
    [iquote('para_from,21.1.1,3.1.1.2.1.1.2.2,demod,14')] ).

cnf(37,plain,
    double_divide(double_divide(identity,identity),double_divide(double_divide(double_divide(identity,double_divide(double_divide(identity,identity),double_divide(A,B))),A),identity)) = B,
    inference(para_from,[status(thm),theory(equality)],[32,3]),
    [iquote('para_from,31.1.1,3.1.1.2.1.1.2.1')] ).

cnf(40,plain,
    double_divide(double_divide(double_divide(identity,double_divide(double_divide(identity,identity),double_divide(A,B))),A),identity) = double_divide(B,identity),
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[27,3]),32])]),
    [iquote('para_into,27.1.1.1,3.1.1,demod,32,flip.1')] ).

cnf(42,plain,
    double_divide(double_divide(identity,identity),double_divide(A,identity)) = A,
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[37]),40]),
    [iquote('back_demod,37,demod,40')] ).

cnf(43,plain,
    double_divide(identity,A) = double_divide(A,identity),
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[14,32]),32,11,42]),
    [iquote('para_into,13.1.1.2.1.1.2.1,31.1.1,demod,32,11,42')] ).

cnf(50,plain,
    double_divide(double_divide(double_divide(double_divide(identity,double_divide(double_divide(double_divide(identity,double_divide(double_divide(A,identity),identity)),identity),identity)),B),identity),identity) = double_divide(A,double_divide(double_divide(B,identity),identity)),
    inference(flip,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[14,14])]),
    [iquote('para_into,13.1.1.2.1,13.1.1,flip.1')] ).

cnf(53,plain,
    double_divide(double_divide(double_divide(identity,double_divide(double_divide(A,identity),identity)),identity),identity) = double_divide(A,double_divide(identity,identity)),
    inference(flip,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[14,11])]),
    [iquote('para_into,13.1.1.2.1,10.1.1,flip.1')] ).

cnf(54,plain,
    double_divide(double_divide(double_divide(double_divide(identity,double_divide(double_divide(double_divide(identity,double_divide(double_divide(A,identity),identity)),identity),double_divide(B,C))),B),identity),identity) = double_divide(A,double_divide(C,identity)),
    inference(flip,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[14,3])]),
    [iquote('para_into,13.1.1.2.1,3.1.1,flip.1')] ).

cnf(56,plain,
    double_divide(A,identity) = double_divide(identity,A),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[43])]),
    [iquote('copy,43,flip.1')] ).

cnf(57,plain,
    double_divide(double_divide(double_divide(double_divide(identity,double_divide(A,double_divide(identity,identity))),B),identity),identity) = double_divide(A,double_divide(double_divide(B,identity),identity)),
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[50]),53]),
    [iquote('back_demod,50,demod,53')] ).

cnf(61,plain,
    double_divide(A,double_divide(double_divide(double_divide(identity,double_divide(double_divide(A,identity),double_divide(B,identity))),C),identity)) = double_divide(double_divide(double_divide(identity,double_divide(double_divide(C,identity),identity)),B),identity),
    inference(para_from,[status(thm),theory(equality)],[14,3]),
    [iquote('para_from,13.1.1,3.1.1.2.1.1.2.2')] ).

cnf(62,plain,
    double_divide(double_divide(double_divide(identity,double_divide(double_divide(A,identity),identity)),B),identity) = double_divide(C,double_divide(double_divide(double_divide(identity,double_divide(double_divide(C,identity),double_divide(B,identity))),A),identity)),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[61])]),
    [iquote('copy,61,flip.1')] ).

cnf(66,plain,
    double_divide(identity,identity) = identity,
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[43,11]),32])]),
    [iquote('para_into,43.1.1,10.1.1,demod,32,flip.1')] ).

cnf(67,plain,
    double_divide(double_divide(double_divide(double_divide(identity,double_divide(identity,double_divide(A,B))),A),identity),identity) = B,
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[43,3]),66])]),
    [iquote('para_into,43.1.1,3.1.1,demod,66,flip.1')] ).

cnf(71,plain,
    double_divide(double_divide(double_divide(double_divide(identity,double_divide(A,identity)),B),identity),identity) = double_divide(A,double_divide(double_divide(B,identity),identity)),
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[57]),66]),
    [iquote('back_demod,57,demod,66')] ).

