TSTP Solution File: GRP184-2 by iProver---3.9

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : iProver---3.9
% Problem  : GRP184-2 : TPTP v8.1.2. Bugfixed v1.2.1.
% Transfm  : none
% Format   : tptp:raw
% Command  : run_iprover %s %d THM

% Computer : n004.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Fri May  3 02:21:39 EDT 2024

% Result   : Unsatisfiable 39.09s 5.61s
% Output   : CNFRefutation 39.09s
% Verified : 
% SZS Type : Refutation
%            Derivation depth      :    7
%            Number of leaves      :   14
% Syntax   : Number of clauses     :   31 (  31 unt;   0 nHn;   9 RR)
%            Number of literals    :   31 (  30 equ;   7 neg)
%            Maximal clause size   :    1 (   1 avg)
%            Maximal term depth    :    6 (   2 avg)
%            Number of predicates  :    2 (   0 usr;   1 prp; 0-2 aty)
%            Number of functors    :    6 (   6 usr;   2 con; 0-2 aty)
%            Number of variables   :   44 (   0 sgn)

% Comments : 
%------------------------------------------------------------------------------
cnf(c_49,plain,
    inverse(identity) = identity,
    file('/export/starexec/sandbox2/benchmark/theBenchmark.p',p21_1) ).

cnf(c_50,plain,
    inverse(inverse(X0)) = X0,
    file('/export/starexec/sandbox2/benchmark/theBenchmark.p',p21_2) ).

cnf(c_51,plain,
    multiply(inverse(X0),inverse(X1)) = inverse(multiply(X1,X0)),
    file('/export/starexec/sandbox2/benchmark/theBenchmark.p',p21_3) ).

cnf(c_52,negated_conjecture,
    multiply(inverse(greatest_lower_bound(a,identity)),least_upper_bound(a,identity)) != multiply(least_upper_bound(a,identity),inverse(greatest_lower_bound(a,identity))),
    file('/export/starexec/sandbox2/benchmark/theBenchmark.p',prove_p21) ).

cnf(c_53,plain,
    greatest_lower_bound(X0,X1) = greatest_lower_bound(X1,X0),
    file('/export/starexec/sandbox2/benchmark/Axioms/GRP004-2.ax',symmetry_of_glb) ).

cnf(c_54,plain,
    least_upper_bound(X0,X1) = least_upper_bound(X1,X0),
    file('/export/starexec/sandbox2/benchmark/Axioms/GRP004-2.ax',symmetry_of_lub) ).

cnf(c_55,plain,
    greatest_lower_bound(greatest_lower_bound(X0,X1),X2) = greatest_lower_bound(X0,greatest_lower_bound(X1,X2)),
    file('/export/starexec/sandbox2/benchmark/Axioms/GRP004-2.ax',associativity_of_glb) ).

cnf(c_56,plain,
    least_upper_bound(least_upper_bound(X0,X1),X2) = least_upper_bound(X0,least_upper_bound(X1,X2)),
    file('/export/starexec/sandbox2/benchmark/Axioms/GRP004-2.ax',associativity_of_lub) ).

cnf(c_61,plain,
    least_upper_bound(multiply(X0,X1),multiply(X0,X2)) = multiply(X0,least_upper_bound(X1,X2)),
    file('/export/starexec/sandbox2/benchmark/Axioms/GRP004-2.ax',monotony_lub1) ).

cnf(c_62,plain,
    greatest_lower_bound(multiply(X0,X1),multiply(X0,X2)) = multiply(X0,greatest_lower_bound(X1,X2)),
    file('/export/starexec/sandbox2/benchmark/Axioms/GRP004-2.ax',monotony_glb1) ).

cnf(c_63,plain,
    least_upper_bound(multiply(X0,X1),multiply(X2,X1)) = multiply(least_upper_bound(X0,X2),X1),
    file('/export/starexec/sandbox2/benchmark/Axioms/GRP004-2.ax',monotony_lub2) ).

cnf(c_64,plain,
    greatest_lower_bound(multiply(X0,X1),multiply(X2,X1)) = multiply(greatest_lower_bound(X0,X2),X1),
    file('/export/starexec/sandbox2/benchmark/Axioms/GRP004-2.ax',monotony_glb2) ).

cnf(c_65,plain,
    multiply(identity,X0) = X0,
    file('/export/starexec/sandbox2/benchmark/Axioms/GRP004-0.ax',left_identity) ).

