TSTP Solution File: GRP473-1 by CSE_E---1.5

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : CSE_E---1.5
% Problem  : GRP473-1 : TPTP v8.1.2. Released v2.6.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : java -jar /export/starexec/sandbox2/solver/bin/mcs_scs.jar %d %s

% Computer : n029.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Thu Aug 31 00:20:27 EDT 2023

% Result   : Unsatisfiable 0.51s 0.79s
% Output   : CNFRefutation 0.51s
% Verified : 
% SZS Type : Refutation
%            Derivation depth      :   35
%            Number of leaves      :    8
% Syntax   : Number of formulae    :   73 (  68 unt;   5 typ;   0 def)
%            Number of atoms       :   68 (  67 equ)
%            Maximal formula atoms :    1 (   1 avg)
%            Number of connectives :    6 (   6   ~;   0   |;   0   &)
%                                         (   0 <=>;   0  =>;   0  <=;   0 <~>)
%            Maximal formula depth :    2 (   1 avg)
%            Maximal term depth    :   10 (   2 avg)
%            Number of types       :    1 (   0 usr)
%            Number of type conns  :    5 (   3   >;   2   *;   0   +;   0  <<)
%            Number of predicates  :    2 (   0 usr;   1 prp; 0-2 aty)
%            Number of functors    :    5 (   5 usr;   2 con; 0-2 aty)
%            Number of variables   :  176 (   0 sgn;   0   !;   0   ?;   0   :)

% Comments : 
%------------------------------------------------------------------------------
tff(decl_22,type,
    divide: ( $i * $i ) > $i ).

tff(decl_23,type,
    inverse: $i > $i ).

tff(decl_24,type,
    multiply: ( $i * $i ) > $i ).

tff(decl_25,type,
    b2: $i ).

tff(decl_26,type,
    a2: $i ).

cnf(single_axiom,axiom,
    divide(divide(inverse(divide(X1,X2)),divide(divide(X3,X4),X1)),divide(X4,X3)) = X2,
    file('/export/starexec/sandbox2/benchmark/theBenchmark.p',single_axiom) ).

cnf(prove_these_axioms_2,negated_conjecture,
    multiply(multiply(inverse(b2),b2),a2) != a2,
    file('/export/starexec/sandbox2/benchmark/theBenchmark.p',prove_these_axioms_2) ).

cnf(multiply,axiom,
    multiply(X1,X2) = divide(X1,inverse(X2)),
    file('/export/starexec/sandbox2/benchmark/theBenchmark.p',multiply) ).

cnf(c_0_3,axiom,
    divide(divide(inverse(divide(X1,X2)),divide(divide(X3,X4),X1)),divide(X4,X3)) = X2,
    single_axiom ).

cnf(c_0_4,plain,
    divide(divide(inverse(X1),divide(divide(X2,X3),divide(inverse(divide(X4,X1)),divide(divide(X5,X6),X4)))),divide(X3,X2)) = divide(X6,X5),
    inference(spm,[status(thm)],[c_0_3,c_0_3]) ).

cnf(c_0_5,plain,
    divide(divide(X1,X2),divide(inverse(X3),divide(divide(X2,X1),divide(inverse(divide(X4,X3)),divide(divide(X5,X6),X4))))) = divide(X5,X6),
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_4,c_0_4]),c_0_4]) ).

cnf(c_0_6,plain,
    divide(divide(X1,X2),divide(inverse(X3),divide(divide(X2,X1),divide(inverse(divide(X4,X3)),divide(X5,X4))))) = X5,
    inference(spm,[status(thm)],[c_0_5,c_0_3]) ).

cnf(c_0_7,plain,
    divide(divide(divide(divide(divide(X1,X2),inverse(divide(X2,X3))),X4),inverse(divide(X4,X5))),divide(inverse(X3),X5)) = X1,
    inference(spm,[status(thm)],[c_0_6,c_0_3]) ).

cnf(c_0_8,plain,
    divide(divide(X1,inverse(divide(divide(inverse(X2),X3),X4))),divide(inverse(X3),X4)) = divide(divide(X1,X5),inverse(divide(X5,X2))),
    inference(spm,[status(thm)],[c_0_7,c_0_7]) ).

cnf(c_0_9,plain,
    divide(divide(divide(divide(divide(X1,X2),inverse(divide(X2,X3))),divide(inverse(X4),X3)),X5),inverse(divide(X5,X4))) = X1,
    inference(spm,[status(thm)],[c_0_7,c_0_8]) ).