cnf(76,plain,
    double_divide(identity,double_divide(A,identity)) = A,
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[42]),66]),
    [iquote('back_demod,41,demod,66')] ).

cnf(78,plain,
    double_divide(double_divide(double_divide(identity,double_divide(identity,double_divide(A,B))),A),identity) = double_divide(B,identity),
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[40]),66]),
    [iquote('back_demod,39,demod,66')] ).

cnf(84,plain,
    double_divide(double_divide(double_divide(A,B),identity),identity) = double_divide(A,double_divide(double_divide(B,identity),identity)),
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[71]),76]),
    [iquote('back_demod,71,demod,76')] ).

cnf(85,plain,
    double_divide(double_divide(double_divide(A,identity),B),identity) = double_divide(C,double_divide(double_divide(double_divide(identity,double_divide(double_divide(C,identity),double_divide(B,identity))),A),identity)),
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[62]),76]),
    [iquote('back_demod,62,demod,76')] ).

cnf(86,plain,
    double_divide(A,double_divide(double_divide(double_divide(identity,double_divide(double_divide(A,identity),double_divide(B,identity))),C),identity)) = double_divide(double_divide(double_divide(C,identity),B),identity),
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[61]),76]),
    [iquote('back_demod,61,demod,76')] ).

cnf(87,plain,
    double_divide(double_divide(identity,double_divide(double_divide(double_divide(A,identity),identity),double_divide(B,C))),double_divide(double_divide(B,identity),identity)) = double_divide(A,double_divide(C,identity)),
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[54]),76,84]),
    [iquote('back_demod,54,demod,76,84')] ).

cnf(89,plain,
    double_divide(A,double_divide(double_divide(double_divide(A,identity),B),identity)) = double_divide(B,identity),
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[14]),76]),
    [iquote('back_demod,13,demod,76')] ).

cnf(92,plain,
    double_divide(double_divide(A,identity),identity) = A,
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[67]),78]),
    [iquote('back_demod,67,demod,78')] ).

cnf(93,plain,
    double_divide(double_divide(identity,double_divide(A,double_divide(B,C))),B) = double_divide(A,double_divide(C,identity)),
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[87]),92,92]),
    [iquote('back_demod,87,demod,92,92')] ).

cnf(101,plain,
    double_divide(A,double_divide(identity,A)) = identity,
    inference(para_from,[status(thm),theory(equality)],[56,11]),
    [iquote('para_from,56.1.1,10.1.1.2')] ).

cnf(104,plain,
    double_divide(identity,double_divide(identity,A)) = A,
    inference(para_into,[status(thm),theory(equality)],[76,56]),
    [iquote('para_into,75.1.1.2,56.1.1')] ).

cnf(112,plain,
    double_divide(double_divide(identity,A),identity) = A,
    inference(para_into,[status(thm),theory(equality)],[92,56]),
    [iquote('para_into,91.1.1.1,56.1.1')] ).

cnf(113,plain,
    double_divide(double_divide(identity,A),A) = identity,
    inference(para_from,[status(thm),theory(equality)],[104,101]),
    [iquote('para_from,103.1.1,101.1.1.2')] ).

cnf(115,plain,
    double_divide(double_divide(A,B),identity) = double_divide(C,double_divide(double_divide(double_divide(identity,double_divide(double_divide(C,identity),double_divide(B,identity))),double_divide(A,identity)),identity)),
    inference(para_into,[status(thm),theory(equality)],[85,92]),
    [iquote('para_into,85.1.1.1.1,91.1.1')] ).

cnf(132,plain,
    double_divide(A,double_divide(double_divide(double_divide(identity,double_divide(double_divide(A,identity),double_divide(a3,identity))),double_divide(c3,b3)),identity)) != double_divide(double_divide(c3,double_divide(double_divide(b3,a3),identity)),identity),
    inference(para_from,[status(thm),theory(equality)],[85,12]),
    [iquote('para_from,85.1.1,12.1.1')] ).

cnf(137,plain,
    double_divide(identity,double_divide(A,double_divide(double_divide(double_divide(identity,double_divide(double_divide(A,identity),double_divide(B,identity))),C),identity))) = double_divide(double_divide(C,identity),B),
    inference(para_from,[status(thm),theory(equality)],[85,76]),
    [iquote('para_from,85.1.1,75.1.1.2')] ).

