TSTP Solution File: GRP124-2.004 by cvc5---1.0.5

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : cvc5---1.0.5
% Problem  : GRP124-2.004 : TPTP v8.2.0. Released v1.2.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : do_cvc5 %s %d

% Computer : n032.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Wed May 29 16:53:11 EDT 2024

% Result   : Unsatisfiable 0.16s 0.50s
% Output   : Proof 0.16s
% Verified : 
% SZS Type : -

% Comments : 
%------------------------------------------------------------------------------
%----WARNING: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.02/0.10  % Problem    : GRP124-2.004 : TPTP v8.2.0. Released v1.2.0.
% 0.02/0.11  % Command    : do_cvc5 %s %d
% 0.10/0.30  % Computer : n032.cluster.edu
% 0.10/0.30  % Model    : x86_64 x86_64
% 0.10/0.30  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.10/0.30  % Memory   : 8042.1875MB
% 0.10/0.30  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.10/0.30  % CPULimit   : 300
% 0.10/0.30  % WCLimit    : 300
% 0.10/0.30  % DateTime   : Sun May 26 19:58:08 EDT 2024
% 0.10/0.30  % CPUTime    : 
% 0.16/0.40  %----Proving TF0_NAR, FOF, or CNF
% 0.16/0.41  --- Run --decision=internal --simplification=none --no-inst-no-entail --no-cbqi --full-saturate-quant at 10...
% 0.16/0.50  % SZS status Unsatisfiable for /export/starexec/sandbox/tmp/tmp.pNl8DMJNbG/cvc5---1.0.5_2681.smt2
% 0.16/0.50  % SZS output start Proof for /export/starexec/sandbox/tmp/tmp.pNl8DMJNbG/cvc5---1.0.5_2681.smt2
% 0.16/0.51  (assume a0 (tptp.next tptp.e_1 tptp.e_2))
% 0.16/0.51  (assume a1 (tptp.next tptp.e_2 tptp.e_3))
% 0.16/0.51  (assume a2 (tptp.next tptp.e_3 tptp.e_4))
% 0.16/0.51  (assume a3 (tptp.greater tptp.e_2 tptp.e_1))
% 0.16/0.51  (assume a4 (tptp.greater tptp.e_3 tptp.e_1))
% 0.16/0.51  (assume a5 (tptp.greater tptp.e_4 tptp.e_1))
% 0.16/0.51  (assume a6 (tptp.greater tptp.e_3 tptp.e_2))
% 0.16/0.51  (assume a7 (tptp.greater tptp.e_4 tptp.e_2))
% 0.16/0.51  (assume a8 (tptp.greater tptp.e_4 tptp.e_3))
% 0.16/0.51  (assume a9 (forall ((X $$unsorted) (Y $$unsorted) (X1 $$unsorted)) (or (not (tptp.product X tptp.e_1 Y)) (not (tptp.next X X1)) (not (tptp.greater Y X1)))))
% 0.16/0.51  (assume a10 (tptp.group_element tptp.e_1))
% 0.16/0.51  (assume a11 (tptp.group_element tptp.e_2))
% 0.16/0.51  (assume a12 (tptp.group_element tptp.e_3))
% 0.16/0.51  (assume a13 (tptp.group_element tptp.e_4))
% 0.16/0.51  (assume a14 (not (tptp.equalish tptp.e_1 tptp.e_2)))
% 0.16/0.51  (assume a15 (not (tptp.equalish tptp.e_1 tptp.e_3)))
% 0.16/0.51  (assume a16 (not (tptp.equalish tptp.e_1 tptp.e_4)))
% 0.16/0.51  (assume a17 (not (tptp.equalish tptp.e_2 tptp.e_1)))
% 0.16/0.51  (assume a18 (not (tptp.equalish tptp.e_2 tptp.e_3)))
% 0.16/0.51  (assume a19 (not (tptp.equalish tptp.e_2 tptp.e_4)))
% 0.16/0.51  (assume a20 (not (tptp.equalish tptp.e_3 tptp.e_1)))
% 0.16/0.51  (assume a21 (not (tptp.equalish tptp.e_3 tptp.e_2)))
% 0.16/0.51  (assume a22 (not (tptp.equalish tptp.e_3 tptp.e_4)))
% 0.16/0.51  (assume a23 (not (tptp.equalish tptp.e_4 tptp.e_1)))
% 0.16/0.51  (assume a24 (not (tptp.equalish tptp.e_4 tptp.e_2)))
% 0.16/0.51  (assume a25 (not (tptp.equalish tptp.e_4 tptp.e_3)))
% 0.16/0.51  (assume a26 (forall ((X $$unsorted) (Y $$unsorted)) (or (not (tptp.group_element X)) (not (tptp.group_element Y)) (tptp.product X Y tptp.e_1) (tptp.product X Y tptp.e_2) (tptp.product X Y tptp.e_3) (tptp.product X Y tptp.e_4))))
% 0.16/0.51  (assume a27 (forall ((X $$unsorted) (Y $$unsorted) (W $$unsorted) (Z $$unsorted)) (or (not (tptp.product X Y W)) (not (tptp.product X Y Z)) (tptp.equalish W Z))))
% 0.16/0.51  (assume a28 (forall ((X $$unsorted) (W $$unsorted) (Y $$unsorted) (Z $$unsorted)) (or (not (tptp.product X W Y)) (not (tptp.product X Z Y)) (tptp.equalish W Z))))
% 0.16/0.51  (assume a29 (forall ((W $$unsorted) (Y $$unsorted) (X $$unsorted) (Z $$unsorted)) (or (not (tptp.product W Y X)) (not (tptp.product Z Y X)) (tptp.equalish W Z))))
% 0.16/0.51  (assume a30 (forall ((X $$unsorted)) (tptp.product X X X)))
% 0.16/0.51  (assume a31 (forall ((X1 $$unsorted) (Y1 $$unsorted) (Z1 $$unsorted) (X2 $$unsorted) (Y2 $$unsorted) (Z2 $$unsorted)) (or (not (tptp.product X1 Y1 Z1)) (not (tptp.product X2 Y2 Z1)) (not (tptp.product Z2 X1 Y1)) (not (tptp.product Z2 X2 Y2)) (tptp.equalish X1 X2))))
% 0.16/0.51  (assume a32 (forall ((X1 $$unsorted) (Y1 $$unsorted) (Z1 $$unsorted) (X2 $$unsorted) (Y2 $$unsorted) (Z2 $$unsorted)) (or (not (tptp.product X1 Y1 Z1)) (not (tptp.product X2 Y2 Z1)) (not (tptp.product Z2 X1 Y1)) (not (tptp.product Z2 X2 Y2)) (tptp.equalish Y1 Y2))))
% 0.16/0.51  (step t1 (cl (=> (forall ((W $$unsorted) (Y $$unsorted) (X $$unsorted) (Z $$unsorted)) (or (not (tptp.product W Y X)) (not (tptp.product Z Y X)) (tptp.equalish W Z))) (or (not (tptp.product tptp.e_1 tptp.e_3 tptp.e_3)) (not (tptp.product tptp.e_3 tptp.e_3 tptp.e_3)) (tptp.equalish tptp.e_1 tptp.e_3))) (forall ((W $$unsorted) (Y $$unsorted) (X $$unsorted) (Z $$unsorted)) (or (not (tptp.product W Y X)) (not (tptp.product Z Y X)) (tptp.equalish W Z)))) :rule implies_neg1)
% 0.16/0.51  (anchor :step t2)
% 0.16/0.51  (assume t2.a0 (forall ((W $$unsorted) (Y $$unsorted) (X $$unsorted) (Z $$unsorted)) (or (not (tptp.product W Y X)) (not (tptp.product Z Y X)) (tptp.equalish W Z))))
% 0.16/0.51  (step t2.t1 (cl (or (not (forall ((W $$unsorted) (Y $$unsorted) (X $$unsorted) (Z $$unsorted)) (or (not (tptp.product W Y X)) (not (tptp.product Z Y X)) (tptp.equalish W Z)))) (or (not (tptp.product tptp.e_1 tptp.e_3 tptp.e_3)) (not (tptp.product tptp.e_3 tptp.e_3 tptp.e_3)) (tptp.equalish tptp.e_1 tptp.e_3)))) :rule forall_inst :args ((:= W tptp.e_1) (:= Y tptp.e_3) (:= X tptp.e_3) (:= Z tptp.e_3)))
% 0.16/0.51  (step t2.t2 (cl (not (forall ((W $$unsorted) (Y $$unsorted) (X $$unsorted) (Z $$unsorted)) (or (not (tptp.product W Y X)) (not (tptp.product Z Y X)) (tptp.equalish W Z)))) (or (not (tptp.product tptp.e_1 tptp.e_3 tptp.e_3)) (not (tptp.product tptp.e_3 tptp.e_3 tptp.e_3)) (tptp.equalish tptp.e_1 tptp.e_3))) :rule or :premises (t2.t1))
% 0.16/0.51  (step t2.t3 (cl (or (not (tptp.product tptp.e_1 tptp.e_3 tptp.e_3)) (not (tptp.product tptp.e_3 tptp.e_3 tptp.e_3)) (tptp.equalish tptp.e_1 tptp.e_3))) :rule resolution :premises (t2.t2 t2.a0))
% 0.16/0.51  (step t2 (cl (not (forall ((W $$unsorted) (Y $$unsorted) (X $$unsorted) (Z $$unsorted)) (or (not (tptp.product W Y X)) (not (tptp.product Z Y X)) (tptp.equalish W Z)))) (or (not (tptp.product tptp.e_1 tptp.e_3 tptp.e_3)) (not (tptp.product tptp.e_3 tptp.e_3 tptp.e_3)) (tptp.equalish tptp.e_1 tptp.e_3))) :rule subproof :discharge (t2.a0))
% 0.16/0.51  (step t3 (cl (=> (forall ((W $$unsorted) (Y $$unsorted) (X $$unsorted) (Z $$unsorted)) (or (not (tptp.product W Y X)) (not (tptp.product Z Y X)) (tptp.equalish W Z))) (or (not (tptp.product tptp.e_1 tptp.e_3 tptp.e_3)) (not (tptp.product tptp.e_3 tptp.e_3 tptp.e_3)) (tptp.equalish tptp.e_1 tptp.e_3))) (or (not (tptp.product tptp.e_1 tptp.e_3 tptp.e_3)) (not (tptp.product tptp.e_3 tptp.e_3 tptp.e_3)) (tptp.equalish tptp.e_1 tptp.e_3))) :rule resolution :premises (t1 t2))
% 0.16/0.51  (step t4 (cl (=> (forall ((W $$unsorted) (Y $$unsorted) (X $$unsorted) (Z $$unsorted)) (or (not (tptp.product W Y X)) (not (tptp.product Z Y X)) (tptp.equalish W Z))) (or (not (tptp.product tptp.e_1 tptp.e_3 tptp.e_3)) (not (tptp.product tptp.e_3 tptp.e_3 tptp.e_3)) (tptp.equalish tptp.e_1 tptp.e_3))) (not (or (not (tptp.product tptp.e_1 tptp.e_3 tptp.e_3)) (not (tptp.product tptp.e_3 tptp.e_3 tptp.e_3)) (tptp.equalish tptp.e_1 tptp.e_3)))) :rule implies_neg2)
% 0.16/0.51  (step t5 (cl (=> (forall ((W $$unsorted) (Y $$unsorted) (X $$unsorted) (Z $$unsorted)) (or (not (tptp.product W Y X)) (not (tptp.product Z Y X)) (tptp.equalish W Z))) (or (not (tptp.product tptp.e_1 tptp.e_3 tptp.e_3)) (not (tptp.product tptp.e_3 tptp.e_3 tptp.e_3)) (tptp.equalish tptp.e_1 tptp.e_3))) (=> (forall ((W $$unsorted) (Y $$unsorted) (X $$unsorted) (Z $$unsorted)) (or (not (tptp.product W Y X)) (not (tptp.product Z Y X)) (tptp.equalish W Z))) (or (not (tptp.product tptp.e_1 tptp.e_3 tptp.e_3)) (not (tptp.product tptp.e_3 tptp.e_3 tptp.e_3)) (tptp.equalish tptp.e_1 tptp.e_3)))) :rule resolution :premises (t3 t4))
% 0.16/0.51  (step t6 (cl (=> (forall ((W $$unsorted) (Y $$unsorted) (X $$unsorted) (Z $$unsorted)) (or (not (tptp.product W Y X)) (not (tptp.product Z Y X)) (tptp.equalish W Z))) (or (not (tptp.product tptp.e_1 tptp.e_3 tptp.e_3)) (not (tptp.product tptp.e_3 tptp.e_3 tptp.e_3)) (tptp.equalish tptp.e_1 tptp.e_3)))) :rule contraction :premises (t5))
% 0.16/0.51  (step t7 (cl (not (forall ((W $$unsorted) (Y $$unsorted) (X $$unsorted) (Z $$unsorted)) (or (not (tptp.product W Y X)) (not (tptp.product Z Y X)) (tptp.equalish W Z)))) (or (not (tptp.product tptp.e_1 tptp.e_3 tptp.e_3)) (not (tptp.product tptp.e_3 tptp.e_3 tptp.e_3)) (tptp.equalish tptp.e_1 tptp.e_3))) :rule implies :premises (t6))
% 0.16/0.51  (step t8 (cl (not (or (not (tptp.product tptp.e_1 tptp.e_3 tptp.e_3)) (not (tptp.product tptp.e_3 tptp.e_3 tptp.e_3)) (tptp.equalish tptp.e_1 tptp.e_3))) (not (tptp.product tptp.e_1 tptp.e_3 tptp.e_3)) (not (tptp.product tptp.e_3 tptp.e_3 tptp.e_3)) (tptp.equalish tptp.e_1 tptp.e_3)) :rule or_pos)
% 0.16/0.51  (step t9 (cl (tptp.equalish tptp.e_1 tptp.e_3) (not (tptp.product tptp.e_1 tptp.e_3 tptp.e_3)) (not (tptp.product tptp.e_3 tptp.e_3 tptp.e_3)) (not (or (not (tptp.product tptp.e_1 tptp.e_3 tptp.e_3)) (not (tptp.product tptp.e_3 tptp.e_3 tptp.e_3)) (tptp.equalish tptp.e_1 tptp.e_3)))) :rule reordering :premises (t8))
% 0.16/0.51  (step t10 (cl (not (or (not (tptp.group_element tptp.e_1)) (not (tptp.group_element tptp.e_3)) (tptp.product tptp.e_1 tptp.e_3 tptp.e_1) (tptp.product tptp.e_1 tptp.e_3 tptp.e_2) (tptp.product tptp.e_1 tptp.e_3 tptp.e_3) (tptp.product tptp.e_1 tptp.e_3 tptp.e_4))) (not (tptp.group_element tptp.e_1)) (not (tptp.group_element tptp.e_3)) (tptp.product tptp.e_1 tptp.e_3 tptp.e_1) (tptp.product tptp.e_1 tptp.e_3 tptp.e_2) (tptp.product tptp.e_1 tptp.e_3 tptp.e_3) (tptp.product tptp.e_1 tptp.e_3 tptp.e_4)) :rule or_pos)