cnf(c_66,plain,
    multiply(inverse(X0),X0) = identity,
    file('/export/starexec/sandbox2/benchmark/Axioms/GRP004-0.ax',left_inverse) ).

cnf(c_85,negated_conjecture,
    multiply(inverse(greatest_lower_bound(identity,a)),least_upper_bound(identity,a)) != multiply(least_upper_bound(identity,a),inverse(greatest_lower_bound(identity,a))),
    inference(theory_normalisation,[status(thm)],[c_52,c_55,c_53,c_56,c_54]) ).

cnf(c_124,plain,
    least_upper_bound(multiply(inverse(greatest_lower_bound(identity,a)),identity),multiply(inverse(greatest_lower_bound(identity,a)),a)) != least_upper_bound(inverse(greatest_lower_bound(identity,a)),multiply(a,inverse(greatest_lower_bound(identity,a)))),
    inference(demodulation,[status(thm)],[c_85,c_61,c_63,c_65]) ).

cnf(c_1132,plain,
    multiply(X0,inverse(X0)) = identity,
    inference(superposition,[status(thm)],[c_50,c_66]) ).

cnf(c_1145,plain,
    inverse(multiply(identity,X0)) = multiply(inverse(X0),identity),
    inference(superposition,[status(thm)],[c_49,c_51]) ).

cnf(c_1146,plain,
    inverse(multiply(inverse(X0),X1)) = multiply(inverse(X1),X0),
    inference(superposition,[status(thm)],[c_50,c_51]) ).

cnf(c_1153,plain,
    inverse(multiply(inverse(X0),inverse(X1))) = multiply(X1,X0),
    inference(superposition,[status(thm)],[c_51,c_50]) ).

cnf(c_1201,plain,
    inverse(greatest_lower_bound(multiply(X0,X1),multiply(X2,X1))) = multiply(inverse(X1),inverse(greatest_lower_bound(X0,X2))),
    inference(superposition,[status(thm)],[c_64,c_51]) ).

cnf(c_1249,plain,
    multiply(inverse(X0),identity) = inverse(X0),
    inference(demodulation,[status(thm)],[c_1145,c_65]) ).

cnf(c_1293,plain,
    least_upper_bound(inverse(multiply(inverse(identity),greatest_lower_bound(identity,a))),multiply(inverse(greatest_lower_bound(identity,a)),a)) != least_upper_bound(inverse(greatest_lower_bound(identity,a)),multiply(a,inverse(greatest_lower_bound(identity,a)))),
    inference(demodulation,[status(thm)],[c_124,c_1146]) ).

cnf(c_1294,plain,
    least_upper_bound(inverse(greatest_lower_bound(identity,a)),multiply(inverse(greatest_lower_bound(identity,a)),a)) != least_upper_bound(inverse(greatest_lower_bound(identity,a)),multiply(a,inverse(greatest_lower_bound(identity,a)))),
    inference(demodulation,[status(thm)],[c_1293,c_49,c_62,c_65,c_66]) ).

cnf(c_6744,plain,
    multiply(X0,identity) = X0,
    inference(superposition,[status(thm)],[c_50,c_1249]) ).

cnf(c_22347,plain,
    multiply(inverse(inverse(X0)),inverse(greatest_lower_bound(X1,X0))) = inverse(greatest_lower_bound(multiply(X1,inverse(X0)),identity)),
    inference(superposition,[status(thm)],[c_1132,c_1201]) ).

cnf(c_23507,plain,
    inverse(greatest_lower_bound(multiply(X0,inverse(X1)),identity)) = multiply(X1,inverse(greatest_lower_bound(X0,X1))),
    inference(demodulation,[status(thm)],[c_22347,c_50]) ).

cnf(c_23508,plain,
    inverse(greatest_lower_bound(identity,multiply(X0,inverse(X1)))) = multiply(X1,inverse(greatest_lower_bound(X0,X1))),
    inference(theory_normalisation,[status(thm)],[c_23507,c_56,c_54,c_55,c_53]) ).

cnf(c_24351,plain,
    least_upper_bound(inverse(greatest_lower_bound(identity,a)),inverse(greatest_lower_bound(identity,multiply(identity,inverse(a))))) != least_upper_bound(inverse(greatest_lower_bound(identity,a)),multiply(inverse(greatest_lower_bound(identity,a)),a)),
    inference(demodulation,[status(thm)],[c_1294,c_23508]) ).

cnf(c_24352,plain,
    least_upper_bound(inverse(greatest_lower_bound(identity,a)),inverse(greatest_lower_bound(inverse(a),identity))) != least_upper_bound(inverse(greatest_lower_bound(identity,a)),inverse(greatest_lower_bound(identity,inverse(a)))),
    inference(demodulation,[status(thm)],[c_24351,c_50,c_62,c_65,c_66,c_1153,c_6744]) ).

cnf(c_24353,plain,
    $false,
    inference(theory_normalisation,[status(thm)],[c_24352,c_56,c_54,c_55,c_53]) ).