cnf(156,plain,
    double_divide(double_divide(double_divide(A,identity),B),identity) = double_divide(double_divide(identity,B),A),
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[86,113]),66,76,76])]),
    [iquote('para_into,86.1.1.2.1.1.2.1,113.1.1,demod,66,76,76,flip.1')] ).

cnf(166,plain,
    double_divide(A,double_divide(double_divide(double_divide(identity,double_divide(double_divide(A,identity),B)),C),identity)) = double_divide(B,C),
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[86,112]),156,104]),
    [iquote('para_into,86.1.1.2.1.1.2.2,111.1.1,demod,156,104')] ).

cnf(167,plain,
    double_divide(double_divide(double_divide(A,identity),B),C) = double_divide(double_divide(identity,double_divide(double_divide(B,identity),A)),C),
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[86,85]),166,166,156]),
    [iquote('para_into,86.1.1.2.1.1.2.2,85.1.1,demod,166,166,156')] ).

cnf(169,plain,
    double_divide(A,double_divide(double_divide(B,C),identity)) = double_divide(double_divide(identity,double_divide(A,B)),C),
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[86,89]),76,92,156]),
    [iquote('para_into,86.1.1.2.1.1.2,89.1.1,demod,76,92,156')] ).

cnf(176,plain,
    double_divide(A,double_divide(B,A)) = B,
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[86,112]),156,76,66,112]),
    [iquote('para_into,86.1.1.2.1,111.1.1,demod,156,76,66,112')] ).

cnf(196,plain,
    double_divide(identity,double_divide(double_divide(A,identity),B)) = double_divide(double_divide(B,identity),A),
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[137]),166]),
    [iquote('back_demod,137,demod,166')] ).

cnf(199,plain,
    double_divide(double_divide(c3,double_divide(double_divide(b3,a3),identity)),identity) != double_divide(double_divide(a3,identity),double_divide(c3,b3)),
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[132]),166])]),
    [iquote('back_demod,132,demod,166,flip.1')] ).

cnf(207,plain,
    double_divide(double_divide(A,B),identity) = double_divide(double_divide(B,identity),double_divide(A,identity)),
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[115]),166]),
    [iquote('back_demod,115,demod,166')] ).

cnf(212,plain,
    double_divide(double_divide(A,B),A) = B,
    inference(para_into,[status(thm),theory(equality)],[176,176]),
    [iquote('para_into,175.1.1.2,175.1.1')] ).

cnf(226,plain,
    double_divide(A,double_divide(identity,B)) = double_divide(A,double_divide(B,identity)),
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[93,113]),176]),
    [iquote('para_into,93.1.1.1.2.2,113.1.1,demod,176')] ).

cnf(246,plain,
    double_divide(double_divide(A,double_divide(B,identity)),identity) = double_divide(identity,double_divide(A,double_divide(identity,B))),
    inference(para_from,[status(thm),theory(equality)],[93,92]),
    [iquote('para_from,93.1.1,91.1.1.1')] ).

cnf(251,plain,
    double_divide(double_divide(a3,identity),double_divide(c3,b3)) != double_divide(identity,double_divide(c3,double_divide(identity,double_divide(b3,a3)))),
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[199]),246])]),
    [iquote('back_demod,199,demod,246,flip.1')] ).

cnf(438,plain,
    double_divide(double_divide(double_divide(A,identity),double_divide(B,identity)),C) = double_divide(double_divide(identity,double_divide(B,A)),C),
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[167,226]),212]),
    [iquote('para_into,167.1.1.1,226.1.1,demod,212')] ).

cnf(449,plain,
    double_divide(double_divide(identity,double_divide(A,B)),C) = double_divide(double_divide(double_divide(B,identity),double_divide(A,identity)),C),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[438])]),
    [iquote('copy,438,flip.1')] ).

cnf(527,plain,
    double_divide(identity,double_divide(double_divide(double_divide(A,identity),double_divide(B,identity)),C)) = double_divide(double_divide(C,identity),double_divide(B,A)),
    inference(para_from,[status(thm),theory(equality)],[207,196]),
    [iquote('para_from,207.1.1,196.1.1.2.1')] ).

cnf(534,plain,
    double_divide(double_divide(A,identity),double_divide(B,C)) = double_divide(identity,double_divide(double_divide(double_divide(C,identity),double_divide(B,identity)),A)),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[527])]),
    [iquote('copy,527,flip.1')] ).

cnf(569,plain,
    double_divide(double_divide(identity,double_divide(A,B)),C) = double_divide(A,double_divide(identity,double_divide(B,C))),
    inference(flip,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[169,56])]),
    [iquote('para_into,169.1.1.2,56.1.1,flip.1')] ).