% 0.16/0.51  (step t11 (cl (not (tptp.group_element tptp.e_1)) (not (tptp.group_element tptp.e_3)) (tptp.product tptp.e_1 tptp.e_3 tptp.e_1) (tptp.product tptp.e_1 tptp.e_3 tptp.e_2) (tptp.product tptp.e_1 tptp.e_3 tptp.e_3) (tptp.product tptp.e_1 tptp.e_3 tptp.e_4) (not (or (not (tptp.group_element tptp.e_1)) (not (tptp.group_element tptp.e_3)) (tptp.product tptp.e_1 tptp.e_3 tptp.e_1) (tptp.product tptp.e_1 tptp.e_3 tptp.e_2) (tptp.product tptp.e_1 tptp.e_3 tptp.e_3) (tptp.product tptp.e_1 tptp.e_3 tptp.e_4)))) :rule reordering :premises (t10))
% 0.16/0.51  (step t12 (cl (not (or (not (tptp.product tptp.e_1 tptp.e_1 tptp.e_1)) (not (tptp.product tptp.e_1 tptp.e_3 tptp.e_1)) (tptp.equalish tptp.e_1 tptp.e_3))) (not (tptp.product tptp.e_1 tptp.e_1 tptp.e_1)) (not (tptp.product tptp.e_1 tptp.e_3 tptp.e_1)) (tptp.equalish tptp.e_1 tptp.e_3)) :rule or_pos)
% 0.16/0.51  (step t13 (cl (tptp.equalish tptp.e_1 tptp.e_3) (not (tptp.product tptp.e_1 tptp.e_1 tptp.e_1)) (not (tptp.product tptp.e_1 tptp.e_3 tptp.e_1)) (not (or (not (tptp.product tptp.e_1 tptp.e_1 tptp.e_1)) (not (tptp.product tptp.e_1 tptp.e_3 tptp.e_1)) (tptp.equalish tptp.e_1 tptp.e_3)))) :rule reordering :premises (t12))
% 0.16/0.51  (step t14 (cl (=> (forall ((X $$unsorted)) (tptp.product X X X)) (tptp.product tptp.e_1 tptp.e_1 tptp.e_1)) (forall ((X $$unsorted)) (tptp.product X X X))) :rule implies_neg1)
% 0.16/0.51  (anchor :step t15)
% 0.16/0.51  (assume t15.a0 (forall ((X $$unsorted)) (tptp.product X X X)))
% 0.16/0.51  (step t15.t1 (cl (or (not (forall ((X $$unsorted)) (tptp.product X X X))) (tptp.product tptp.e_1 tptp.e_1 tptp.e_1))) :rule forall_inst :args ((:= X tptp.e_1)))
% 0.16/0.51  (step t15.t2 (cl (not (forall ((X $$unsorted)) (tptp.product X X X))) (tptp.product tptp.e_1 tptp.e_1 tptp.e_1)) :rule or :premises (t15.t1))
% 0.16/0.51  (step t15.t3 (cl (tptp.product tptp.e_1 tptp.e_1 tptp.e_1)) :rule resolution :premises (t15.t2 t15.a0))
% 0.16/0.51  (step t15 (cl (not (forall ((X $$unsorted)) (tptp.product X X X))) (tptp.product tptp.e_1 tptp.e_1 tptp.e_1)) :rule subproof :discharge (t15.a0))
% 0.16/0.51  (step t16 (cl (=> (forall ((X $$unsorted)) (tptp.product X X X)) (tptp.product tptp.e_1 tptp.e_1 tptp.e_1)) (tptp.product tptp.e_1 tptp.e_1 tptp.e_1)) :rule resolution :premises (t14 t15))
% 0.16/0.51  (step t17 (cl (=> (forall ((X $$unsorted)) (tptp.product X X X)) (tptp.product tptp.e_1 tptp.e_1 tptp.e_1)) (not (tptp.product tptp.e_1 tptp.e_1 tptp.e_1))) :rule implies_neg2)
% 0.16/0.51  (step t18 (cl (=> (forall ((X $$unsorted)) (tptp.product X X X)) (tptp.product tptp.e_1 tptp.e_1 tptp.e_1)) (=> (forall ((X $$unsorted)) (tptp.product X X X)) (tptp.product tptp.e_1 tptp.e_1 tptp.e_1))) :rule resolution :premises (t16 t17))
% 0.16/0.51  (step t19 (cl (=> (forall ((X $$unsorted)) (tptp.product X X X)) (tptp.product tptp.e_1 tptp.e_1 tptp.e_1))) :rule contraction :premises (t18))
% 0.16/0.51  (step t20 (cl (not (forall ((X $$unsorted)) (tptp.product X X X))) (tptp.product tptp.e_1 tptp.e_1 tptp.e_1)) :rule implies :premises (t19))
% 0.16/0.51  (step t21 (cl (tptp.product tptp.e_1 tptp.e_1 tptp.e_1)) :rule resolution :premises (t20 a30))
% 0.16/0.51  (step t22 (cl (=> (forall ((X $$unsorted) (W $$unsorted) (Y $$unsorted) (Z $$unsorted)) (or (not (tptp.product X W Y)) (not (tptp.product X Z Y)) (tptp.equalish W Z))) (or (not (tptp.product tptp.e_1 tptp.e_1 tptp.e_1)) (not (tptp.product tptp.e_1 tptp.e_3 tptp.e_1)) (tptp.equalish tptp.e_1 tptp.e_3))) (forall ((X $$unsorted) (W $$unsorted) (Y $$unsorted) (Z $$unsorted)) (or (not (tptp.product X W Y)) (not (tptp.product X Z Y)) (tptp.equalish W Z)))) :rule implies_neg1)
% 0.16/0.51  (anchor :step t23)
% 0.16/0.51  (assume t23.a0 (forall ((X $$unsorted) (W $$unsorted) (Y $$unsorted) (Z $$unsorted)) (or (not (tptp.product X W Y)) (not (tptp.product X Z Y)) (tptp.equalish W Z))))
% 0.16/0.51  (step t23.t1 (cl (or (not (forall ((X $$unsorted) (W $$unsorted) (Y $$unsorted) (Z $$unsorted)) (or (not (tptp.product X W Y)) (not (tptp.product X Z Y)) (tptp.equalish W Z)))) (or (not (tptp.product tptp.e_1 tptp.e_1 tptp.e_1)) (not (tptp.product tptp.e_1 tptp.e_3 tptp.e_1)) (tptp.equalish tptp.e_1 tptp.e_3)))) :rule forall_inst :args ((:= X tptp.e_1) (:= W tptp.e_1) (:= Y tptp.e_1) (:= Z tptp.e_3)))
% 0.16/0.51  (step t23.t2 (cl (not (forall ((X $$unsorted) (W $$unsorted) (Y $$unsorted) (Z $$unsorted)) (or (not (tptp.product X W Y)) (not (tptp.product X Z Y)) (tptp.equalish W Z)))) (or (not (tptp.product tptp.e_1 tptp.e_1 tptp.e_1)) (not (tptp.product tptp.e_1 tptp.e_3 tptp.e_1)) (tptp.equalish tptp.e_1 tptp.e_3))) :rule or :premises (t23.t1))
% 0.16/0.51  (step t23.t3 (cl (or (not (tptp.product tptp.e_1 tptp.e_1 tptp.e_1)) (not (tptp.product tptp.e_1 tptp.e_3 tptp.e_1)) (tptp.equalish tptp.e_1 tptp.e_3))) :rule resolution :premises (t23.t2 t23.a0))
% 0.16/0.51  (step t23 (cl (not (forall ((X $$unsorted) (W $$unsorted) (Y $$unsorted) (Z $$unsorted)) (or (not (tptp.product X W Y)) (not (tptp.product X Z Y)) (tptp.equalish W Z)))) (or (not (tptp.product tptp.e_1 tptp.e_1 tptp.e_1)) (not (tptp.product tptp.e_1 tptp.e_3 tptp.e_1)) (tptp.equalish tptp.e_1 tptp.e_3))) :rule subproof :discharge (t23.a0))
% 0.16/0.51  (step t24 (cl (=> (forall ((X $$unsorted) (W $$unsorted) (Y $$unsorted) (Z $$unsorted)) (or (not (tptp.product X W Y)) (not (tptp.product X Z Y)) (tptp.equalish W Z))) (or (not (tptp.product tptp.e_1 tptp.e_1 tptp.e_1)) (not (tptp.product tptp.e_1 tptp.e_3 tptp.e_1)) (tptp.equalish tptp.e_1 tptp.e_3))) (or (not (tptp.product tptp.e_1 tptp.e_1 tptp.e_1)) (not (tptp.product tptp.e_1 tptp.e_3 tptp.e_1)) (tptp.equalish tptp.e_1 tptp.e_3))) :rule resolution :premises (t22 t23))
% 0.16/0.51  (step t25 (cl (=> (forall ((X $$unsorted) (W $$unsorted) (Y $$unsorted) (Z $$unsorted)) (or (not (tptp.product X W Y)) (not (tptp.product X Z Y)) (tptp.equalish W Z))) (or (not (tptp.product tptp.e_1 tptp.e_1 tptp.e_1)) (not (tptp.product tptp.e_1 tptp.e_3 tptp.e_1)) (tptp.equalish tptp.e_1 tptp.e_3))) (not (or (not (tptp.product tptp.e_1 tptp.e_1 tptp.e_1)) (not (tptp.product tptp.e_1 tptp.e_3 tptp.e_1)) (tptp.equalish tptp.e_1 tptp.e_3)))) :rule implies_neg2)
% 0.16/0.51  (step t26 (cl (=> (forall ((X $$unsorted) (W $$unsorted) (Y $$unsorted) (Z $$unsorted)) (or (not (tptp.product X W Y)) (not (tptp.product X Z Y)) (tptp.equalish W Z))) (or (not (tptp.product tptp.e_1 tptp.e_1 tptp.e_1)) (not (tptp.product tptp.e_1 tptp.e_3 tptp.e_1)) (tptp.equalish tptp.e_1 tptp.e_3))) (=> (forall ((X $$unsorted) (W $$unsorted) (Y $$unsorted) (Z $$unsorted)) (or (not (tptp.product X W Y)) (not (tptp.product X Z Y)) (tptp.equalish W Z))) (or (not (tptp.product tptp.e_1 tptp.e_1 tptp.e_1)) (not (tptp.product tptp.e_1 tptp.e_3 tptp.e_1)) (tptp.equalish tptp.e_1 tptp.e_3)))) :rule resolution :premises (t24 t25))
% 0.16/0.51  (step t27 (cl (=> (forall ((X $$unsorted) (W $$unsorted) (Y $$unsorted) (Z $$unsorted)) (or (not (tptp.product X W Y)) (not (tptp.product X Z Y)) (tptp.equalish W Z))) (or (not (tptp.product tptp.e_1 tptp.e_1 tptp.e_1)) (not (tptp.product tptp.e_1 tptp.e_3 tptp.e_1)) (tptp.equalish tptp.e_1 tptp.e_3)))) :rule contraction :premises (t26))
% 0.16/0.51  (step t28 (cl (not (forall ((X $$unsorted) (W $$unsorted) (Y $$unsorted) (Z $$unsorted)) (or (not (tptp.product X W Y)) (not (tptp.product X Z Y)) (tptp.equalish W Z)))) (or (not (tptp.product tptp.e_1 tptp.e_1 tptp.e_1)) (not (tptp.product tptp.e_1 tptp.e_3 tptp.e_1)) (tptp.equalish tptp.e_1 tptp.e_3))) :rule implies :premises (t27))
% 0.16/0.51  (step t29 (cl (or (not (tptp.product tptp.e_1 tptp.e_1 tptp.e_1)) (not (tptp.product tptp.e_1 tptp.e_3 tptp.e_1)) (tptp.equalish tptp.e_1 tptp.e_3))) :rule resolution :premises (t28 a28))
% 0.16/0.51  (step t30 (cl (not (tptp.product tptp.e_1 tptp.e_3 tptp.e_1))) :rule resolution :premises (t13 a15 t21 t29))
% 0.16/0.51  (step t31 (cl (not (or (not (tptp.product tptp.e_1 tptp.e_3 tptp.e_2)) (not (tptp.product tptp.e_2 tptp.e_2 tptp.e_2)) (not (tptp.product tptp.e_2 tptp.e_1 tptp.e_3)) (not (tptp.product tptp.e_2 tptp.e_2 tptp.e_2)) (tptp.equalish tptp.e_1 tptp.e_2))) (not (tptp.product tptp.e_1 tptp.e_3 tptp.e_2)) (not (tptp.product tptp.e_2 tptp.e_2 tptp.e_2)) (not (tptp.product tptp.e_2 tptp.e_1 tptp.e_3)) (not (tptp.product tptp.e_2 tptp.e_2 tptp.e_2)) (tptp.equalish tptp.e_1 tptp.e_2)) :rule or_pos)
% 0.16/0.51  (step t32 (cl (not (or (not (tptp.product tptp.e_1 tptp.e_3 tptp.e_2)) (not (tptp.product tptp.e_2 tptp.e_2 tptp.e_2)) (not (tptp.product tptp.e_2 tptp.e_1 tptp.e_3)) (not (tptp.product tptp.e_2 tptp.e_2 tptp.e_2)) (tptp.equalish tptp.e_1 tptp.e_2))) (not (tptp.product tptp.e_1 tptp.e_3 tptp.e_2)) (not (tptp.product tptp.e_2 tptp.e_2 tptp.e_2)) (not (tptp.product tptp.e_2 tptp.e_1 tptp.e_3)) (tptp.equalish tptp.e_1 tptp.e_2)) :rule contraction :premises (t31))
% 0.16/0.51  (step t33 (cl (tptp.equalish tptp.e_1 tptp.e_2) (not (tptp.product tptp.e_2 tptp.e_2 tptp.e_2)) (not (tptp.product tptp.e_1 tptp.e_3 tptp.e_2)) (not (tptp.product tptp.e_2 tptp.e_1 tptp.e_3)) (not (or (not (tptp.product tptp.e_1 tptp.e_3 tptp.e_2)) (not (tptp.product tptp.e_2 tptp.e_2 tptp.e_2)) (not (tptp.product tptp.e_2 tptp.e_1 tptp.e_3)) (not (tptp.product tptp.e_2 tptp.e_2 tptp.e_2)) (tptp.equalish tptp.e_1 tptp.e_2)))) :rule reordering :premises (t32))
% 0.16/0.51  (step t34 (cl (=> (forall ((X $$unsorted)) (tptp.product X X X)) (tptp.product tptp.e_2 tptp.e_2 tptp.e_2)) (forall ((X $$unsorted)) (tptp.product X X X))) :rule implies_neg1)
% 0.16/0.51  (anchor :step t35)
% 0.16/0.51  (assume t35.a0 (forall ((X $$unsorted)) (tptp.product X X X)))
% 0.16/0.51  (step t35.t1 (cl (or (not (forall ((X $$unsorted)) (tptp.product X X X))) (tptp.product tptp.e_2 tptp.e_2 tptp.e_2))) :rule forall_inst :args ((:= X tptp.e_2)))
% 0.16/0.51  (step t35.t2 (cl (not (forall ((X $$unsorted)) (tptp.product X X X))) (tptp.product tptp.e_2 tptp.e_2 tptp.e_2)) :rule or :premises (t35.t1))
% 0.16/0.51  (step t35.t3 (cl (tptp.product tptp.e_2 tptp.e_2 tptp.e_2)) :rule resolution :premises (t35.t2 t35.a0))
% 0.16/0.51  (step t35 (cl (not (forall ((X $$unsorted)) (tptp.product X X X))) (tptp.product tptp.e_2 tptp.e_2 tptp.e_2)) :rule subproof :discharge (t35.a0))
% 0.16/0.51  (step t36 (cl (=> (forall ((X $$unsorted)) (tptp.product X X X)) (tptp.product tptp.e_2 tptp.e_2 tptp.e_2)) (tptp.product tptp.e_2 tptp.e_2 tptp.e_2)) :rule resolution :premises (t34 t35))