cnf(c_0_10,plain,
    divide(divide(inverse(divide(divide(X1,X2),X3)),X4),divide(divide(divide(X2,X1),X5),inverse(divide(X5,X4)))) = X3,
    inference(spm,[status(thm)],[c_0_3,c_0_3]) ).

cnf(c_0_11,plain,
    divide(divide(X1,X2),inverse(divide(X2,X3))) = divide(divide(X1,X4),inverse(divide(X4,X3))),
    inference(spm,[status(thm)],[c_0_8,c_0_8]) ).

cnf(c_0_12,plain,
    divide(divide(divide(divide(divide(X1,divide(inverse(X2),X3)),X4),inverse(divide(X4,X2))),X5),inverse(divide(X5,X3))) = X1,
    inference(spm,[status(thm)],[c_0_9,c_0_8]) ).

cnf(c_0_13,plain,
    divide(divide(inverse(X1),divide(divide(X2,X3),divide(inverse(divide(divide(X4,X5),X1)),X6))),divide(X3,X2)) = divide(divide(divide(X5,X4),X7),inverse(divide(X7,X6))),
    inference(spm,[status(thm)],[c_0_3,c_0_10]) ).

cnf(c_0_14,plain,
    divide(divide(inverse(divide(inverse(divide(X1,X2)),X3)),divide(divide(X4,X5),inverse(divide(X5,X2)))),divide(X1,X4)) = X3,
    inference(spm,[status(thm)],[c_0_3,c_0_11]) ).

cnf(c_0_15,plain,
    divide(X1,inverse(divide(inverse(divide(divide(inverse(X2),X3),X4)),X2))) = divide(X1,divide(inverse(X3),X4)),
    inference(spm,[status(thm)],[c_0_9,c_0_12]) ).

cnf(c_0_16,plain,
    divide(divide(divide(X1,X2),X3),inverse(divide(X3,divide(divide(X4,X5),divide(X2,X1))))) = divide(X5,X4),
    inference(spm,[status(thm)],[c_0_4,c_0_13]) ).

cnf(c_0_17,plain,
    inverse(divide(inverse(divide(divide(inverse(X1),X2),X3)),X1)) = divide(inverse(X2),X3),
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_14,c_0_15]),c_0_14]) ).

cnf(c_0_18,plain,
    divide(inverse(divide(X1,divide(divide(X2,X3),divide(X4,X5)))),divide(divide(X5,X4),X1)) = divide(X2,X3),
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_4,c_0_16]),c_0_4]) ).

cnf(c_0_19,plain,
    inverse(divide(inverse(X1),divide(X2,X1))) = divide(inverse(divide(divide(X3,X4),X2)),divide(X4,X3)),
    inference(spm,[status(thm)],[c_0_17,c_0_3]) ).

cnf(c_0_20,plain,
    divide(inverse(divide(X1,divide(X2,divide(X3,X4)))),divide(divide(X4,X3),X1)) = X2,
    inference(spm,[status(thm)],[c_0_18,c_0_9]) ).

cnf(c_0_21,plain,
    inverse(divide(inverse(X1),divide(X2,X1))) = inverse(divide(inverse(X3),divide(X2,X3))),
    inference(spm,[status(thm)],[c_0_19,c_0_19]) ).

cnf(c_0_22,plain,
    divide(inverse(divide(inverse(X1),divide(X2,X1))),divide(divide(X3,X4),inverse(divide(X4,X3)))) = X2,
    inference(spm,[status(thm)],[c_0_20,c_0_21]) ).

cnf(c_0_23,plain,
    divide(inverse(divide(X1,X2)),divide(divide(X3,divide(X4,X5)),X1)) = inverse(divide(X3,divide(X2,divide(X5,X4)))),
    inference(spm,[status(thm)],[c_0_20,c_0_20]) ).

cnf(c_0_24,plain,
    inverse(divide(X1,divide(divide(X2,divide(divide(X3,X4),X1)),divide(X4,X3)))) = X2,
    inference(spm,[status(thm)],[c_0_22,c_0_23]) ).

cnf(c_0_25,plain,
    divide(inverse(divide(X1,X2)),divide(X3,X1)) = divide(inverse(divide(X4,X2)),divide(X3,X4)),
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_4,c_0_11]),c_0_4]) ).

cnf(c_0_26,plain,
    inverse(inverse(divide(X1,divide(X2,inverse(divide(inverse(b2),divide(X2,b2))))))) = X1,
    inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_24,c_0_25]),c_0_23]),c_0_19]) ).

cnf(c_0_27,plain,
    inverse(inverse(divide(X1,divide(X2,inverse(divide(inverse(X3),divide(X2,X3))))))) = X1,
    inference(spm,[status(thm)],[c_0_26,c_0_21]) ).