cnf(587,plain,
    double_divide(double_divide(double_divide(A,identity),double_divide(B,identity)),C) = double_divide(B,double_divide(identity,double_divide(A,C))),
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[449]),569])]),
    [iquote('back_demod,449,demod,569,flip.1')] ).

cnf(623,plain,
    double_divide(double_divide(A,identity),double_divide(B,C)) = double_divide(identity,double_divide(B,double_divide(identity,double_divide(C,A)))),
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[534]),587]),
    [iquote('back_demod,534,demod,587')] ).

cnf(624,plain,
    $false,
    inference(binary,[status(thm)],[623,251]),
    [iquote('binary,623.1,251.1')] ).

%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.06/0.12  % Problem  : GRP489-1 : TPTP v8.1.0. Released v2.6.0.
% 0.06/0.12  % Command  : otter-tptp-script %s
% 0.12/0.33  % Computer : n011.cluster.edu
% 0.12/0.33  % Model    : x86_64 x86_64
% 0.12/0.33  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.12/0.33  % Memory   : 8042.1875MB
% 0.12/0.33  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.12/0.33  % CPULimit : 300
% 0.12/0.33  % WCLimit  : 300
% 0.12/0.33  % DateTime : Wed Jul 27 05:27:25 EDT 2022
% 0.12/0.33  % CPUTime  : 
% 1.92/2.15  ----- Otter 3.3f, August 2004 -----
% 1.92/2.15  The process was started by sandbox2 on n011.cluster.edu,
% 1.92/2.15  Wed Jul 27 05:27:25 2022
% 1.92/2.15  The command was "./otter".  The process ID is 2093.
% 1.92/2.15  
% 1.92/2.15  set(prolog_style_variables).
% 1.92/2.15  set(auto).
% 1.92/2.15     dependent: set(auto1).
% 1.92/2.15     dependent: set(process_input).
% 1.92/2.15     dependent: clear(print_kept).
% 1.92/2.15     dependent: clear(print_new_demod).
% 1.92/2.15     dependent: clear(print_back_demod).
% 1.92/2.15     dependent: clear(print_back_sub).
% 1.92/2.15     dependent: set(control_memory).
% 1.92/2.15     dependent: assign(max_mem, 12000).
% 1.92/2.15     dependent: assign(pick_given_ratio, 4).
% 1.92/2.15     dependent: assign(stats_level, 1).
% 1.92/2.15     dependent: assign(max_seconds, 10800).
% 1.92/2.15  clear(print_given).
% 1.92/2.15  
% 1.92/2.15  list(usable).
% 1.92/2.15  0 [] A=A.
% 1.92/2.15  0 [] double_divide(A,double_divide(double_divide(double_divide(identity,double_divide(double_divide(A,identity),double_divide(B,C))),B),identity))=C.
% 1.92/2.15  0 [] multiply(A,B)=double_divide(double_divide(B,A),identity).
% 1.92/2.15  0 [] inverse(A)=double_divide(A,identity).
% 1.92/2.15  0 [] identity=double_divide(A,inverse(A)).
% 1.92/2.15  0 [] multiply(multiply(a3,b3),c3)!=multiply(a3,multiply(b3,c3)).
% 1.92/2.15  end_of_list.
% 1.92/2.15  
% 1.92/2.15  SCAN INPUT: prop=0, horn=1, equality=1, symmetry=0, max_lits=1.
% 1.92/2.15  
% 1.92/2.15  All clauses are units, and equality is present; the
% 1.92/2.15  strategy will be Knuth-Bendix with positive clauses in sos.
% 1.92/2.15  
% 1.92/2.15     dependent: set(knuth_bendix).
% 1.92/2.15     dependent: set(anl_eq).
% 1.92/2.15     dependent: set(para_from).
% 1.92/2.15     dependent: set(para_into).
% 1.92/2.15     dependent: clear(para_from_right).
% 1.92/2.15     dependent: clear(para_into_right).
% 1.92/2.15     dependent: set(para_from_vars).
% 1.92/2.15     dependent: set(eq_units_both_ways).
% 1.92/2.15     dependent: set(dynamic_demod_all).
% 1.92/2.15     dependent: set(dynamic_demod).
% 1.92/2.15     dependent: set(order_eq).
