TSTP Solution File: GRP483-1 by MaedMax---1.4

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : MaedMax---1.4
% Problem  : GRP483-1 : TPTP v8.1.0. Released v2.6.0.
% Transfm  : none
% Format   : tptp
% Command  : run_maedmax %d %s

% Computer : n021.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Tue Jul 26 07:02:49 EDT 2022

% Result   : Unsatisfiable 0.49s 0.74s
% Output   : CNFRefutation 0.49s
% Verified : 
% SZS Type : Refutation
%            Derivation depth      :   15
%            Number of leaves      :    5
% Syntax   : Number of clauses     :   45 (  45 unt;   0 nHn;  14 RR)
%            Number of literals    :   45 (  44 equ;   6 neg)
%            Maximal clause size   :    1 (   1 avg)
%            Maximal term depth    :    8 (   2 avg)
%            Number of predicates  :    2 (   0 usr;   1 prp; 0-2 aty)
%            Number of functors    :   10 (  10 usr;   7 con; 0-2 aty)
%            Number of variables   :   59 (   0 sgn)

% Comments : 
%------------------------------------------------------------------------------
cnf(eq_0,axiom,
    A = double_divide(double_divide(double_divide(B,double_divide(C,identity)),double_divide(double_divide(A,double_divide(D,double_divide(D,identity))),double_divide(B,identity))),C),
    file('/tmp/MaedMax_20636') ).

cnf(eq_1,axiom,
    double_divide(double_divide(A,B),identity) = multiply(B,A),
    file('/tmp/MaedMax_20636') ).

cnf(eq_2,axiom,
    double_divide(A,identity) = inverse(A),
    file('/tmp/MaedMax_20636') ).

cnf(eq_3,axiom,
    identity = double_divide(A,inverse(A)),
    file('/tmp/MaedMax_20636') ).

cnf(eq_4,negated_conjecture,
    multiply(multiply(a3,b3),c3) != multiply(a3,multiply(b3,c3)),
    file('/tmp/MaedMax_20636') ).

cnf(eq_5,plain,
    A = double_divide(double_divide(double_divide(B,inverse(C)),double_divide(inverse(A),inverse(B))),C),
    inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[eq_0,eq_2]),eq_2]),eq_2]),eq_3]),eq_2]) ).

cnf(eq_6,negated_conjecture,
    double_divide(double_divide(double_divide(double_divide(c3,b3),identity),a3),identity) != double_divide(double_divide(c3,double_divide(double_divide(b3,a3),identity)),identity),
    inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[eq_4,eq_1]),eq_1]),eq_1]),eq_1]) ).

cnf(eq_7,plain,
    double_divide(double_divide(double_divide(x100,double_divide(x101,identity)),A),x101) = double_divide(double_divide(A,double_divide(D,double_divide(D,identity))),double_divide(double_divide(x100,identity),identity)),
    inference(cp,[status(thm)],[eq_0,eq_0]) ).

cnf(eq_8,plain,
    double_divide(double_divide(A,double_divide(B,double_divide(B,identity))),double_divide(double_divide(C,identity),identity)) = double_divide(double_divide(double_divide(C,double_divide(D,identity)),A),D),
    eq_7 ).

cnf(eq_9,plain,
    double_divide(double_divide(double_divide(A,inverse(B)),C),B) = double_divide(inverse(C),inverse(inverse(A))),
    inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[eq_8,eq_2]),eq_2]),eq_3]),eq_2]),eq_2]),eq_2]) ).

cnf(eq_10,plain,
    A = inverse(double_divide(double_divide(B,inverse(identity)),double_divide(inverse(A),inverse(B)))),
    inference(cp,[status(thm)],[eq_5,eq_2]) ).

cnf(eq_11,plain,
    double_divide(double_divide(identity,double_divide(inverse(x102),inverse(A))),A) = x102,
    inference(cp,[status(thm)],[eq_3,eq_5]) ).

cnf(eq_12,plain,
    double_divide(double_divide(double_divide(inverse(x102),inverse(x101)),identity),x101) = x102,
    inference(cp,[status(thm)],[eq_3,eq_5]) ).

cnf(eq_13,plain,
    A = double_divide(inverse(double_divide(inverse(A),inverse(B))),B),
    inference(rw,[status(thm)],[eq_12,eq_2]) ).

cnf(eq_14,plain,
    A = double_divide(double_divide(identity,double_divide(inverse(A),inverse(B))),B),
    eq_11 ).

cnf(eq_15,plain,
    double_divide(double_divide(identity,identity),inverse(x100)) = x100,
    inference(cp,[status(thm)],[eq_3,eq_14]) ).

cnf(eq_16,plain,
    double_divide(inverse(double_divide(x100,inverse(x101))),x101) = double_divide(inverse(identity),inverse(inverse(x100))),
    inference(cp,[status(thm)],[eq_2,eq_9]) ).

cnf(eq_17,plain,
    double_divide(double_divide(A,x102),x101) = double_divide(inverse(x102),inverse(inverse(inverse(double_divide(inverse(A),inverse(inverse(x101))))))),
    inference(cp,[status(thm)],[eq_13,eq_9]) ).

cnf(eq_18,plain,
    double_divide(inverse(A),x101) = double_divide(inverse(A),inverse(inverse(x101))),
    inference(cp,[status(thm)],[eq_13,eq_13]) ).

cnf(eq_19,plain,
    inverse(double_divide(double_divide(x100,inverse(identity)),A)) = double_divide(inverse(A),inverse(inverse(x100))),
    inference(cp,[status(thm)],[eq_13,eq_10]) ).

cnf(eq_20,plain,
    double_divide(inverse(A),inverse(inverse(B))) = inverse(double_divide(double_divide(B,inverse(identity)),A)),
    eq_19 ).