% 0.16/0.51  (step t37 (cl (=> (forall ((X $$unsorted)) (tptp.product X X X)) (tptp.product tptp.e_2 tptp.e_2 tptp.e_2)) (not (tptp.product tptp.e_2 tptp.e_2 tptp.e_2))) :rule implies_neg2)
% 0.16/0.51  (step t38 (cl (=> (forall ((X $$unsorted)) (tptp.product X X X)) (tptp.product tptp.e_2 tptp.e_2 tptp.e_2)) (=> (forall ((X $$unsorted)) (tptp.product X X X)) (tptp.product tptp.e_2 tptp.e_2 tptp.e_2))) :rule resolution :premises (t36 t37))
% 0.16/0.51  (step t39 (cl (=> (forall ((X $$unsorted)) (tptp.product X X X)) (tptp.product tptp.e_2 tptp.e_2 tptp.e_2))) :rule contraction :premises (t38))
% 0.16/0.51  (step t40 (cl (not (forall ((X $$unsorted)) (tptp.product X X X))) (tptp.product tptp.e_2 tptp.e_2 tptp.e_2)) :rule implies :premises (t39))
% 0.16/0.51  (step t41 (cl (tptp.product tptp.e_2 tptp.e_2 tptp.e_2)) :rule resolution :premises (t40 a30))
% 0.16/0.51  (step t42 (cl (not (or (not (tptp.group_element tptp.e_2)) (not (tptp.group_element tptp.e_1)) (tptp.product tptp.e_2 tptp.e_1 tptp.e_1) (tptp.product tptp.e_2 tptp.e_1 tptp.e_2) (tptp.product tptp.e_2 tptp.e_1 tptp.e_3) (tptp.product tptp.e_2 tptp.e_1 tptp.e_4))) (not (tptp.group_element tptp.e_2)) (not (tptp.group_element tptp.e_1)) (tptp.product tptp.e_2 tptp.e_1 tptp.e_1) (tptp.product tptp.e_2 tptp.e_1 tptp.e_2) (tptp.product tptp.e_2 tptp.e_1 tptp.e_3) (tptp.product tptp.e_2 tptp.e_1 tptp.e_4)) :rule or_pos)
% 0.16/0.51  (step t43 (cl (not (tptp.group_element tptp.e_1)) (not (tptp.group_element tptp.e_2)) (tptp.product tptp.e_2 tptp.e_1 tptp.e_1) (tptp.product tptp.e_2 tptp.e_1 tptp.e_2) (tptp.product tptp.e_2 tptp.e_1 tptp.e_3) (tptp.product tptp.e_2 tptp.e_1 tptp.e_4) (not (or (not (tptp.group_element tptp.e_2)) (not (tptp.group_element tptp.e_1)) (tptp.product tptp.e_2 tptp.e_1 tptp.e_1) (tptp.product tptp.e_2 tptp.e_1 tptp.e_2) (tptp.product tptp.e_2 tptp.e_1 tptp.e_3) (tptp.product tptp.e_2 tptp.e_1 tptp.e_4)))) :rule reordering :premises (t42))
% 0.16/0.51  (step t44 (cl (not (or (not (tptp.product tptp.e_1 tptp.e_1 tptp.e_1)) (not (tptp.product tptp.e_2 tptp.e_1 tptp.e_1)) (tptp.equalish tptp.e_1 tptp.e_2))) (not (tptp.product tptp.e_1 tptp.e_1 tptp.e_1)) (not (tptp.product tptp.e_2 tptp.e_1 tptp.e_1)) (tptp.equalish tptp.e_1 tptp.e_2)) :rule or_pos)
% 0.16/0.51  (step t45 (cl (tptp.equalish tptp.e_1 tptp.e_2) (not (tptp.product tptp.e_1 tptp.e_1 tptp.e_1)) (not (tptp.product tptp.e_2 tptp.e_1 tptp.e_1)) (not (or (not (tptp.product tptp.e_1 tptp.e_1 tptp.e_1)) (not (tptp.product tptp.e_2 tptp.e_1 tptp.e_1)) (tptp.equalish tptp.e_1 tptp.e_2)))) :rule reordering :premises (t44))
% 0.16/0.51  (step t46 (cl (=> (forall ((W $$unsorted) (Y $$unsorted) (X $$unsorted) (Z $$unsorted)) (or (not (tptp.product W Y X)) (not (tptp.product Z Y X)) (tptp.equalish W Z))) (or (not (tptp.product tptp.e_1 tptp.e_1 tptp.e_1)) (not (tptp.product tptp.e_2 tptp.e_1 tptp.e_1)) (tptp.equalish tptp.e_1 tptp.e_2))) (forall ((W $$unsorted) (Y $$unsorted) (X $$unsorted) (Z $$unsorted)) (or (not (tptp.product W Y X)) (not (tptp.product Z Y X)) (tptp.equalish W Z)))) :rule implies_neg1)
% 0.16/0.51  (anchor :step t47)
% 0.16/0.51  (assume t47.a0 (forall ((W $$unsorted) (Y $$unsorted) (X $$unsorted) (Z $$unsorted)) (or (not (tptp.product W Y X)) (not (tptp.product Z Y X)) (tptp.equalish W Z))))
% 0.16/0.51  (step t47.t1 (cl (or (not (forall ((W $$unsorted) (Y $$unsorted) (X $$unsorted) (Z $$unsorted)) (or (not (tptp.product W Y X)) (not (tptp.product Z Y X)) (tptp.equalish W Z)))) (or (not (tptp.product tptp.e_1 tptp.e_1 tptp.e_1)) (not (tptp.product tptp.e_2 tptp.e_1 tptp.e_1)) (tptp.equalish tptp.e_1 tptp.e_2)))) :rule forall_inst :args ((:= W tptp.e_1) (:= Y tptp.e_1) (:= X tptp.e_1) (:= Z tptp.e_2)))
% 0.16/0.51  (step t47.t2 (cl (not (forall ((W $$unsorted) (Y $$unsorted) (X $$unsorted) (Z $$unsorted)) (or (not (tptp.product W Y X)) (not (tptp.product Z Y X)) (tptp.equalish W Z)))) (or (not (tptp.product tptp.e_1 tptp.e_1 tptp.e_1)) (not (tptp.product tptp.e_2 tptp.e_1 tptp.e_1)) (tptp.equalish tptp.e_1 tptp.e_2))) :rule or :premises (t47.t1))
% 0.16/0.51  (step t47.t3 (cl (or (not (tptp.product tptp.e_1 tptp.e_1 tptp.e_1)) (not (tptp.product tptp.e_2 tptp.e_1 tptp.e_1)) (tptp.equalish tptp.e_1 tptp.e_2))) :rule resolution :premises (t47.t2 t47.a0))
% 0.16/0.51  (step t47 (cl (not (forall ((W $$unsorted) (Y $$unsorted) (X $$unsorted) (Z $$unsorted)) (or (not (tptp.product W Y X)) (not (tptp.product Z Y X)) (tptp.equalish W Z)))) (or (not (tptp.product tptp.e_1 tptp.e_1 tptp.e_1)) (not (tptp.product tptp.e_2 tptp.e_1 tptp.e_1)) (tptp.equalish tptp.e_1 tptp.e_2))) :rule subproof :discharge (t47.a0))
% 0.16/0.51  (step t48 (cl (=> (forall ((W $$unsorted) (Y $$unsorted) (X $$unsorted) (Z $$unsorted)) (or (not (tptp.product W Y X)) (not (tptp.product Z Y X)) (tptp.equalish W Z))) (or (not (tptp.product tptp.e_1 tptp.e_1 tptp.e_1)) (not (tptp.product tptp.e_2 tptp.e_1 tptp.e_1)) (tptp.equalish tptp.e_1 tptp.e_2))) (or (not (tptp.product tptp.e_1 tptp.e_1 tptp.e_1)) (not (tptp.product tptp.e_2 tptp.e_1 tptp.e_1)) (tptp.equalish tptp.e_1 tptp.e_2))) :rule resolution :premises (t46 t47))
% 0.16/0.51  (step t49 (cl (=> (forall ((W $$unsorted) (Y $$unsorted) (X $$unsorted) (Z $$unsorted)) (or (not (tptp.product W Y X)) (not (tptp.product Z Y X)) (tptp.equalish W Z))) (or (not (tptp.product tptp.e_1 tptp.e_1 tptp.e_1)) (not (tptp.product tptp.e_2 tptp.e_1 tptp.e_1)) (tptp.equalish tptp.e_1 tptp.e_2))) (not (or (not (tptp.product tptp.e_1 tptp.e_1 tptp.e_1)) (not (tptp.product tptp.e_2 tptp.e_1 tptp.e_1)) (tptp.equalish tptp.e_1 tptp.e_2)))) :rule implies_neg2)
% 0.16/0.51  (step t50 (cl (=> (forall ((W $$unsorted) (Y $$unsorted) (X $$unsorted) (Z $$unsorted)) (or (not (tptp.product W Y X)) (not (tptp.product Z Y X)) (tptp.equalish W Z))) (or (not (tptp.product tptp.e_1 tptp.e_1 tptp.e_1)) (not (tptp.product tptp.e_2 tptp.e_1 tptp.e_1)) (tptp.equalish tptp.e_1 tptp.e_2))) (=> (forall ((W $$unsorted) (Y $$unsorted) (X $$unsorted) (Z $$unsorted)) (or (not (tptp.product W Y X)) (not (tptp.product Z Y X)) (tptp.equalish W Z))) (or (not (tptp.product tptp.e_1 tptp.e_1 tptp.e_1)) (not (tptp.product tptp.e_2 tptp.e_1 tptp.e_1)) (tptp.equalish tptp.e_1 tptp.e_2)))) :rule resolution :premises (t48 t49))
% 0.16/0.51  (step t51 (cl (=> (forall ((W $$unsorted) (Y $$unsorted) (X $$unsorted) (Z $$unsorted)) (or (not (tptp.product W Y X)) (not (tptp.product Z Y X)) (tptp.equalish W Z))) (or (not (tptp.product tptp.e_1 tptp.e_1 tptp.e_1)) (not (tptp.product tptp.e_2 tptp.e_1 tptp.e_1)) (tptp.equalish tptp.e_1 tptp.e_2)))) :rule contraction :premises (t50))
% 0.16/0.51  (step t52 (cl (not (forall ((W $$unsorted) (Y $$unsorted) (X $$unsorted) (Z $$unsorted)) (or (not (tptp.product W Y X)) (not (tptp.product Z Y X)) (tptp.equalish W Z)))) (or (not (tptp.product tptp.e_1 tptp.e_1 tptp.e_1)) (not (tptp.product tptp.e_2 tptp.e_1 tptp.e_1)) (tptp.equalish tptp.e_1 tptp.e_2))) :rule implies :premises (t51))
% 0.16/0.51  (step t53 (cl (or (not (tptp.product tptp.e_1 tptp.e_1 tptp.e_1)) (not (tptp.product tptp.e_2 tptp.e_1 tptp.e_1)) (tptp.equalish tptp.e_1 tptp.e_2))) :rule resolution :premises (t52 a29))
% 0.16/0.51  (step t54 (cl (not (tptp.product tptp.e_2 tptp.e_1 tptp.e_1))) :rule resolution :premises (t45 a14 t21 t53))
% 0.16/0.51  (step t55 (cl (not (or (not (tptp.product tptp.e_2 tptp.e_2 tptp.e_2)) (not (tptp.product tptp.e_2 tptp.e_1 tptp.e_2)) (tptp.equalish tptp.e_2 tptp.e_1))) (not (tptp.product tptp.e_2 tptp.e_2 tptp.e_2)) (not (tptp.product tptp.e_2 tptp.e_1 tptp.e_2)) (tptp.equalish tptp.e_2 tptp.e_1)) :rule or_pos)
% 0.16/0.51  (step t56 (cl (tptp.equalish tptp.e_2 tptp.e_1) (not (tptp.product tptp.e_2 tptp.e_2 tptp.e_2)) (not (tptp.product tptp.e_2 tptp.e_1 tptp.e_2)) (not (or (not (tptp.product tptp.e_2 tptp.e_2 tptp.e_2)) (not (tptp.product tptp.e_2 tptp.e_1 tptp.e_2)) (tptp.equalish tptp.e_2 tptp.e_1)))) :rule reordering :premises (t55))
% 0.16/0.51  (step t57 (cl (=> (forall ((X $$unsorted) (W $$unsorted) (Y $$unsorted) (Z $$unsorted)) (or (not (tptp.product X W Y)) (not (tptp.product X Z Y)) (tptp.equalish W Z))) (or (not (tptp.product tptp.e_2 tptp.e_2 tptp.e_2)) (not (tptp.product tptp.e_2 tptp.e_1 tptp.e_2)) (tptp.equalish tptp.e_2 tptp.e_1))) (forall ((X $$unsorted) (W $$unsorted) (Y $$unsorted) (Z $$unsorted)) (or (not (tptp.product X W Y)) (not (tptp.product X Z Y)) (tptp.equalish W Z)))) :rule implies_neg1)
% 0.16/0.51  (anchor :step t58)
% 0.16/0.51  (assume t58.a0 (forall ((X $$unsorted) (W $$unsorted) (Y $$unsorted) (Z $$unsorted)) (or (not (tptp.product X W Y)) (not (tptp.product X Z Y)) (tptp.equalish W Z))))
% 0.16/0.51  (step t58.t1 (cl (or (not (forall ((X $$unsorted) (W $$unsorted) (Y $$unsorted) (Z $$unsorted)) (or (not (tptp.product X W Y)) (not (tptp.product X Z Y)) (tptp.equalish W Z)))) (or (not (tptp.product tptp.e_2 tptp.e_2 tptp.e_2)) (not (tptp.product tptp.e_2 tptp.e_1 tptp.e_2)) (tptp.equalish tptp.e_2 tptp.e_1)))) :rule forall_inst :args ((:= X tptp.e_2) (:= W tptp.e_2) (:= Y tptp.e_2) (:= Z tptp.e_1)))
% 0.16/0.51  (step t58.t2 (cl (not (forall ((X $$unsorted) (W $$unsorted) (Y $$unsorted) (Z $$unsorted)) (or (not (tptp.product X W Y)) (not (tptp.product X Z Y)) (tptp.equalish W Z)))) (or (not (tptp.product tptp.e_2 tptp.e_2 tptp.e_2)) (not (tptp.product tptp.e_2 tptp.e_1 tptp.e_2)) (tptp.equalish tptp.e_2 tptp.e_1))) :rule or :premises (t58.t1))
% 0.16/0.51  (step t58.t3 (cl (or (not (tptp.product tptp.e_2 tptp.e_2 tptp.e_2)) (not (tptp.product tptp.e_2 tptp.e_1 tptp.e_2)) (tptp.equalish tptp.e_2 tptp.e_1))) :rule resolution :premises (t58.t2 t58.a0))
% 0.16/0.51  (step t58 (cl (not (forall ((X $$unsorted) (W $$unsorted) (Y $$unsorted) (Z $$unsorted)) (or (not (tptp.product X W Y)) (not (tptp.product X Z Y)) (tptp.equalish W Z)))) (or (not (tptp.product tptp.e_2 tptp.e_2 tptp.e_2)) (not (tptp.product tptp.e_2 tptp.e_1 tptp.e_2)) (tptp.equalish tptp.e_2 tptp.e_1))) :rule subproof :discharge (t58.a0))
% 0.16/0.51  (step t59 (cl (=> (forall ((X $$unsorted) (W $$unsorted) (Y $$unsorted) (Z $$unsorted)) (or (not (tptp.product X W Y)) (not (tptp.product X Z Y)) (tptp.equalish W Z))) (or (not (tptp.product tptp.e_2 tptp.e_2 tptp.e_2)) (not (tptp.product tptp.e_2 tptp.e_1 tptp.e_2)) (tptp.equalish tptp.e_2 tptp.e_1))) (or (not (tptp.product tptp.e_2 tptp.e_2 tptp.e_2)) (not (tptp.product tptp.e_2 tptp.e_1 tptp.e_2)) (tptp.equalish tptp.e_2 tptp.e_1))) :rule resolution :premises (t57 t58))