% 1.92/2.15     dependent: set(back_demod).
% 1.92/2.15     dependent: set(lrpo).
% 1.92/2.15  
% 1.92/2.15  ------------> process usable:
% 1.92/2.15  ** KEPT (pick-wt=11): 1 [] multiply(multiply(a3,b3),c3)!=multiply(a3,multiply(b3,c3)).
% 1.92/2.15  
% 1.92/2.15  ------------> process sos:
% 1.92/2.15  ** KEPT (pick-wt=3): 2 [] A=A.
% 1.92/2.15  ** KEPT (pick-wt=17): 3 [] double_divide(A,double_divide(double_divide(double_divide(identity,double_divide(double_divide(A,identity),double_divide(B,C))),B),identity))=C.
% 1.92/2.15  ---> New Demodulator: 4 [new_demod,3] double_divide(A,double_divide(double_divide(double_divide(identity,double_divide(double_divide(A,identity),double_divide(B,C))),B),identity))=C.
% 1.92/2.15  ** KEPT (pick-wt=9): 5 [] multiply(A,B)=double_divide(double_divide(B,A),identity).
% 1.92/2.15  ---> New Demodulator: 6 [new_demod,5] multiply(A,B)=double_divide(double_divide(B,A),identity).
% 1.92/2.15  ** KEPT (pick-wt=6): 7 [] inverse(A)=double_divide(A,identity).
% 1.92/2.15  ---> New Demodulator: 8 [new_demod,7] inverse(A)=double_divide(A,identity).
% 1.92/2.15  ** KEPT (pick-wt=7): 10 [copy,9,demod,8,flip.1] double_divide(A,double_divide(A,identity))=identity.
% 1.92/2.15  ---> New Demodulator: 11 [new_demod,10] double_divide(A,double_divide(A,identity))=identity.
% 1.92/2.15    Following clause subsumed by 2 during input processing: 0 [copy,2,flip.1] A=A.
% 1.92/2.15  >>>> Starting back demodulation with 4.
% 1.92/2.15  >>>> Starting back demodulation with 6.
% 1.92/2.15      >> back demodulating 1 with 6.
% 1.92/2.15  >>>> Starting back demodulation with 8.
% 1.92/2.15  >>>> Starting back demodulation with 11.
% 1.92/2.15  
% 1.92/2.15  ======= end of input processing =======
% 1.92/2.15  
% 1.92/2.15  =========== start of search ===========
% 1.92/2.15  
% 1.92/2.15  -------- PROOF -------- 
% 1.92/2.16  
% 1.92/2.16  ----> UNIT CONFLICT at   0.03 sec ----> 624 [binary,623.1,251.1] $F.
% 1.92/2.16  
% 1.92/2.16  Length of proof is 56.  Level of proof is 18.
% 1.92/2.16  
% 1.92/2.16  ---------------- PROOF ----------------
% 1.92/2.16  % SZS status Unsatisfiable
% 1.92/2.16  % SZS output start Refutation
% See solution above
% 1.92/2.16  ------------ end of proof -------------
% 1.92/2.16  
% 1.92/2.16  
% 1.92/2.16  Search stopped by max_proofs option.
% 1.92/2.16  
% 1.92/2.16  
% 1.92/2.16  Search stopped by max_proofs option.
% 1.92/2.16  
% 1.92/2.16  ============ end of search ============
% 1.92/2.16  
% 1.92/2.16  -------------- statistics -------------
% 1.92/2.16  clauses given                 51
% 1.92/2.16  clauses generated           1633
% 1.92/2.16  clauses kept                 446
% 1.92/2.16  clauses forward subsumed    1614
% 1.92/2.16  clauses back subsumed          1
% 1.92/2.16  Kbytes malloced             1953
% 1.92/2.16  
% 1.92/2.16  ----------- times (seconds) -----------
% 1.92/2.16  user CPU time          0.03          (0 hr, 0 min, 0 sec)
% 1.92/2.16  system CPU time        0.00          (0 hr, 0 min, 0 sec)
% 1.92/2.16  wall-clock time        2             (0 hr, 0 min, 2 sec)
% 1.92/2.16  
% 1.92/2.16  That finishes the proof of the theorem.
% 1.92/2.16  
% 1.92/2.16  Process 2093 finished Wed Jul 27 05:27:27 2022
% 1.92/2.16  Otter interrupted
% 1.92/2.16  PROOF FOUND
%------------------------------------------------------------------------------