cnf(c_0_28,plain,
    inverse(inverse(divide(X1,divide(inverse(divide(X2,X3)),divide(X3,X2))))) = X1,
    inference(spm,[status(thm)],[c_0_27,c_0_16]) ).

cnf(c_0_29,plain,
    inverse(inverse(divide(inverse(X1),divide(inverse(divide(X2,X3)),X1)))) = inverse(divide(X3,X2)),
    inference(spm,[status(thm)],[c_0_28,c_0_21]) ).

cnf(c_0_30,plain,
    inverse(divide(divide(X1,X2),inverse(X2))) = inverse(divide(divide(X1,X3),inverse(X3))),
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_29,c_0_21]),c_0_29]) ).

cnf(c_0_31,plain,
    divide(inverse(X1),inverse(X1)) = divide(inverse(X2),inverse(X2)),
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_17,c_0_30]),c_0_17]) ).

cnf(c_0_32,plain,
    divide(inverse(X1),inverse(divide(X1,X2))) = divide(inverse(X3),inverse(divide(X3,X2))),
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_17,c_0_11]),c_0_17]) ).

cnf(c_0_33,plain,
    divide(inverse(X1),inverse(X1)) = divide(X2,X2),
    inference(spm,[status(thm)],[c_0_31,c_0_27]) ).

cnf(c_0_34,plain,
    inverse(inverse(divide(X1,divide(inverse(X2),inverse(divide(X2,divide(inverse(inverse(b2)),b2))))))) = X1,
    inference(spm,[status(thm)],[c_0_26,c_0_32]) ).

cnf(c_0_35,plain,
    divide(b2,b2) = divide(X1,X1),
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_33,c_0_33]),c_0_33]) ).

cnf(c_0_36,plain,
    inverse(inverse(divide(divide(X1,X2),divide(inverse(inverse(b2)),b2)))) = inverse(divide(X2,X1)),
    inference(spm,[status(thm)],[c_0_34,c_0_29]) ).

cnf(c_0_37,plain,
    divide(X1,X1) = divide(X2,X2),
    inference(spm,[status(thm)],[c_0_35,c_0_35]) ).

cnf(c_0_38,plain,
    inverse(inverse(divide(X1,X1))) = inverse(divide(b2,inverse(inverse(b2)))),
    inference(spm,[status(thm)],[c_0_36,c_0_37]) ).

cnf(c_0_39,plain,
    divide(inverse(X1),inverse(divide(X1,divide(inverse(inverse(b2)),b2)))) = inverse(inverse(divide(b2,b2))),
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_34,c_0_38]),c_0_38]) ).

cnf(c_0_40,plain,
    divide(X1,inverse(divide(inverse(X2),divide(X1,X2)))) = inverse(inverse(divide(b2,b2))),
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_27,c_0_38]),c_0_38]) ).

cnf(c_0_41,plain,
    inverse(inverse(divide(X1,inverse(inverse(divide(b2,b2)))))) = X1,
    inference(spm,[status(thm)],[c_0_27,c_0_39]) ).

cnf(c_0_42,plain,
    divide(inverse(divide(X1,X2)),divide(X2,X1)) = inverse(inverse(divide(b2,b2))),
    inference(spm,[status(thm)],[c_0_16,c_0_40]) ).

cnf(c_0_43,plain,
    inverse(inverse(divide(X1,inverse(inverse(divide(X2,X2)))))) = X1,
    inference(spm,[status(thm)],[c_0_41,c_0_37]) ).

cnf(c_0_44,plain,
    inverse(inverse(divide(b2,b2))) = divide(b2,b2),
    inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_39,c_0_42]),c_0_38]),c_0_37]) ).

cnf(c_0_45,plain,
    inverse(divide(inverse(X1),divide(divide(X2,divide(divide(X3,X4),inverse(divide(X4,X3)))),X1))) = X2,
    inference(spm,[status(thm)],[c_0_21,c_0_24]) ).

cnf(c_0_46,plain,
    inverse(inverse(divide(X1,divide(b2,b2)))) = X1,
    inference(spm,[status(thm)],[c_0_43,c_0_44]) ).

cnf(c_0_47,plain,
    inverse(divide(inverse(X1),inverse(inverse(divide(b2,b2))))) = X1,
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_45,c_0_40]),c_0_45]) ).

cnf(c_0_48,plain,
    inverse(inverse(divide(X1,divide(X2,X2)))) = X1,
    inference(spm,[status(thm)],[c_0_46,c_0_37]) ).

cnf(c_0_49,plain,
    inverse(divide(X1,X1)) = divide(b2,inverse(inverse(b2))),
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_47,c_0_38]),c_0_47]) ).