% 0.16/0.51  (step t60 (cl (=> (forall ((X $$unsorted) (W $$unsorted) (Y $$unsorted) (Z $$unsorted)) (or (not (tptp.product X W Y)) (not (tptp.product X Z Y)) (tptp.equalish W Z))) (or (not (tptp.product tptp.e_2 tptp.e_2 tptp.e_2)) (not (tptp.product tptp.e_2 tptp.e_1 tptp.e_2)) (tptp.equalish tptp.e_2 tptp.e_1))) (not (or (not (tptp.product tptp.e_2 tptp.e_2 tptp.e_2)) (not (tptp.product tptp.e_2 tptp.e_1 tptp.e_2)) (tptp.equalish tptp.e_2 tptp.e_1)))) :rule implies_neg2)
% 0.16/0.51  (step t61 (cl (=> (forall ((X $$unsorted) (W $$unsorted) (Y $$unsorted) (Z $$unsorted)) (or (not (tptp.product X W Y)) (not (tptp.product X Z Y)) (tptp.equalish W Z))) (or (not (tptp.product tptp.e_2 tptp.e_2 tptp.e_2)) (not (tptp.product tptp.e_2 tptp.e_1 tptp.e_2)) (tptp.equalish tptp.e_2 tptp.e_1))) (=> (forall ((X $$unsorted) (W $$unsorted) (Y $$unsorted) (Z $$unsorted)) (or (not (tptp.product X W Y)) (not (tptp.product X Z Y)) (tptp.equalish W Z))) (or (not (tptp.product tptp.e_2 tptp.e_2 tptp.e_2)) (not (tptp.product tptp.e_2 tptp.e_1 tptp.e_2)) (tptp.equalish tptp.e_2 tptp.e_1)))) :rule resolution :premises (t59 t60))
% 0.16/0.51  (step t62 (cl (=> (forall ((X $$unsorted) (W $$unsorted) (Y $$unsorted) (Z $$unsorted)) (or (not (tptp.product X W Y)) (not (tptp.product X Z Y)) (tptp.equalish W Z))) (or (not (tptp.product tptp.e_2 tptp.e_2 tptp.e_2)) (not (tptp.product tptp.e_2 tptp.e_1 tptp.e_2)) (tptp.equalish tptp.e_2 tptp.e_1)))) :rule contraction :premises (t61))
% 0.16/0.51  (step t63 (cl (not (forall ((X $$unsorted) (W $$unsorted) (Y $$unsorted) (Z $$unsorted)) (or (not (tptp.product X W Y)) (not (tptp.product X Z Y)) (tptp.equalish W Z)))) (or (not (tptp.product tptp.e_2 tptp.e_2 tptp.e_2)) (not (tptp.product tptp.e_2 tptp.e_1 tptp.e_2)) (tptp.equalish tptp.e_2 tptp.e_1))) :rule implies :premises (t62))
% 0.16/0.51  (step t64 (cl (or (not (tptp.product tptp.e_2 tptp.e_2 tptp.e_2)) (not (tptp.product tptp.e_2 tptp.e_1 tptp.e_2)) (tptp.equalish tptp.e_2 tptp.e_1))) :rule resolution :premises (t63 a28))
% 0.16/0.51  (step t65 (cl (not (tptp.product tptp.e_2 tptp.e_1 tptp.e_2))) :rule resolution :premises (t56 a17 t41 t64))
% 0.16/0.51  (step t66 (cl (not (or (not (tptp.product tptp.e_2 tptp.e_1 tptp.e_4)) (not (tptp.next tptp.e_2 tptp.e_3)) (not (tptp.greater tptp.e_4 tptp.e_3)))) (not (tptp.product tptp.e_2 tptp.e_1 tptp.e_4)) (not (tptp.next tptp.e_2 tptp.e_3)) (not (tptp.greater tptp.e_4 tptp.e_3))) :rule or_pos)
% 0.16/0.51  (step t67 (cl (not (tptp.next tptp.e_2 tptp.e_3)) (not (tptp.greater tptp.e_4 tptp.e_3)) (not (tptp.product tptp.e_2 tptp.e_1 tptp.e_4)) (not (or (not (tptp.product tptp.e_2 tptp.e_1 tptp.e_4)) (not (tptp.next tptp.e_2 tptp.e_3)) (not (tptp.greater tptp.e_4 tptp.e_3))))) :rule reordering :premises (t66))
% 0.16/0.51  (step t68 (cl (=> (forall ((X $$unsorted) (Y $$unsorted) (X1 $$unsorted)) (or (not (tptp.product X tptp.e_1 Y)) (not (tptp.next X X1)) (not (tptp.greater Y X1)))) (or (not (tptp.product tptp.e_2 tptp.e_1 tptp.e_4)) (not (tptp.next tptp.e_2 tptp.e_3)) (not (tptp.greater tptp.e_4 tptp.e_3)))) (forall ((X $$unsorted) (Y $$unsorted) (X1 $$unsorted)) (or (not (tptp.product X tptp.e_1 Y)) (not (tptp.next X X1)) (not (tptp.greater Y X1))))) :rule implies_neg1)
% 0.16/0.51  (anchor :step t69)
% 0.16/0.51  (assume t69.a0 (forall ((X $$unsorted) (Y $$unsorted) (X1 $$unsorted)) (or (not (tptp.product X tptp.e_1 Y)) (not (tptp.next X X1)) (not (tptp.greater Y X1)))))
% 0.16/0.51  (step t69.t1 (cl (or (not (forall ((X $$unsorted) (Y $$unsorted) (X1 $$unsorted)) (or (not (tptp.product X tptp.e_1 Y)) (not (tptp.next X X1)) (not (tptp.greater Y X1))))) (or (not (tptp.product tptp.e_2 tptp.e_1 tptp.e_4)) (not (tptp.next tptp.e_2 tptp.e_3)) (not (tptp.greater tptp.e_4 tptp.e_3))))) :rule forall_inst :args ((:= X tptp.e_2) (:= Y tptp.e_4) (:= X1 tptp.e_3)))
% 0.16/0.51  (step t69.t2 (cl (not (forall ((X $$unsorted) (Y $$unsorted) (X1 $$unsorted)) (or (not (tptp.product X tptp.e_1 Y)) (not (tptp.next X X1)) (not (tptp.greater Y X1))))) (or (not (tptp.product tptp.e_2 tptp.e_1 tptp.e_4)) (not (tptp.next tptp.e_2 tptp.e_3)) (not (tptp.greater tptp.e_4 tptp.e_3)))) :rule or :premises (t69.t1))
% 0.16/0.51  (step t69.t3 (cl (or (not (tptp.product tptp.e_2 tptp.e_1 tptp.e_4)) (not (tptp.next tptp.e_2 tptp.e_3)) (not (tptp.greater tptp.e_4 tptp.e_3)))) :rule resolution :premises (t69.t2 t69.a0))
% 0.16/0.51  (step t69 (cl (not (forall ((X $$unsorted) (Y $$unsorted) (X1 $$unsorted)) (or (not (tptp.product X tptp.e_1 Y)) (not (tptp.next X X1)) (not (tptp.greater Y X1))))) (or (not (tptp.product tptp.e_2 tptp.e_1 tptp.e_4)) (not (tptp.next tptp.e_2 tptp.e_3)) (not (tptp.greater tptp.e_4 tptp.e_3)))) :rule subproof :discharge (t69.a0))
% 0.16/0.51  (step t70 (cl (=> (forall ((X $$unsorted) (Y $$unsorted) (X1 $$unsorted)) (or (not (tptp.product X tptp.e_1 Y)) (not (tptp.next X X1)) (not (tptp.greater Y X1)))) (or (not (tptp.product tptp.e_2 tptp.e_1 tptp.e_4)) (not (tptp.next tptp.e_2 tptp.e_3)) (not (tptp.greater tptp.e_4 tptp.e_3)))) (or (not (tptp.product tptp.e_2 tptp.e_1 tptp.e_4)) (not (tptp.next tptp.e_2 tptp.e_3)) (not (tptp.greater tptp.e_4 tptp.e_3)))) :rule resolution :premises (t68 t69))
% 0.16/0.51  (step t71 (cl (=> (forall ((X $$unsorted) (Y $$unsorted) (X1 $$unsorted)) (or (not (tptp.product X tptp.e_1 Y)) (not (tptp.next X X1)) (not (tptp.greater Y X1)))) (or (not (tptp.product tptp.e_2 tptp.e_1 tptp.e_4)) (not (tptp.next tptp.e_2 tptp.e_3)) (not (tptp.greater tptp.e_4 tptp.e_3)))) (not (or (not (tptp.product tptp.e_2 tptp.e_1 tptp.e_4)) (not (tptp.next tptp.e_2 tptp.e_3)) (not (tptp.greater tptp.e_4 tptp.e_3))))) :rule implies_neg2)
% 0.16/0.51  (step t72 (cl (=> (forall ((X $$unsorted) (Y $$unsorted) (X1 $$unsorted)) (or (not (tptp.product X tptp.e_1 Y)) (not (tptp.next X X1)) (not (tptp.greater Y X1)))) (or (not (tptp.product tptp.e_2 tptp.e_1 tptp.e_4)) (not (tptp.next tptp.e_2 tptp.e_3)) (not (tptp.greater tptp.e_4 tptp.e_3)))) (=> (forall ((X $$unsorted) (Y $$unsorted) (X1 $$unsorted)) (or (not (tptp.product X tptp.e_1 Y)) (not (tptp.next X X1)) (not (tptp.greater Y X1)))) (or (not (tptp.product tptp.e_2 tptp.e_1 tptp.e_4)) (not (tptp.next tptp.e_2 tptp.e_3)) (not (tptp.greater tptp.e_4 tptp.e_3))))) :rule resolution :premises (t70 t71))
% 0.16/0.51  (step t73 (cl (=> (forall ((X $$unsorted) (Y $$unsorted) (X1 $$unsorted)) (or (not (tptp.product X tptp.e_1 Y)) (not (tptp.next X X1)) (not (tptp.greater Y X1)))) (or (not (tptp.product tptp.e_2 tptp.e_1 tptp.e_4)) (not (tptp.next tptp.e_2 tptp.e_3)) (not (tptp.greater tptp.e_4 tptp.e_3))))) :rule contraction :premises (t72))
% 0.16/0.51  (step t74 (cl (not (forall ((X $$unsorted) (Y $$unsorted) (X1 $$unsorted)) (or (not (tptp.product X tptp.e_1 Y)) (not (tptp.next X X1)) (not (tptp.greater Y X1))))) (or (not (tptp.product tptp.e_2 tptp.e_1 tptp.e_4)) (not (tptp.next tptp.e_2 tptp.e_3)) (not (tptp.greater tptp.e_4 tptp.e_3)))) :rule implies :premises (t73))
% 0.16/0.51  (step t75 (cl (or (not (tptp.product tptp.e_2 tptp.e_1 tptp.e_4)) (not (tptp.next tptp.e_2 tptp.e_3)) (not (tptp.greater tptp.e_4 tptp.e_3)))) :rule resolution :premises (t74 a9))
% 0.16/0.51  (step t76 (cl (not (tptp.product tptp.e_2 tptp.e_1 tptp.e_4))) :rule resolution :premises (t67 a1 a8 t75))
% 0.16/0.51  (step t77 (cl (=> (forall ((X $$unsorted) (Y $$unsorted)) (or (not (tptp.group_element X)) (not (tptp.group_element Y)) (tptp.product X Y tptp.e_1) (tptp.product X Y tptp.e_2) (tptp.product X Y tptp.e_3) (tptp.product X Y tptp.e_4))) (or (not (tptp.group_element tptp.e_2)) (not (tptp.group_element tptp.e_1)) (tptp.product tptp.e_2 tptp.e_1 tptp.e_1) (tptp.product tptp.e_2 tptp.e_1 tptp.e_2) (tptp.product tptp.e_2 tptp.e_1 tptp.e_3) (tptp.product tptp.e_2 tptp.e_1 tptp.e_4))) (forall ((X $$unsorted) (Y $$unsorted)) (or (not (tptp.group_element X)) (not (tptp.group_element Y)) (tptp.product X Y tptp.e_1) (tptp.product X Y tptp.e_2) (tptp.product X Y tptp.e_3) (tptp.product X Y tptp.e_4)))) :rule implies_neg1)
% 0.16/0.51  (anchor :step t78)
% 0.16/0.51  (assume t78.a0 (forall ((X $$unsorted) (Y $$unsorted)) (or (not (tptp.group_element X)) (not (tptp.group_element Y)) (tptp.product X Y tptp.e_1) (tptp.product X Y tptp.e_2) (tptp.product X Y tptp.e_3) (tptp.product X Y tptp.e_4))))
% 0.16/0.51  (step t78.t1 (cl (or (not (forall ((X $$unsorted) (Y $$unsorted)) (or (not (tptp.group_element X)) (not (tptp.group_element Y)) (tptp.product X Y tptp.e_1) (tptp.product X Y tptp.e_2) (tptp.product X Y tptp.e_3) (tptp.product X Y tptp.e_4)))) (or (not (tptp.group_element tptp.e_2)) (not (tptp.group_element tptp.e_1)) (tptp.product tptp.e_2 tptp.e_1 tptp.e_1) (tptp.product tptp.e_2 tptp.e_1 tptp.e_2) (tptp.product tptp.e_2 tptp.e_1 tptp.e_3) (tptp.product tptp.e_2 tptp.e_1 tptp.e_4)))) :rule forall_inst :args ((:= X tptp.e_2) (:= Y tptp.e_1)))
% 0.16/0.51  (step t78.t2 (cl (not (forall ((X $$unsorted) (Y $$unsorted)) (or (not (tptp.group_element X)) (not (tptp.group_element Y)) (tptp.product X Y tptp.e_1) (tptp.product X Y tptp.e_2) (tptp.product X Y tptp.e_3) (tptp.product X Y tptp.e_4)))) (or (not (tptp.group_element tptp.e_2)) (not (tptp.group_element tptp.e_1)) (tptp.product tptp.e_2 tptp.e_1 tptp.e_1) (tptp.product tptp.e_2 tptp.e_1 tptp.e_2) (tptp.product tptp.e_2 tptp.e_1 tptp.e_3) (tptp.product tptp.e_2 tptp.e_1 tptp.e_4))) :rule or :premises (t78.t1))
% 0.16/0.51  (step t78.t3 (cl (or (not (tptp.group_element tptp.e_2)) (not (tptp.group_element tptp.e_1)) (tptp.product tptp.e_2 tptp.e_1 tptp.e_1) (tptp.product tptp.e_2 tptp.e_1 tptp.e_2) (tptp.product tptp.e_2 tptp.e_1 tptp.e_3) (tptp.product tptp.e_2 tptp.e_1 tptp.e_4))) :rule resolution :premises (t78.t2 t78.a0))
% 0.16/0.51  (step t78 (cl (not (forall ((X $$unsorted) (Y $$unsorted)) (or (not (tptp.group_element X)) (not (tptp.group_element Y)) (tptp.product X Y tptp.e_1) (tptp.product X Y tptp.e_2) (tptp.product X Y tptp.e_3) (tptp.product X Y tptp.e_4)))) (or (not (tptp.group_element tptp.e_2)) (not (tptp.group_element tptp.e_1)) (tptp.product tptp.e_2 tptp.e_1 tptp.e_1) (tptp.product tptp.e_2 tptp.e_1 tptp.e_2) (tptp.product tptp.e_2 tptp.e_1 tptp.e_3) (tptp.product tptp.e_2 tptp.e_1 tptp.e_4))) :rule subproof :discharge (t78.a0))