%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.06/0.10  % Problem  : GRP184-2 : TPTP v8.1.2. Bugfixed v1.2.1.
% 0.06/0.11  % Command  : run_iprover %s %d THM
% 0.10/0.31  % Computer : n004.cluster.edu
% 0.10/0.31  % Model    : x86_64 x86_64
% 0.10/0.31  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.10/0.31  % Memory   : 8042.1875MB
% 0.10/0.31  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.10/0.31  % CPULimit : 300
% 0.10/0.31  % WCLimit  : 300
% 0.10/0.31  % DateTime : Thu May  2 23:36:48 EDT 2024
% 0.10/0.31  % CPUTime  : 
% 0.16/0.42  Running UEQ theorem proving
% 0.16/0.42  Running: /export/starexec/sandbox2/solver/bin/run_problem --schedule casc_24_ueq --heuristic_context casc_unsat --no_cores 8 /export/starexec/sandbox2/benchmark/theBenchmark.p 300
% 39.09/5.61  % SZS status Started for theBenchmark.p
% 39.09/5.61  % SZS status Unsatisfiable for theBenchmark.p
% 39.09/5.61  
% 39.09/5.61  %---------------- iProver v3.9 (pre CASC 2024/SMT-COMP 2024) ----------------%
% 39.09/5.61  
% 39.09/5.61  ------  iProver source info
% 39.09/5.61  
% 39.09/5.61  git: date: 2024-05-02 19:28:25 +0000
% 39.09/5.61  git: sha1: a33b5eb135c74074ba803943bb12f2ebd971352f
% 39.09/5.61  git: non_committed_changes: false
% 39.09/5.61  
% 39.09/5.61  ------ Parsing...successful
% 39.09/5.61  
% 39.09/5.61  
% 39.09/5.61  
% 39.09/5.61  ------ Preprocessing... sup_sim: 1  sf_s  rm: 0 0s  sf_e  pe_s  pe_e 
% 39.09/5.61  
% 39.09/5.61  ------ Preprocessing... gs_s  sp: 0 0s  gs_e  snvd_s sp: 0 0s snvd_e 
% 39.09/5.61  
% 39.09/5.61  ------ Preprocessing... sf_s  rm: 0 0s  sf_e 
% 39.09/5.61  ------ Proving...
% 39.09/5.61  ------ Problem Properties 
% 39.09/5.61  
% 39.09/5.61  
% 39.09/5.61  clauses                                 19
% 39.09/5.61  conjectures                             0
% 39.09/5.61  EPR                                     0
% 39.09/5.61  Horn                                    19
% 39.09/5.61  unary                                   19
% 39.09/5.61  binary                                  0
% 39.09/5.61  lits                                    19
% 39.09/5.61  lits eq                                 19
% 39.09/5.61  fd_pure                                 0
% 39.09/5.61  fd_pseudo                               0
% 39.09/5.61  fd_cond                                 0
% 39.09/5.61  fd_pseudo_cond                          0
% 39.09/5.61  AC symbols                              2
% 39.09/5.61  
% 39.09/5.61  ------ Input Options Time Limit: Unbounded
% 39.09/5.61  
% 39.09/5.61  
% 39.09/5.61  ------ 
% 39.09/5.61  Current options:
% 39.09/5.61  ------ 
% 39.09/5.61  
% 39.09/5.61  
% 39.09/5.61  
% 39.09/5.61  
% 39.09/5.61  ------ Proving...
% 39.09/5.61  
% 39.09/5.61  
% 39.09/5.61  % SZS status Unsatisfiable for theBenchmark.p
% 39.09/5.61  
% 39.09/5.61  % SZS output start CNFRefutation for theBenchmark.p
% See solution above
% 39.09/5.61  
% 39.09/5.61  
%------------------------------------------------------------------------------