cnf(eq_21,plain,
    A = double_divide(inverse(identity),inverse(A)),
    inference(rw,[status(thm)],[eq_15,eq_2]) ).

cnf(eq_22,plain,
    double_divide(inverse(A),B) = double_divide(inverse(A),inverse(inverse(B))),
    eq_18 ).

cnf(eq_23,plain,
    double_divide(inverse(identity),inverse(inverse(A))) = double_divide(inverse(double_divide(A,inverse(B))),B),
    eq_16 ).

cnf(eq_24,plain,
    double_divide(inverse(double_divide(A,inverse(B))),B) = inverse(A),
    inference(rw,[status(thm)],[eq_23,eq_21]) ).

cnf(eq_25,plain,
    A = inverse(inverse(A)),
    inference(rw,[status(thm)],[eq_13,eq_24]) ).

cnf(eq_26,plain,
    inverse(identity) = identity,
    inference(cp,[status(thm)],[eq_21,eq_3]) ).

cnf(eq_27,plain,
    double_divide(inverse(identity),A) = double_divide(inverse(identity),inverse(inverse(A))),
    inference(cp,[status(thm)],[eq_3,eq_23]) ).

cnf(eq_28,plain,
    double_divide(inverse(identity),A) = inverse(A),
    inference(rw,[status(thm)],[eq_27,eq_21]) ).

cnf(eq_29,plain,
    double_divide(double_divide(double_divide(x100,A),x102),inverse(A)) = double_divide(inverse(x102),inverse(inverse(x100))),
    inference(cp,[status(thm)],[eq_25,eq_9]) ).

cnf(eq_30,plain,
    inverse(double_divide(double_divide(x100,identity),x101)) = double_divide(inverse(x101),inverse(inverse(x100))),
    inference(cp,[status(thm)],[eq_26,eq_20]) ).

cnf(eq_31,plain,
    double_divide(identity,x100) = inverse(x100),
    inference(cp,[status(thm)],[eq_26,eq_28]) ).

cnf(eq_32,plain,
    double_divide(double_divide(A,B),C) = double_divide(inverse(B),inverse(double_divide(inverse(A),C))),
    inference(rw,[status(thm)],[inference(rw,[status(thm)],[eq_17,eq_22]),eq_22]) ).

cnf(eq_33,plain,
    double_divide(inverse(A),B) = inverse(double_divide(inverse(B),A)),
    inference(rw,[status(thm)],[inference(rw,[status(thm)],[eq_30,eq_2]),eq_22]) ).

cnf(eq_34,plain,
    double_divide(identity,A) = inverse(A),
    eq_31 ).

cnf(eq_35,plain,
    double_divide(double_divide(double_divide(A,B),C),inverse(B)) = double_divide(inverse(C),A),
    inference(rw,[status(thm)],[eq_29,eq_22]) ).

cnf(eq_36,plain,
    double_divide(double_divide(inverse(inverse(x101)),x102),x101) = double_divide(inverse(x102),inverse(inverse(identity))),
    inference(cp,[status(thm)],[eq_34,eq_9]) ).

cnf(eq_37,plain,
    A = double_divide(double_divide(B,A),B),
    inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[eq_36,eq_25]),eq_26]),eq_26]),eq_2]),eq_25]) ).

cnf(eq_38,plain,
    double_divide(double_divide(A,x102),inverse(B)) = double_divide(inverse(x102),double_divide(B,A)),
    inference(cp,[status(thm)],[eq_37,eq_35]) ).

cnf(eq_39,plain,
    double_divide(double_divide(A,B),inverse(C)) = double_divide(inverse(B),double_divide(C,A)),
    eq_38 ).

cnf(eq_40,negated_conjecture,
    double_divide(inverse(double_divide(double_divide(b3,a3),identity)),inverse(double_divide(inverse(c3),identity))) != double_divide(double_divide(double_divide(double_divide(c3,b3),identity),a3),identity),
    inference(cp,[status(thm)],[eq_32,eq_6]) ).

cnf(eq_41,negated_conjecture,
    double_divide(double_divide(b3,a3),inverse(c3)) != inverse(double_divide(inverse(double_divide(c3,b3)),a3)),
    inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[eq_40,eq_2]),eq_2]),eq_25]),eq_25]),eq_2]),eq_2]) ).

cnf(eq_42,negated_conjecture,
    double_divide(double_divide(b3,a3),inverse(c3)) != double_divide(inverse(a3),double_divide(c3,b3)),
    inference(rw,[status(thm)],[eq_41,eq_33]) ).

cnf(eq_43,negated_conjecture,
    double_divide(double_divide(b3,a3),inverse(c3)) != double_divide(double_divide(b3,a3),inverse(c3)),
    inference(cp,[status(thm)],[eq_39,eq_42]) ).

cnf(bot,negated_conjecture,
    $false,
    inference(cn,[status(thm)],[eq_43]) ).

%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.07/0.13  % Problem  : GRP483-1 : TPTP v8.1.0. Released v2.6.0.
% 0.07/0.13  % Command  : run_maedmax %d %s
% 0.14/0.34  % Computer : n021.cluster.edu
% 0.14/0.34  % Model    : x86_64 x86_64
% 0.14/0.34  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.14/0.34  % Memory   : 8042.1875MB
% 0.14/0.34  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.14/0.34  % CPULimit : 300
% 0.14/0.34  % WCLimit  : 300
% 0.14/0.34  % DateTime : Tue Jul 26 04:19:37 EDT 2022
% 0.14/0.34  % CPUTime  : 
% 0.49/0.74  % SZS status Unsatisfiable
% 0.49/0.74  % SZS output start CNFRefutation for /tmp/MaedMax_20636
% See solution above
% 0.49/0.74  
%------------------------------------------------------------------------------