% 0.16/0.51  (step t79 (cl (=> (forall ((X $$unsorted) (Y $$unsorted)) (or (not (tptp.group_element X)) (not (tptp.group_element Y)) (tptp.product X Y tptp.e_1) (tptp.product X Y tptp.e_2) (tptp.product X Y tptp.e_3) (tptp.product X Y tptp.e_4))) (or (not (tptp.group_element tptp.e_2)) (not (tptp.group_element tptp.e_1)) (tptp.product tptp.e_2 tptp.e_1 tptp.e_1) (tptp.product tptp.e_2 tptp.e_1 tptp.e_2) (tptp.product tptp.e_2 tptp.e_1 tptp.e_3) (tptp.product tptp.e_2 tptp.e_1 tptp.e_4))) (or (not (tptp.group_element tptp.e_2)) (not (tptp.group_element tptp.e_1)) (tptp.product tptp.e_2 tptp.e_1 tptp.e_1) (tptp.product tptp.e_2 tptp.e_1 tptp.e_2) (tptp.product tptp.e_2 tptp.e_1 tptp.e_3) (tptp.product tptp.e_2 tptp.e_1 tptp.e_4))) :rule resolution :premises (t77 t78))
% 0.16/0.51  (step t80 (cl (=> (forall ((X $$unsorted) (Y $$unsorted)) (or (not (tptp.group_element X)) (not (tptp.group_element Y)) (tptp.product X Y tptp.e_1) (tptp.product X Y tptp.e_2) (tptp.product X Y tptp.e_3) (tptp.product X Y tptp.e_4))) (or (not (tptp.group_element tptp.e_2)) (not (tptp.group_element tptp.e_1)) (tptp.product tptp.e_2 tptp.e_1 tptp.e_1) (tptp.product tptp.e_2 tptp.e_1 tptp.e_2) (tptp.product tptp.e_2 tptp.e_1 tptp.e_3) (tptp.product tptp.e_2 tptp.e_1 tptp.e_4))) (not (or (not (tptp.group_element tptp.e_2)) (not (tptp.group_element tptp.e_1)) (tptp.product tptp.e_2 tptp.e_1 tptp.e_1) (tptp.product tptp.e_2 tptp.e_1 tptp.e_2) (tptp.product tptp.e_2 tptp.e_1 tptp.e_3) (tptp.product tptp.e_2 tptp.e_1 tptp.e_4)))) :rule implies_neg2)
% 0.16/0.51  (step t81 (cl (=> (forall ((X $$unsorted) (Y $$unsorted)) (or (not (tptp.group_element X)) (not (tptp.group_element Y)) (tptp.product X Y tptp.e_1) (tptp.product X Y tptp.e_2) (tptp.product X Y tptp.e_3) (tptp.product X Y tptp.e_4))) (or (not (tptp.group_element tptp.e_2)) (not (tptp.group_element tptp.e_1)) (tptp.product tptp.e_2 tptp.e_1 tptp.e_1) (tptp.product tptp.e_2 tptp.e_1 tptp.e_2) (tptp.product tptp.e_2 tptp.e_1 tptp.e_3) (tptp.product tptp.e_2 tptp.e_1 tptp.e_4))) (=> (forall ((X $$unsorted) (Y $$unsorted)) (or (not (tptp.group_element X)) (not (tptp.group_element Y)) (tptp.product X Y tptp.e_1) (tptp.product X Y tptp.e_2) (tptp.product X Y tptp.e_3) (tptp.product X Y tptp.e_4))) (or (not (tptp.group_element tptp.e_2)) (not (tptp.group_element tptp.e_1)) (tptp.product tptp.e_2 tptp.e_1 tptp.e_1) (tptp.product tptp.e_2 tptp.e_1 tptp.e_2) (tptp.product tptp.e_2 tptp.e_1 tptp.e_3) (tptp.product tptp.e_2 tptp.e_1 tptp.e_4)))) :rule resolution :premises (t79 t80))
% 0.16/0.51  (step t82 (cl (=> (forall ((X $$unsorted) (Y $$unsorted)) (or (not (tptp.group_element X)) (not (tptp.group_element Y)) (tptp.product X Y tptp.e_1) (tptp.product X Y tptp.e_2) (tptp.product X Y tptp.e_3) (tptp.product X Y tptp.e_4))) (or (not (tptp.group_element tptp.e_2)) (not (tptp.group_element tptp.e_1)) (tptp.product tptp.e_2 tptp.e_1 tptp.e_1) (tptp.product tptp.e_2 tptp.e_1 tptp.e_2) (tptp.product tptp.e_2 tptp.e_1 tptp.e_3) (tptp.product tptp.e_2 tptp.e_1 tptp.e_4)))) :rule contraction :premises (t81))
% 0.16/0.51  (step t83 (cl (not (forall ((X $$unsorted) (Y $$unsorted)) (or (not (tptp.group_element X)) (not (tptp.group_element Y)) (tptp.product X Y tptp.e_1) (tptp.product X Y tptp.e_2) (tptp.product X Y tptp.e_3) (tptp.product X Y tptp.e_4)))) (or (not (tptp.group_element tptp.e_2)) (not (tptp.group_element tptp.e_1)) (tptp.product tptp.e_2 tptp.e_1 tptp.e_1) (tptp.product tptp.e_2 tptp.e_1 tptp.e_2) (tptp.product tptp.e_2 tptp.e_1 tptp.e_3) (tptp.product tptp.e_2 tptp.e_1 tptp.e_4))) :rule implies :premises (t82))
% 0.16/0.51  (step t84 (cl (or (not (tptp.group_element tptp.e_2)) (not (tptp.group_element tptp.e_1)) (tptp.product tptp.e_2 tptp.e_1 tptp.e_1) (tptp.product tptp.e_2 tptp.e_1 tptp.e_2) (tptp.product tptp.e_2 tptp.e_1 tptp.e_3) (tptp.product tptp.e_2 tptp.e_1 tptp.e_4))) :rule resolution :premises (t83 a26))
% 0.16/0.51  (step t85 (cl (tptp.product tptp.e_2 tptp.e_1 tptp.e_3)) :rule resolution :premises (t43 a10 a11 t54 t65 t76 t84))
% 0.16/0.51  (step t86 (cl (=> (forall ((X1 $$unsorted) (Y1 $$unsorted) (Z1 $$unsorted) (X2 $$unsorted) (Y2 $$unsorted) (Z2 $$unsorted)) (or (not (tptp.product X1 Y1 Z1)) (not (tptp.product X2 Y2 Z1)) (not (tptp.product Z2 X1 Y1)) (not (tptp.product Z2 X2 Y2)) (tptp.equalish X1 X2))) (or (not (tptp.product tptp.e_1 tptp.e_3 tptp.e_2)) (not (tptp.product tptp.e_2 tptp.e_2 tptp.e_2)) (not (tptp.product tptp.e_2 tptp.e_1 tptp.e_3)) (not (tptp.product tptp.e_2 tptp.e_2 tptp.e_2)) (tptp.equalish tptp.e_1 tptp.e_2))) (forall ((X1 $$unsorted) (Y1 $$unsorted) (Z1 $$unsorted) (X2 $$unsorted) (Y2 $$unsorted) (Z2 $$unsorted)) (or (not (tptp.product X1 Y1 Z1)) (not (tptp.product X2 Y2 Z1)) (not (tptp.product Z2 X1 Y1)) (not (tptp.product Z2 X2 Y2)) (tptp.equalish X1 X2)))) :rule implies_neg1)
% 0.16/0.51  (anchor :step t87)
% 0.16/0.51  (assume t87.a0 (forall ((X1 $$unsorted) (Y1 $$unsorted) (Z1 $$unsorted) (X2 $$unsorted) (Y2 $$unsorted) (Z2 $$unsorted)) (or (not (tptp.product X1 Y1 Z1)) (not (tptp.product X2 Y2 Z1)) (not (tptp.product Z2 X1 Y1)) (not (tptp.product Z2 X2 Y2)) (tptp.equalish X1 X2))))
% 0.16/0.51  (step t87.t1 (cl (or (not (forall ((X1 $$unsorted) (Y1 $$unsorted) (Z1 $$unsorted) (X2 $$unsorted) (Y2 $$unsorted) (Z2 $$unsorted)) (or (not (tptp.product X1 Y1 Z1)) (not (tptp.product X2 Y2 Z1)) (not (tptp.product Z2 X1 Y1)) (not (tptp.product Z2 X2 Y2)) (tptp.equalish X1 X2)))) (or (not (tptp.product tptp.e_1 tptp.e_3 tptp.e_2)) (not (tptp.product tptp.e_2 tptp.e_2 tptp.e_2)) (not (tptp.product tptp.e_2 tptp.e_1 tptp.e_3)) (not (tptp.product tptp.e_2 tptp.e_2 tptp.e_2)) (tptp.equalish tptp.e_1 tptp.e_2)))) :rule forall_inst :args ((:= X1 tptp.e_1) (:= Y1 tptp.e_3) (:= Z1 tptp.e_2) (:= X2 tptp.e_2) (:= Y2 tptp.e_2) (:= Z2 tptp.e_2)))
% 0.16/0.51  (step t87.t2 (cl (not (forall ((X1 $$unsorted) (Y1 $$unsorted) (Z1 $$unsorted) (X2 $$unsorted) (Y2 $$unsorted) (Z2 $$unsorted)) (or (not (tptp.product X1 Y1 Z1)) (not (tptp.product X2 Y2 Z1)) (not (tptp.product Z2 X1 Y1)) (not (tptp.product Z2 X2 Y2)) (tptp.equalish X1 X2)))) (or (not (tptp.product tptp.e_1 tptp.e_3 tptp.e_2)) (not (tptp.product tptp.e_2 tptp.e_2 tptp.e_2)) (not (tptp.product tptp.e_2 tptp.e_1 tptp.e_3)) (not (tptp.product tptp.e_2 tptp.e_2 tptp.e_2)) (tptp.equalish tptp.e_1 tptp.e_2))) :rule or :premises (t87.t1))
% 0.16/0.51  (step t87.t3 (cl (or (not (tptp.product tptp.e_1 tptp.e_3 tptp.e_2)) (not (tptp.product tptp.e_2 tptp.e_2 tptp.e_2)) (not (tptp.product tptp.e_2 tptp.e_1 tptp.e_3)) (not (tptp.product tptp.e_2 tptp.e_2 tptp.e_2)) (tptp.equalish tptp.e_1 tptp.e_2))) :rule resolution :premises (t87.t2 t87.a0))
% 0.16/0.51  (step t87 (cl (not (forall ((X1 $$unsorted) (Y1 $$unsorted) (Z1 $$unsorted) (X2 $$unsorted) (Y2 $$unsorted) (Z2 $$unsorted)) (or (not (tptp.product X1 Y1 Z1)) (not (tptp.product X2 Y2 Z1)) (not (tptp.product Z2 X1 Y1)) (not (tptp.product Z2 X2 Y2)) (tptp.equalish X1 X2)))) (or (not (tptp.product tptp.e_1 tptp.e_3 tptp.e_2)) (not (tptp.product tptp.e_2 tptp.e_2 tptp.e_2)) (not (tptp.product tptp.e_2 tptp.e_1 tptp.e_3)) (not (tptp.product tptp.e_2 tptp.e_2 tptp.e_2)) (tptp.equalish tptp.e_1 tptp.e_2))) :rule subproof :discharge (t87.a0))
% 0.16/0.51  (step t88 (cl (=> (forall ((X1 $$unsorted) (Y1 $$unsorted) (Z1 $$unsorted) (X2 $$unsorted) (Y2 $$unsorted) (Z2 $$unsorted)) (or (not (tptp.product X1 Y1 Z1)) (not (tptp.product X2 Y2 Z1)) (not (tptp.product Z2 X1 Y1)) (not (tptp.product Z2 X2 Y2)) (tptp.equalish X1 X2))) (or (not (tptp.product tptp.e_1 tptp.e_3 tptp.e_2)) (not (tptp.product tptp.e_2 tptp.e_2 tptp.e_2)) (not (tptp.product tptp.e_2 tptp.e_1 tptp.e_3)) (not (tptp.product tptp.e_2 tptp.e_2 tptp.e_2)) (tptp.equalish tptp.e_1 tptp.e_2))) (or (not (tptp.product tptp.e_1 tptp.e_3 tptp.e_2)) (not (tptp.product tptp.e_2 tptp.e_2 tptp.e_2)) (not (tptp.product tptp.e_2 tptp.e_1 tptp.e_3)) (not (tptp.product tptp.e_2 tptp.e_2 tptp.e_2)) (tptp.equalish tptp.e_1 tptp.e_2))) :rule resolution :premises (t86 t87))
% 0.16/0.51  (step t89 (cl (=> (forall ((X1 $$unsorted) (Y1 $$unsorted) (Z1 $$unsorted) (X2 $$unsorted) (Y2 $$unsorted) (Z2 $$unsorted)) (or (not (tptp.product X1 Y1 Z1)) (not (tptp.product X2 Y2 Z1)) (not (tptp.product Z2 X1 Y1)) (not (tptp.product Z2 X2 Y2)) (tptp.equalish X1 X2))) (or (not (tptp.product tptp.e_1 tptp.e_3 tptp.e_2)) (not (tptp.product tptp.e_2 tptp.e_2 tptp.e_2)) (not (tptp.product tptp.e_2 tptp.e_1 tptp.e_3)) (not (tptp.product tptp.e_2 tptp.e_2 tptp.e_2)) (tptp.equalish tptp.e_1 tptp.e_2))) (not (or (not (tptp.product tptp.e_1 tptp.e_3 tptp.e_2)) (not (tptp.product tptp.e_2 tptp.e_2 tptp.e_2)) (not (tptp.product tptp.e_2 tptp.e_1 tptp.e_3)) (not (tptp.product tptp.e_2 tptp.e_2 tptp.e_2)) (tptp.equalish tptp.e_1 tptp.e_2)))) :rule implies_neg2)
% 0.16/0.51  (step t90 (cl (=> (forall ((X1 $$unsorted) (Y1 $$unsorted) (Z1 $$unsorted) (X2 $$unsorted) (Y2 $$unsorted) (Z2 $$unsorted)) (or (not (tptp.product X1 Y1 Z1)) (not (tptp.product X2 Y2 Z1)) (not (tptp.product Z2 X1 Y1)) (not (tptp.product Z2 X2 Y2)) (tptp.equalish X1 X2))) (or (not (tptp.product tptp.e_1 tptp.e_3 tptp.e_2)) (not (tptp.product tptp.e_2 tptp.e_2 tptp.e_2)) (not (tptp.product tptp.e_2 tptp.e_1 tptp.e_3)) (not (tptp.product tptp.e_2 tptp.e_2 tptp.e_2)) (tptp.equalish tptp.e_1 tptp.e_2))) (=> (forall ((X1 $$unsorted) (Y1 $$unsorted) (Z1 $$unsorted) (X2 $$unsorted) (Y2 $$unsorted) (Z2 $$unsorted)) (or (not (tptp.product X1 Y1 Z1)) (not (tptp.product X2 Y2 Z1)) (not (tptp.product Z2 X1 Y1)) (not (tptp.product Z2 X2 Y2)) (tptp.equalish X1 X2))) (or (not (tptp.product tptp.e_1 tptp.e_3 tptp.e_2)) (not (tptp.product tptp.e_2 tptp.e_2 tptp.e_2)) (not (tptp.product tptp.e_2 tptp.e_1 tptp.e_3)) (not (tptp.product tptp.e_2 tptp.e_2 tptp.e_2)) (tptp.equalish tptp.e_1 tptp.e_2)))) :rule resolution :premises (t88 t89))
% 0.16/0.51  (step t91 (cl (=> (forall ((X1 $$unsorted) (Y1 $$unsorted) (Z1 $$unsorted) (X2 $$unsorted) (Y2 $$unsorted) (Z2 $$unsorted)) (or (not (tptp.product X1 Y1 Z1)) (not (tptp.product X2 Y2 Z1)) (not (tptp.product Z2 X1 Y1)) (not (tptp.product Z2 X2 Y2)) (tptp.equalish X1 X2))) (or (not (tptp.product tptp.e_1 tptp.e_3 tptp.e_2)) (not (tptp.product tptp.e_2 tptp.e_2 tptp.e_2)) (not (tptp.product tptp.e_2 tptp.e_1 tptp.e_3)) (not (tptp.product tptp.e_2 tptp.e_2 tptp.e_2)) (tptp.equalish tptp.e_1 tptp.e_2)))) :rule contraction :premises (t90))