cnf(c_0_50,negated_conjecture,
    multiply(multiply(inverse(b2),b2),a2) != a2,
    prove_these_axioms_2 ).

cnf(c_0_51,axiom,
    multiply(X1,X2) = divide(X1,inverse(X2)),
    multiply ).

cnf(c_0_52,plain,
    inverse(divide(inverse(X1),inverse(inverse(divide(X2,X2))))) = X1,
    inference(spm,[status(thm)],[c_0_47,c_0_37]) ).

cnf(c_0_53,plain,
    inverse(inverse(divide(X1,X2))) = inverse(divide(X2,X1)),
    inference(spm,[status(thm)],[c_0_29,c_0_48]) ).

cnf(c_0_54,plain,
    divide(inverse(divide(b2,b2)),divide(X1,X1)) = inverse(inverse(divide(b2,b2))),
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_42,c_0_49]),c_0_49]) ).

cnf(c_0_55,negated_conjecture,
    divide(divide(inverse(b2),inverse(b2)),inverse(a2)) != a2,
    inference(rw,[status(thm)],[inference(rw,[status(thm)],[c_0_50,c_0_51]),c_0_51]) ).

cnf(c_0_56,plain,
    inverse(inverse(divide(X1,X1))) = divide(X1,X1),
    inference(spm,[status(thm)],[c_0_44,c_0_37]) ).

cnf(c_0_57,plain,
    inverse(divide(X1,X2)) = divide(X2,X1),
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_52,c_0_53]),c_0_52]) ).

cnf(c_0_58,plain,
    divide(inverse(divide(b2,b2)),divide(X1,X1)) = divide(b2,b2),
    inference(rw,[status(thm)],[c_0_54,c_0_44]) ).

cnf(c_0_59,negated_conjecture,
    divide(divide(inverse(X1),inverse(X1)),inverse(a2)) != a2,
    inference(spm,[status(thm)],[c_0_55,c_0_31]) ).

cnf(c_0_60,plain,
    divide(X1,divide(b2,b2)) = X1,
    inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[c_0_28,c_0_53]),c_0_42]),c_0_56]),c_0_57]) ).

cnf(c_0_61,plain,
    inverse(divide(b2,b2)) = divide(b2,b2),
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_46,c_0_58]),c_0_44]) ).

cnf(c_0_62,negated_conjecture,
    divide(divide(X1,X1),inverse(a2)) != a2,
    inference(spm,[status(thm)],[c_0_59,c_0_27]) ).

cnf(c_0_63,plain,
    divide(divide(b2,b2),X1) = inverse(X1),
    inference(spm,[status(thm)],[c_0_57,c_0_60]) ).

cnf(c_0_64,plain,
    inverse(divide(X1,X1)) = divide(X1,X1),
    inference(spm,[status(thm)],[c_0_61,c_0_37]) ).

cnf(c_0_65,negated_conjecture,
    inverse(inverse(a2)) != a2,
    inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_62,c_0_63]),c_0_64]),c_0_63]) ).

cnf(c_0_66,plain,
    inverse(inverse(X1)) = X1,
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_57,c_0_63]),c_0_60]) ).

cnf(c_0_67,negated_conjecture,
    $false,
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_65,c_0_66])]),
    [proof] ).

%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.07/0.12  % Problem    : GRP473-1 : TPTP v8.1.2. Released v2.6.0.
% 0.07/0.12  % Command    : java -jar /export/starexec/sandbox2/solver/bin/mcs_scs.jar %d %s
% 0.13/0.33  % Computer : n029.cluster.edu
% 0.13/0.33  % Model    : x86_64 x86_64
% 0.13/0.33  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.13/0.33  % Memory   : 8042.1875MB
% 0.13/0.33  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.13/0.33  % CPULimit   : 300
% 0.13/0.33  % WCLimit    : 300
% 0.13/0.33  % DateTime   : Mon Aug 28 22:27:41 EDT 2023
% 0.13/0.33  % CPUTime  : 
% 0.40/0.57  start to proof: theBenchmark
% 0.51/0.79  % Version  : CSE_E---1.5
% 0.51/0.79  % Problem  : theBenchmark.p
% 0.51/0.79  % Proof found
% 0.51/0.79  % SZS status Theorem for theBenchmark.p
% 0.51/0.79  % SZS output start Proof
% See solution above
% 0.51/0.80  % Total time : 0.208000 s
% 0.51/0.80  % SZS output end Proof
% 0.51/0.80  % Total time : 0.211000 s
%------------------------------------------------------------------------------