% 0.16/0.51  (step t92 (cl (not (forall ((X1 $$unsorted) (Y1 $$unsorted) (Z1 $$unsorted) (X2 $$unsorted) (Y2 $$unsorted) (Z2 $$unsorted)) (or (not (tptp.product X1 Y1 Z1)) (not (tptp.product X2 Y2 Z1)) (not (tptp.product Z2 X1 Y1)) (not (tptp.product Z2 X2 Y2)) (tptp.equalish X1 X2)))) (or (not (tptp.product tptp.e_1 tptp.e_3 tptp.e_2)) (not (tptp.product tptp.e_2 tptp.e_2 tptp.e_2)) (not (tptp.product tptp.e_2 tptp.e_1 tptp.e_3)) (not (tptp.product tptp.e_2 tptp.e_2 tptp.e_2)) (tptp.equalish tptp.e_1 tptp.e_2))) :rule implies :premises (t91))
% 0.16/0.51  (step t93 (cl (or (not (tptp.product tptp.e_1 tptp.e_3 tptp.e_2)) (not (tptp.product tptp.e_2 tptp.e_2 tptp.e_2)) (not (tptp.product tptp.e_2 tptp.e_1 tptp.e_3)) (not (tptp.product tptp.e_2 tptp.e_2 tptp.e_2)) (tptp.equalish tptp.e_1 tptp.e_2))) :rule resolution :premises (t92 a31))
% 0.16/0.51  (step t94 (cl (not (tptp.product tptp.e_1 tptp.e_3 tptp.e_2))) :rule resolution :premises (t33 a14 t41 t85 t93))
% 0.16/0.51  (step t95 (cl (not (or (not (tptp.product tptp.e_1 tptp.e_3 tptp.e_4)) (not (tptp.product tptp.e_2 tptp.e_3 tptp.e_4)) (tptp.equalish tptp.e_1 tptp.e_2))) (not (tptp.product tptp.e_1 tptp.e_3 tptp.e_4)) (not (tptp.product tptp.e_2 tptp.e_3 tptp.e_4)) (tptp.equalish tptp.e_1 tptp.e_2)) :rule or_pos)
% 0.16/0.51  (step t96 (cl (tptp.equalish tptp.e_1 tptp.e_2) (not (tptp.product tptp.e_1 tptp.e_3 tptp.e_4)) (not (tptp.product tptp.e_2 tptp.e_3 tptp.e_4)) (not (or (not (tptp.product tptp.e_1 tptp.e_3 tptp.e_4)) (not (tptp.product tptp.e_2 tptp.e_3 tptp.e_4)) (tptp.equalish tptp.e_1 tptp.e_2)))) :rule reordering :premises (t95))
% 0.16/0.51  (step t97 (cl (not (or (not (tptp.group_element tptp.e_2)) (not (tptp.group_element tptp.e_3)) (tptp.product tptp.e_2 tptp.e_3 tptp.e_1) (tptp.product tptp.e_2 tptp.e_3 tptp.e_2) (tptp.product tptp.e_2 tptp.e_3 tptp.e_3) (tptp.product tptp.e_2 tptp.e_3 tptp.e_4))) (not (tptp.group_element tptp.e_2)) (not (tptp.group_element tptp.e_3)) (tptp.product tptp.e_2 tptp.e_3 tptp.e_1) (tptp.product tptp.e_2 tptp.e_3 tptp.e_2) (tptp.product tptp.e_2 tptp.e_3 tptp.e_3) (tptp.product tptp.e_2 tptp.e_3 tptp.e_4)) :rule or_pos)
% 0.16/0.51  (step t98 (cl (not (tptp.group_element tptp.e_2)) (not (tptp.group_element tptp.e_3)) (tptp.product tptp.e_2 tptp.e_3 tptp.e_1) (tptp.product tptp.e_2 tptp.e_3 tptp.e_2) (tptp.product tptp.e_2 tptp.e_3 tptp.e_3) (tptp.product tptp.e_2 tptp.e_3 tptp.e_4) (not (or (not (tptp.group_element tptp.e_2)) (not (tptp.group_element tptp.e_3)) (tptp.product tptp.e_2 tptp.e_3 tptp.e_1) (tptp.product tptp.e_2 tptp.e_3 tptp.e_2) (tptp.product tptp.e_2 tptp.e_3 tptp.e_3) (tptp.product tptp.e_2 tptp.e_3 tptp.e_4)))) :rule reordering :premises (t97))
% 0.16/0.51  (step t99 (cl (not (or (not (tptp.product tptp.e_2 tptp.e_4 tptp.e_1)) (not (tptp.product tptp.e_2 tptp.e_3 tptp.e_1)) (tptp.equalish tptp.e_4 tptp.e_3))) (not (tptp.product tptp.e_2 tptp.e_4 tptp.e_1)) (not (tptp.product tptp.e_2 tptp.e_3 tptp.e_1)) (tptp.equalish tptp.e_4 tptp.e_3)) :rule or_pos)
% 0.16/0.51  (step t100 (cl (tptp.equalish tptp.e_4 tptp.e_3) (not (tptp.product tptp.e_2 tptp.e_4 tptp.e_1)) (not (tptp.product tptp.e_2 tptp.e_3 tptp.e_1)) (not (or (not (tptp.product tptp.e_2 tptp.e_4 tptp.e_1)) (not (tptp.product tptp.e_2 tptp.e_3 tptp.e_1)) (tptp.equalish tptp.e_4 tptp.e_3)))) :rule reordering :premises (t99))
% 0.16/0.51  (step t101 (cl (not (or (not (tptp.group_element tptp.e_2)) (not (tptp.group_element tptp.e_4)) (tptp.product tptp.e_2 tptp.e_4 tptp.e_1) (tptp.product tptp.e_2 tptp.e_4 tptp.e_2) (tptp.product tptp.e_2 tptp.e_4 tptp.e_3) (tptp.product tptp.e_2 tptp.e_4 tptp.e_4))) (not (tptp.group_element tptp.e_2)) (not (tptp.group_element tptp.e_4)) (tptp.product tptp.e_2 tptp.e_4 tptp.e_1) (tptp.product tptp.e_2 tptp.e_4 tptp.e_2) (tptp.product tptp.e_2 tptp.e_4 tptp.e_3) (tptp.product tptp.e_2 tptp.e_4 tptp.e_4)) :rule or_pos)
% 0.16/0.51  (step t102 (cl (not (tptp.group_element tptp.e_2)) (not (tptp.group_element tptp.e_4)) (tptp.product tptp.e_2 tptp.e_4 tptp.e_1) (tptp.product tptp.e_2 tptp.e_4 tptp.e_2) (tptp.product tptp.e_2 tptp.e_4 tptp.e_3) (tptp.product tptp.e_2 tptp.e_4 tptp.e_4) (not (or (not (tptp.group_element tptp.e_2)) (not (tptp.group_element tptp.e_4)) (tptp.product tptp.e_2 tptp.e_4 tptp.e_1) (tptp.product tptp.e_2 tptp.e_4 tptp.e_2) (tptp.product tptp.e_2 tptp.e_4 tptp.e_3) (tptp.product tptp.e_2 tptp.e_4 tptp.e_4)))) :rule reordering :premises (t101))
% 0.16/0.51  (step t103 (cl (not (or (not (tptp.product tptp.e_2 tptp.e_2 tptp.e_2)) (not (tptp.product tptp.e_2 tptp.e_4 tptp.e_2)) (tptp.equalish tptp.e_2 tptp.e_4))) (not (tptp.product tptp.e_2 tptp.e_2 tptp.e_2)) (not (tptp.product tptp.e_2 tptp.e_4 tptp.e_2)) (tptp.equalish tptp.e_2 tptp.e_4)) :rule or_pos)
% 0.16/0.51  (step t104 (cl (tptp.equalish tptp.e_2 tptp.e_4) (not (tptp.product tptp.e_2 tptp.e_2 tptp.e_2)) (not (tptp.product tptp.e_2 tptp.e_4 tptp.e_2)) (not (or (not (tptp.product tptp.e_2 tptp.e_2 tptp.e_2)) (not (tptp.product tptp.e_2 tptp.e_4 tptp.e_2)) (tptp.equalish tptp.e_2 tptp.e_4)))) :rule reordering :premises (t103))
% 0.16/0.51  (step t105 (cl (=> (forall ((X $$unsorted) (W $$unsorted) (Y $$unsorted) (Z $$unsorted)) (or (not (tptp.product X W Y)) (not (tptp.product X Z Y)) (tptp.equalish W Z))) (or (not (tptp.product tptp.e_2 tptp.e_2 tptp.e_2)) (not (tptp.product tptp.e_2 tptp.e_4 tptp.e_2)) (tptp.equalish tptp.e_2 tptp.e_4))) (forall ((X $$unsorted) (W $$unsorted) (Y $$unsorted) (Z $$unsorted)) (or (not (tptp.product X W Y)) (not (tptp.product X Z Y)) (tptp.equalish W Z)))) :rule implies_neg1)
% 0.16/0.51  (anchor :step t106)
% 0.16/0.51  (assume t106.a0 (forall ((X $$unsorted) (W $$unsorted) (Y $$unsorted) (Z $$unsorted)) (or (not (tptp.product X W Y)) (not (tptp.product X Z Y)) (tptp.equalish W Z))))
% 0.16/0.51  (step t106.t1 (cl (or (not (forall ((X $$unsorted) (W $$unsorted) (Y $$unsorted) (Z $$unsorted)) (or (not (tptp.product X W Y)) (not (tptp.product X Z Y)) (tptp.equalish W Z)))) (or (not (tptp.product tptp.e_2 tptp.e_2 tptp.e_2)) (not (tptp.product tptp.e_2 tptp.e_4 tptp.e_2)) (tptp.equalish tptp.e_2 tptp.e_4)))) :rule forall_inst :args ((:= X tptp.e_2) (:= W tptp.e_2) (:= Y tptp.e_2) (:= Z tptp.e_4)))
% 0.16/0.51  (step t106.t2 (cl (not (forall ((X $$unsorted) (W $$unsorted) (Y $$unsorted) (Z $$unsorted)) (or (not (tptp.product X W Y)) (not (tptp.product X Z Y)) (tptp.equalish W Z)))) (or (not (tptp.product tptp.e_2 tptp.e_2 tptp.e_2)) (not (tptp.product tptp.e_2 tptp.e_4 tptp.e_2)) (tptp.equalish tptp.e_2 tptp.e_4))) :rule or :premises (t106.t1))
% 0.16/0.51  (step t106.t3 (cl (or (not (tptp.product tptp.e_2 tptp.e_2 tptp.e_2)) (not (tptp.product tptp.e_2 tptp.e_4 tptp.e_2)) (tptp.equalish tptp.e_2 tptp.e_4))) :rule resolution :premises (t106.t2 t106.a0))
% 0.16/0.51  (step t106 (cl (not (forall ((X $$unsorted) (W $$unsorted) (Y $$unsorted) (Z $$unsorted)) (or (not (tptp.product X W Y)) (not (tptp.product X Z Y)) (tptp.equalish W Z)))) (or (not (tptp.product tptp.e_2 tptp.e_2 tptp.e_2)) (not (tptp.product tptp.e_2 tptp.e_4 tptp.e_2)) (tptp.equalish tptp.e_2 tptp.e_4))) :rule subproof :discharge (t106.a0))
% 0.16/0.51  (step t107 (cl (=> (forall ((X $$unsorted) (W $$unsorted) (Y $$unsorted) (Z $$unsorted)) (or (not (tptp.product X W Y)) (not (tptp.product X Z Y)) (tptp.equalish W Z))) (or (not (tptp.product tptp.e_2 tptp.e_2 tptp.e_2)) (not (tptp.product tptp.e_2 tptp.e_4 tptp.e_2)) (tptp.equalish tptp.e_2 tptp.e_4))) (or (not (tptp.product tptp.e_2 tptp.e_2 tptp.e_2)) (not (tptp.product tptp.e_2 tptp.e_4 tptp.e_2)) (tptp.equalish tptp.e_2 tptp.e_4))) :rule resolution :premises (t105 t106))
% 0.16/0.51  (step t108 (cl (=> (forall ((X $$unsorted) (W $$unsorted) (Y $$unsorted) (Z $$unsorted)) (or (not (tptp.product X W Y)) (not (tptp.product X Z Y)) (tptp.equalish W Z))) (or (not (tptp.product tptp.e_2 tptp.e_2 tptp.e_2)) (not (tptp.product tptp.e_2 tptp.e_4 tptp.e_2)) (tptp.equalish tptp.e_2 tptp.e_4))) (not (or (not (tptp.product tptp.e_2 tptp.e_2 tptp.e_2)) (not (tptp.product tptp.e_2 tptp.e_4 tptp.e_2)) (tptp.equalish tptp.e_2 tptp.e_4)))) :rule implies_neg2)
% 0.16/0.51  (step t109 (cl (=> (forall ((X $$unsorted) (W $$unsorted) (Y $$unsorted) (Z $$unsorted)) (or (not (tptp.product X W Y)) (not (tptp.product X Z Y)) (tptp.equalish W Z))) (or (not (tptp.product tptp.e_2 tptp.e_2 tptp.e_2)) (not (tptp.product tptp.e_2 tptp.e_4 tptp.e_2)) (tptp.equalish tptp.e_2 tptp.e_4))) (=> (forall ((X $$unsorted) (W $$unsorted) (Y $$unsorted) (Z $$unsorted)) (or (not (tptp.product X W Y)) (not (tptp.product X Z Y)) (tptp.equalish W Z))) (or (not (tptp.product tptp.e_2 tptp.e_2 tptp.e_2)) (not (tptp.product tptp.e_2 tptp.e_4 tptp.e_2)) (tptp.equalish tptp.e_2 tptp.e_4)))) :rule resolution :premises (t107 t108))
% 0.16/0.51  (step t110 (cl (=> (forall ((X $$unsorted) (W $$unsorted) (Y $$unsorted) (Z $$unsorted)) (or (not (tptp.product X W Y)) (not (tptp.product X Z Y)) (tptp.equalish W Z))) (or (not (tptp.product tptp.e_2 tptp.e_2 tptp.e_2)) (not (tptp.product tptp.e_2 tptp.e_4 tptp.e_2)) (tptp.equalish tptp.e_2 tptp.e_4)))) :rule contraction :premises (t109))
% 0.16/0.51  (step t111 (cl (not (forall ((X $$unsorted) (W $$unsorted) (Y $$unsorted) (Z $$unsorted)) (or (not (tptp.product X W Y)) (not (tptp.product X Z Y)) (tptp.equalish W Z)))) (or (not (tptp.product tptp.e_2 tptp.e_2 tptp.e_2)) (not (tptp.product tptp.e_2 tptp.e_4 tptp.e_2)) (tptp.equalish tptp.e_2 tptp.e_4))) :rule implies :premises (t110))
% 0.16/0.51  (step t112 (cl (or (not (tptp.product tptp.e_2 tptp.e_2 tptp.e_2)) (not (tptp.product tptp.e_2 tptp.e_4 tptp.e_2)) (tptp.equalish tptp.e_2 tptp.e_4))) :rule resolution :premises (t111 a28))
% 0.16/0.51  (step t113 (cl (not (tptp.product tptp.e_2 tptp.e_4 tptp.e_2))) :rule resolution :premises (t104 a19 t41 t112))
% 0.16/0.51  (step t114 (cl (not (or (not (tptp.product tptp.e_2 tptp.e_4 tptp.e_3)) (not (tptp.product tptp.e_2 tptp.e_1 tptp.e_3)) (tptp.equalish tptp.e_4 tptp.e_1))) (not (tptp.product tptp.e_2 tptp.e_4 tptp.e_3)) (not (tptp.product tptp.e_2 tptp.e_1 tptp.e_3)) (tptp.equalish tptp.e_4 tptp.e_1)) :rule or_pos)
% 0.16/0.51  (step t115 (cl (tptp.equalish tptp.e_4 tptp.e_1) (not (tptp.product tptp.e_2 tptp.e_1 tptp.e_3)) (not (tptp.product tptp.e_2 tptp.e_4 tptp.e_3)) (not (or (not (tptp.product tptp.e_2 tptp.e_4 tptp.e_3)) (not (tptp.product tptp.e_2 tptp.e_1 tptp.e_3)) (tptp.equalish tptp.e_4 tptp.e_1)))) :rule reordering :premises (t114))
% 0.16/0.51  (step t116 (cl (=> (forall ((X $$unsorted) (W $$unsorted) (Y $$unsorted) (Z $$unsorted)) (or (not (tptp.product X W Y)) (not (tptp.product X Z Y)) (tptp.equalish W Z))) (or (not (tptp.product tptp.e_2 tptp.e_4 tptp.e_3)) (not (tptp.product tptp.e_2 tptp.e_1 tptp.e_3)) (tptp.equalish tptp.e_4 tptp.e_1))) (forall ((X $$unsorted) (W $$unsorted) (Y $$unsorted) (Z $$unsorted)) (or (not (tptp.product X W Y)) (not (tptp.product X Z Y)) (tptp.equalish W Z)))) :rule implies_neg1)
% 0.16/0.51  (anchor :step t117)
% 0.16/0.51  (assume t117.a0 (forall ((X $$unsorted) (W $$unsorted) (Y $$unsorted) (Z $$unsorted)) (or (not (tptp.product X W Y)) (not (tptp.product X Z Y)) (tptp.equalish W Z))))
% 0.16/0.51  (step t117.t1 (cl (or (not (forall ((X $$unsorted) (W $$unsorted) (Y $$unsorted) (Z $$unsorted)) (or (not (tptp.product X W Y)) (not (tptp.product X Z Y)) (tptp.equalish W Z)))) (or (not (tptp.product tptp.e_2 tptp.e_4 tptp.e_3)) (not (tptp.product tptp.e_2 tptp.e_1 tptp.e_3)) (tptp.equalish tptp.e_4 tptp.e_1)))) :rule forall_inst :args ((:= X tptp.e_2) (:= W tptp.e_4) (:= Y tptp.e_3) (:= Z tptp.e_1)))
% 0.16/0.51  (step t117.t2 (cl (not (forall ((X $$unsorted) (W $$unsorted) (Y $$unsorted) (Z $$unsorted)) (or (not (tptp.product X W Y)) (not (tptp.product X Z Y)) (tptp.equalish W Z)))) (or (not (tptp.product tptp.e_2 tptp.e_4 tptp.e_3)) (not (tptp.product tptp.e_2 tptp.e_1 tptp.e_3)) (tptp.equalish tptp.e_4 tptp.e_1))) :rule or :premises (t117.t1))
% 0.16/0.51  (step t117.t3 (cl (or (not (tptp.product tptp.e_2 tptp.e_4 tptp.e_3)) (not (tptp.product tptp.e_2 tptp.e_1 tptp.e_3)) (tptp.equalish tptp.e_4 tptp.e_1))) :rule resolution :premises (t117.t2 t117.a0))
% 0.16/0.51  (step t117 (cl (not (forall ((X $$unsorted) (W $$unsorted) (Y $$unsorted) (Z $$unsorted)) (or (not (tptp.product X W Y)) (not (tptp.product X Z Y)) (tptp.equalish W Z)))) (or (not (tptp.product tptp.e_2 tptp.e_4 tptp.e_3)) (not (tptp.product tptp.e_2 tptp.e_1 tptp.e_3)) (tptp.equalish tptp.e_4 tptp.e_1))) :rule subproof :discharge (t117.a0))
% 0.16/0.51  (step t118 (cl (=> (forall ((X $$unsorted) (W $$unsorted) (Y $$unsorted) (Z $$unsorted)) (or (not (tptp.product X W Y)) (not (tptp.product X Z Y)) (tptp.equalish W Z))) (or (not (tptp.product tptp.e_2 tptp.e_4 tptp.e_3)) (not (tptp.product tptp.e_2 tptp.e_1 tptp.e_3)) (tptp.equalish tptp.e_4 tptp.e_1))) (or (not (tptp.product tptp.e_2 tptp.e_4 tptp.e_3)) (not (tptp.product tptp.e_2 tptp.e_1 tptp.e_3)) (tptp.equalish tptp.e_4 tptp.e_1))) :rule resolution :premises (t116 t117))
% 0.16/0.51  (step t119 (cl (=> (forall ((X $$unsorted) (W $$unsorted) (Y $$unsorted) (Z $$unsorted)) (or (not (tptp.product X W Y)) (not (tptp.product X Z Y)) (tptp.equalish W Z))) (or (not (tptp.product tptp.e_2 tptp.e_4 tptp.e_3)) (not (tptp.product tptp.e_2 tptp.e_1 tptp.e_3)) (tptp.equalish tptp.e_4 tptp.e_1))) (not (or (not (tptp.product tptp.e_2 tptp.e_4 tptp.e_3)) (not (tptp.product tptp.e_2 tptp.e_1 tptp.e_3)) (tptp.equalish tptp.e_4 tptp.e_1)))) :rule implies_neg2)
% 0.16/0.51  (step t120 (cl (=> (forall ((X $$unsorted) (W $$unsorted) (Y $$unsorted) (Z $$unsorted)) (or (not (tptp.product X W Y)) (not (tptp.product X Z Y)) (tptp.equalish W Z))) (or (not (tptp.product tptp.e_2 tptp.e_4 tptp.e_3)) (not (tptp.product tptp.e_2 tptp.e_1 tptp.e_3)) (tptp.equalish tptp.e_4 tptp.e_1))) (=> (forall ((X $$unsorted) (W $$unsorted) (Y $$unsorted) (Z $$unsorted)) (or (not (tptp.product X W Y)) (not (tptp.product X Z Y)) (tptp.equalish W Z))) (or (not (tptp.product tptp.e_2 tptp.e_4 tptp.e_3)) (not (tptp.product tptp.e_2 tptp.e_1 tptp.e_3)) (tptp.equalish tptp.e_4 tptp.e_1)))) :rule resolution :premises (t118 t119))
% 0.16/0.51  (step t121 (cl (=> (forall ((X $$unsorted) (W $$unsorted) (Y $$unsorted) (Z $$unsorted)) (or (not (tptp.product X W Y)) (not (tptp.product X Z Y)) (tptp.equalish W Z))) (or (not (tptp.product tptp.e_2 tptp.e_4 tptp.e_3)) (not (tptp.product tptp.e_2 tptp.e_1 tptp.e_3)) (tptp.equalish tptp.e_4 tptp.e_1)))) :rule contraction :premises (t120))
% 0.16/0.51  (step t122 (cl (not (forall ((X $$unsorted) (W $$unsorted) (Y $$unsorted) (Z $$unsorted)) (or (not (tptp.product X W Y)) (not (tptp.product X Z Y)) (tptp.equalish W Z)))) (or (not (tptp.product tptp.e_2 tptp.e_4 tptp.e_3)) (not (tptp.product tptp.e_2 tptp.e_1 tptp.e_3)) (tptp.equalish tptp.e_4 tptp.e_1))) :rule implies :premises (t121))
% 0.16/0.51  (step t123 (cl (or (not (tptp.product tptp.e_2 tptp.e_4 tptp.e_3)) (not (tptp.product tptp.e_2 tptp.e_1 tptp.e_3)) (tptp.equalish tptp.e_4 tptp.e_1))) :rule resolution :premises (t122 a28))
% 0.16/0.51  (step t124 (cl (not (tptp.product tptp.e_2 tptp.e_4 tptp.e_3))) :rule resolution :premises (t115 a23 t85 t123))
% 0.16/0.51  (step t125 (cl (not (or (not (tptp.product tptp.e_2 tptp.e_4 tptp.e_4)) (not (tptp.product tptp.e_4 tptp.e_4 tptp.e_4)) (tptp.equalish tptp.e_2 tptp.e_4))) (not (tptp.product tptp.e_2 tptp.e_4 tptp.e_4)) (not (tptp.product tptp.e_4 tptp.e_4 tptp.e_4)) (tptp.equalish tptp.e_2 tptp.e_4)) :rule or_pos)
% 0.16/0.51  (step t126 (cl (tptp.equalish tptp.e_2 tptp.e_4) (not (tptp.product tptp.e_2 tptp.e_4 tptp.e_4)) (not (tptp.product tptp.e_4 tptp.e_4 tptp.e_4)) (not (or (not (tptp.product tptp.e_2 tptp.e_4 tptp.e_4)) (not (tptp.product tptp.e_4 tptp.e_4 tptp.e_4)) (tptp.equalish tptp.e_2 tptp.e_4)))) :rule reordering :premises (t125))
% 0.16/0.51  (step t127 (cl (=> (forall ((X $$unsorted)) (tptp.product X X X)) (tptp.product tptp.e_4 tptp.e_4 tptp.e_4)) (forall ((X $$unsorted)) (tptp.product X X X))) :rule implies_neg1)
% 0.16/0.51  (anchor :step t128)
% 0.16/0.51  (assume t128.a0 (forall ((X $$unsorted)) (tptp.product X X X)))
% 0.16/0.51  (step t128.t1 (cl (or (not (forall ((X $$unsorted)) (tptp.product X X X))) (tptp.product tptp.e_4 tptp.e_4 tptp.e_4))) :rule forall_inst :args ((:= X tptp.e_4)))
% 0.16/0.51  (step t128.t2 (cl (not (forall ((X $$unsorted)) (tptp.product X X X))) (tptp.product tptp.e_4 tptp.e_4 tptp.e_4)) :rule or :premises (t128.t1))
% 0.16/0.51  (step t128.t3 (cl (tptp.product tptp.e_4 tptp.e_4 tptp.e_4)) :rule resolution :premises (t128.t2 t128.a0))
% 0.16/0.51  (step t128 (cl (not (forall ((X $$unsorted)) (tptp.product X X X))) (tptp.product tptp.e_4 tptp.e_4 tptp.e_4)) :rule subproof :discharge (t128.a0))
% 0.16/0.51  (step t129 (cl (=> (forall ((X $$unsorted)) (tptp.product X X X)) (tptp.product tptp.e_4 tptp.e_4 tptp.e_4)) (tptp.product tptp.e_4 tptp.e_4 tptp.e_4)) :rule resolution :premises (t127 t128))
% 0.16/0.51  (step t130 (cl (=> (forall ((X $$unsorted)) (tptp.product X X X)) (tptp.product tptp.e_4 tptp.e_4 tptp.e_4)) (not (tptp.product tptp.e_4 tptp.e_4 tptp.e_4))) :rule implies_neg2)
% 0.16/0.51  (step t131 (cl (=> (forall ((X $$unsorted)) (tptp.product X X X)) (tptp.product tptp.e_4 tptp.e_4 tptp.e_4)) (=> (forall ((X $$unsorted)) (tptp.product X X X)) (tptp.product tptp.e_4 tptp.e_4 tptp.e_4))) :rule resolution :premises (t129 t130))
% 0.16/0.51  (step t132 (cl (=> (forall ((X $$unsorted)) (tptp.product X X X)) (tptp.product tptp.e_4 tptp.e_4 tptp.e_4))) :rule contraction :premises (t131))
% 0.16/0.51  (step t133 (cl (not (forall ((X $$unsorted)) (tptp.product X X X))) (tptp.product tptp.e_4 tptp.e_4 tptp.e_4)) :rule implies :premises (t132))
% 0.16/0.51  (step t134 (cl (tptp.product tptp.e_4 tptp.e_4 tptp.e_4)) :rule resolution :premises (t133 a30))
% 0.16/0.51  (step t135 (cl (=> (forall ((W $$unsorted) (Y $$unsorted) (X $$unsorted) (Z $$unsorted)) (or (not (tptp.product W Y X)) (not (tptp.product Z Y X)) (tptp.equalish W Z))) (or (not (tptp.product tptp.e_2 tptp.e_4 tptp.e_4)) (not (tptp.product tptp.e_4 tptp.e_4 tptp.e_4)) (tptp.equalish tptp.e_2 tptp.e_4))) (forall ((W $$unsorted) (Y $$unsorted) (X $$unsorted) (Z $$unsorted)) (or (not (tptp.product W Y X)) (not (tptp.product Z Y X)) (tptp.equalish W Z)))) :rule implies_neg1)
% 0.16/0.51  (anchor :step t136)
% 0.16/0.51  (assume t136.a0 (forall ((W $$unsorted) (Y $$unsorted) (X $$unsorted) (Z $$unsorted)) (or (not (tptp.product W Y X)) (not (tptp.product Z Y X)) (tptp.equalish W Z))))
% 0.16/0.51  (step t136.t1 (cl (or (not (forall ((W $$unsorted) (Y $$unsorted) (X $$unsorted) (Z $$unsorted)) (or (not (tptp.product W Y X)) (not (tptp.product Z Y X)) (tptp.equalish W Z)))) (or (not (tptp.product tptp.e_2 tptp.e_4 tptp.e_4)) (not (tptp.product tptp.e_4 tptp.e_4 tptp.e_4)) (tptp.equalish tptp.e_2 tptp.e_4)))) :rule forall_inst :args ((:= W tptp.e_2) (:= Y tptp.e_4) (:= X tptp.e_4) (:= Z tptp.e_4)))
% 0.16/0.51  (step t136.t2 (cl (not (forall ((W $$unsorted) (Y $$unsorted) (X $$unsorted) (Z $$unsorted)) (or (not (tptp.product W Y X)) (not (tptp.product Z Y X)) (tptp.equalish W Z)))) (or (not (tptp.product tptp.e_2 tptp.e_4 tptp.e_4)) (not (tptp.product tptp.e_4 tptp.e_4 tptp.e_4)) (tptp.equalish tptp.e_2 tptp.e_4))) :rule or :premises (t136.t1))
% 0.16/0.51  (step t136.t3 (cl (or (not (tptp.product tptp.e_2 tptp.e_4 tptp.e_4)) (not (tptp.product tptp.e_4 tptp.e_4 tptp.e_4)) (tptp.equalish tptp.e_2 tptp.e_4))) :rule resolution :premises (t136.t2 t136.a0))
% 0.16/0.51  (step t136 (cl (not (forall ((W $$unsorted) (Y $$unsorted) (X $$unsorted) (Z $$unsorted)) (or (not (tptp.product W Y X)) (not (tptp.product Z Y X)) (tptp.equalish W Z)))) (or (not (tptp.product tptp.e_2 tptp.e_4 tptp.e_4)) (not (tptp.product tptp.e_4 tptp.e_4 tptp.e_4)) (tptp.equalish tptp.e_2 tptp.e_4))) :rule subproof :discharge (t136.a0))
% 0.16/0.51  (step t137 (cl (=> (forall ((W $$unsorted) (Y $$unsorted) (X $$unsorted) (Z $$unsorted)) (or (not (tptp.product W Y X)) (not (tptp.product Z Y X)) (tptp.equalish W Z))) (or (not (tptp.product tptp.e_2 tptp.e_4 tptp.e_4)) (not (tptp.product tptp.e_4 tptp.e_4 tptp.e_4)) (tptp.equalish tptp.e_2 tptp.e_4))) (or (not (tptp.product tptp.e_2 tptp.e_4 tptp.e_4)) (not (tptp.product tptp.e_4 tptp.e_4 tptp.e_4)) (tptp.equalish tptp.e_2 tptp.e_4))) :rule resolution :premises (t135 t136))
% 0.16/0.51  (step t138 (cl (=> (forall ((W $$unsorted) (Y $$unsorted) (X $$unsorted) (Z $$unsorted)) (or (not (tptp.product W Y X)) (not (tptp.product Z Y X)) (tptp.equalish W Z))) (or (not (tptp.product tptp.e_2 tptp.e_4 tptp.e_4)) (not (tptp.product tptp.e_4 tptp.e_4 tptp.e_4)) (tptp.equalish tptp.e_2 tptp.e_4))) (not (or (not (tptp.product tptp.e_2 tptp.e_4 tptp.e_4)) (not (tptp.product tptp.e_4 tptp.e_4 tptp.e_4)) (tptp.equalish tptp.e_2 tptp.e_4)))) :rule implies_neg2)
% 0.16/0.51  (step t139 (cl (=> (forall ((W $$unsorted) (Y $$unsorted) (X $$unsorted) (Z $$unsorted)) (or (not (tptp.product W Y X)) (not (tptp.product Z Y X)) (tptp.equalish W Z))) (or (not (tptp.product tptp.e_2 tptp.e_4 tptp.e_4)) (not (tptp.product tptp.e_4 tptp.e_4 tptp.e_4)) (tptp.equalish tptp.e_2 tptp.e_4))) (=> (forall ((W $$unsorted) (Y $$unsorted) (X $$unsorted) (Z $$unsorted)) (or (not (tptp.product W Y X)) (not (tptp.product Z Y X)) (tptp.equalish W Z))) (or (not (tptp.product tptp.e_2 tptp.e_4 tptp.e_4)) (not (tptp.product tptp.e_4 tptp.e_4 tptp.e_4)) (tptp.equalish tptp.e_2 tptp.e_4)))) :rule resolution :premises (t137 t138))
% 0.16/0.51  (step t140 (cl (=> (forall ((W $$unsorted) (Y $$unsorted) (X $$unsorted) (Z $$unsorted)) (or (not (tptp.product W Y X)) (not (tptp.product Z Y X)) (tptp.equalish W Z))) (or (not (tptp.product tptp.e_2 tptp.e_4 tptp.e_4)) (not (tptp.product tptp.e_4 tptp.e_4 tptp.e_4)) (tptp.equalish tptp.e_2 tptp.e_4)))) :rule contraction :premises (t139))
% 0.16/0.51  (step t141 (cl (not (forall ((W $$unsorted) (Y $$unsorted) (X $$unsorted) (Z $$unsorted)) (or (not (tptp.product W Y X)) (not (tptp.product Z Y X)) (tptp.equalish W Z)))) (or (not (tptp.product tptp.e_2 tptp.e_4 tptp.e_4)) (not (tptp.product tptp.e_4 tptp.e_4 tptp.e_4)) (tptp.equalish tptp.e_2 tptp.e_4))) :rule implies :premises (t140))
% 0.16/0.51  (step t142 (cl (or (not (tptp.product tptp.e_2 tptp.e_4 tptp.e_4)) (not (tptp.product tptp.e_4 tptp.e_4 tptp.e_4)) (tptp.equalish tptp.e_2 tptp.e_4))) :rule resolution :premises (t141 a29))
% 0.16/0.51  (step t143 (cl (not (tptp.product tptp.e_2 tptp.e_4 tptp.e_4))) :rule resolution :premises (t126 a19 t134 t142))
% 0.16/0.51  (step t144 (cl (=> (forall ((X $$unsorted) (Y $$unsorted)) (or (not (tptp.group_element X)) (not (tptp.group_element Y)) (tptp.product X Y tptp.e_1) (tptp.product X Y tptp.e_2) (tptp.product X Y tptp.e_3) (tptp.product X Y tptp.e_4))) (or (not (tptp.group_element tptp.e_2)) (not (tptp.group_element tptp.e_4)) (tptp.product tptp.e_2 tptp.e_4 tptp.e_1) (tptp.product tptp.e_2 tptp.e_4 tptp.e_2) (tptp.product tptp.e_2 tptp.e_4 tptp.e_3) (tptp.product tptp.e_2 tptp.e_4 tptp.e_4))) (forall ((X $$unsorted) (Y $$unsorted)) (or (not (tptp.group_element X)) (not (tptp.group_element Y)) (tptp.product X Y tptp.e_1) (tptp.product X Y tptp.e_2) (tptp.product X Y tptp.e_3) (tptp.product X Y tptp.e_4)))) :rule implies_neg1)
% 0.16/0.51  (anchor :step t145)
% 0.16/0.51  (assume t145.a0 (forall ((X $$unsorted) (Y $$unsorted)) (or (not (tptp.group_element X)) (not (tptp.group_element Y)) (tptp.product X Y tptp.e_1) (tptp.product X Y tptp.e_2) (tptp.product X Y tptp.e_3) (tptp.product X Y tptp.e_4))))
% 0.16/0.51  (step t145.t1 (cl (or (not (forall ((X $$unsorted) (Y $$unsorted)) (or (not (tptp.group_element X)) (not (tptp.group_element Y)) (tptp.product X Y tptp.e_1) (tptp.product X Y tptp.e_2) (tptp.product X Y tptp.e_3) (tptp.product X Y tptp.e_4)))) (or (not (tptp.group_element tptp.e_2)) (not (tptp.group_element tptp.e_4)) (tptp.product tptp.e_2 tptp.e_4 tptp.e_1) (tptp.product tptp.e_2 tptp.e_4 tptp.e_2) (tptp.product tptp.e_2 tptp.e_4 tptp.e_3) (tptp.product tptp.e_2 tptp.e_4 tptp.e_4)))) :rule forall_inst :args ((:= X tptp.e_2) (:= Y tptp.e_4)))
% 0.16/0.51  (step t145.t2 (cl (not (forall ((X $$unsorted) (Y $$unsorted)) (or (not (tptp.group_element X)) (not (tptp.group_element Y)) (tptp.product X Y tptp.e_1) (tptp.product X Y tptp.e_2) (tptp.product X Y tptp.e_3) (tptp.product X Y tptp.e_4)))) (or (not (tptp.group_element tptp.e_2)) (not (tptp.group_element tptp.e_4)) (tptp.product tptp.e_2 tptp.e_4 tptp.e_1) (tptp.product tptp.e_2 tptp.e_4 tptp.e_2) (tptp.product tptp.e_2 tptp.e_4 tptp.e_3) (tptp.product tptp.e_2 tptp.e_4 tptp.e_4))) :rule or :premises (t145.t1))
% 0.16/0.51  (step t145.t3 (cl (or (not (tptp.group_element tptp.e_2)) (not (tptp.group_element tptp.e_4)) (tptp.product tptp.e_2 tptp.e_4 tptp.e_1) (tptp.product tptp.e_2 tptp.e_4 tptp.e_2) (tptp.product tptp.e_2 tptp.e_4 tptp.e_3) (tptp.product tptp.e_2 tptp.e_4 tptp.e_4))) :rule resolution :premises (t145.t2 t145.a0))
% 0.16/0.51  (step t145 (cl (not (forall ((X $$unsorted) (Y $$unsorted)) (or (not (tptp.group_element X)) (not (tptp.group_element Y)) (tptp.product X Y tptp.e_1) (tptp.product X Y tptp.e_2) (tptp.product X Y tptp.e_3) (tptp.product X Y tptp.e_4)))) (or (not (tptp.group_element tptp.e_2)) (not (tptp.group_element tptp.e_4)) (tptp.product tptp.e_2 tptp.e_4 tptp.e_1) (tptp.product tptp.e_2 tptp.e_4 tptp.e_2) (tptp.product tptp.e_2 tptp.e_4 tptp.e_3) (tptp.product tptp.e_2 tptp.e_4 tptp.e_4))) :rule subproof :discharge (t145.a0))
% 0.16/0.51  (step t146 (cl (=> (forall ((X $$unsorted) (Y $$unsorted)) (or (not (tptp.group_element X)) (not (tptp.group_element Y)) (tptp.product X Y tptp.e_1) (tptp.product X Y tptp.e_2) (tptp.product X Y tptp.e_3) (tptp.product X Y tptp.e_4))) (or (not (tptp.group_element tptp.e_2)) (not (tptp.group_element tptp.e_4)) (tptp.product tptp.e_2 tptp.e_4 tptp.e_1) (tptp.product tptp.e_2 tptp.e_4 tptp.e_2) (tptp.product tptp.e_2 tptp.e_4 tptp.e_3) (tptp.product tptp.e_2 tptp.e_4 tptp.e_4))) (or (not (tptp.group_element tptp.e_2)) (not (tptp.group_element tptp.e_4)) (tptp.product tptp.e_2 tptp.e_4 tptp.e_1) (tptp.product tptp.e_2 tptp.e_4 tptp.e_2) (tptp.product tptp.e_2 tptp.e_4 tptp.e_3) (tptp.product tptp.e_2 tptp.e_4 tptp.e_4))) :rule resolution :premises (t144 t145))
% 0.16/0.51  (step t147 (cl (=> (forall ((X $$unsorted) (Y $$unsorted)) (or (not (tptp.group_element X)) (not (tptp.group_element Y)) (tptp.product X Y tptp.e_1) (tptp.product X Y tptp.e_2) (tptp.product X Y tptp.e_3) (tptp.product X Y tptp.e_4))) (or (not (tptp.group_element tptp.e_2)) (not (tptp.group_element tptp.e_4)) (tptp.product tptp.e_2 tptp.e_4 tptp.e_1) (tptp.product tptp.e_2 tptp.e_4 tptp.e_2) (tptp.product tptp.e_2 tptp.e_4 tptp.e_3) (tptp.product tptp.e_2 tptp.e_4 tptp.e_4))) (not (or (not (tptp.group_element tptp.e_2)) (not (tptp.group_element tptp.e_4)) (tptp.product tptp.e_2 tptp.e_4 tptp.e_1) (tptp.product tptp.e_2 tptp.e_4 tptp.e_2) (tptp.product tptp.e_2 tptp.e_4 tptp.e_3) (tptp.product tptp.e_2 tptp.e_4 tptp.e_4)))) :rule implies_neg2)
% 0.16/0.51  (step t148 (cl (=> (forall ((X $$unsorted) (Y $$unsorted)) (or (not (tptp.group_element X)) (not (tptp.group_element Y)) (tptp.product X Y tptp.e_1) (tptp.product X Y tptp.e_2) (tptp.product X Y tptp.e_3) (tptp.product X Y tptp.e_4))) (or (not (tptp.group_element tptp.e_2)) (not (tptp.group_element tptp.e_4)) (tptp.product tptp.e_2 tptp.e_4 tptp.e_1) (tptp.product tptp.e_2 tptp.e_4 tptp.e_2) (tptp.product tptp.e_2 tptp.e_4 tptp.e_3) (tptp.product tptp.e_2 tptp.e_4 tptp.e_4))) (=> (forall ((X $$unsorted) (Y $$unsorted)) (or (not (tptp.group_element X)) (not (tptp.group_element Y)) (tptp.product X Y tptp.e_1) (tptp.product X Y tptp.e_2) (tptp.product X Y tptp.e_3) (tptp.product X Y tptp.e_4))) (or (not (tptp.group_element tptp.e_2)) (not (tptp.group_element tptp.e_4)) (tptp.product tptp.e_2 tptp.e_4 tptp.e_1) (tptp.product tptp.e_2 tptp.e_4 tptp.e_2) (tptp.product tptp.e_2 tptp.e_4 tptp.e_3) (tptp.product tptp.e_2 tptp.e_4 tptp.e_4)))) :rule resolution :premises (t146 t147))
% 0.16/0.51  (step t149 (cl (=> (forall ((X $$unsorted) (Y $$unsorted)) (or (not (tptp.group_element X)) (not (tptp.group_element Y)) (tptp.product X Y tptp.e_1) (tptp.product X Y tptp.e_2) (tptp.product X Y tptp.e_3) (tptp.product X Y tptp.e_4))) (or (not (tptp.group_element tptp.e_2)) (not (tptp.group_element tptp.e_4)) (tptp.product tptp.e_2 tptp.e_4 tptp.e_1) (tptp.product tptp.e_2 tptp.e_4 tptp.e_2) (tptp.product tptp.e_2 tptp.e_4 tptp.e_3) (tptp.product tptp.e_2 tptp.e_4 tptp.e_4)))) :rule contraction :premises (t148))
% 0.16/0.51  (step t150 (cl (not (forall ((X $$unsorted) (Y $$unsorted)) (or (not (tptp.group_element X)) (not (tptp.group_element Y)) (tptp.product X Y tptp.e_1) (tptp.product X Y tptp.e_2) (tptp.product X Y tptp.e_3) (tptp.product X Y tptp.e_4)))) (or (not (tptp.group_element tptp.e_2)) (not (tptp.group_element tptp.e_4)) (tptp.product tptp.e_2 tptp.e_4 tptp.e_1) (tptp.product tptp.e_2 tptp.e_4 tptp.e_2) (tptp.product tptp.e_2 tptp.e_4 tptp.e_3) (tptp.product tptp.e_2 tptp.e_4 tptp.e_4))) :rule implies :premises (t149))
% 0.16/0.51  (step t151 (cl (or (not (tptp.group_element tptp.e_2)) (not (tptp.group_element tptp.e_4)) (tptp.product tptp.e_2 tptp.e_4 tptp.e_1) (tptp.product tptp.e_2 tptp.e_4 tptp.e_2) (tptp.product tptp.e_2 tptp.e_4 tptp.e_3) (tptp.product tptp.e_2 tptp.e_4 tptp.e_4))) :rule resolution :premises (t150 a26))
% 0.16/0.51  (step t152 (cl (tptp.product tptp.e_2 tptp.e_4 tptp.e_1)) :rule resolution :premises (t102 a11 a13 t113 t124 t143 t151))
% 0.16/0.51  (step t153 (cl (=> (forall ((X $$unsorted) (W $$unsorted) (Y $$unsorted) (Z $$unsorted)) (or (not (tptp.product X W Y)) (not (tptp.product X Z Y)) (tptp.equalish W Z))) (or (not (tptp.product tptp.e_2 tptp.e_4 tptp.e_1)) (not (tptp.product tptp.e_2 tptp.e_3 tptp.e_1)) (tptp.equalish tptp.e_4 tptp.e_3))) (forall ((X $$unsorted) (W $$unsorted) (Y $$unsorted) (Z $$unsorted)) (or (not (tptp.product X W Y)) (not (tptp.product X Z Y)) (tptp.equalish W Z)))) :rule implies_neg1)
% 0.16/0.51  (anchor :step t154)
% 0.16/0.51  (assume t154.a0 (forall ((X $$unsorted) (W $$unsorted) (Y $$unsorted) (Z $$unsorted)) (or (not (tptp.product X W Y)) (not (tptp.product X Z Y)) (tptp.equalish W Z))))
% 0.16/0.51  (step t154.t1 (cl (or (not (forall ((X $$unsorted) (W $$unsorted) (Y $$unsorted) (Z $$unsorted)) (or (not (tptp.product X W Y)) (not (tptp.product X Z Y)) (tptp.equalish W Z)))) (or (not (tptp.product tptp.e_2 tptp.e_4 tptp.e_1)) (not (tptp.product tptp.e_2 tptp.e_3 tptp.e_1)) (tptp.equalish tptp.e_4 tptp.e_3)))) :rule forall_inst :args ((:= X tptp.e_2) (:= W tptp.e_4) (:= Y tptp.e_1) (:= Z tptp.e_3)))
% 0.16/0.51  (step t154.t2 (cl (not (forall ((X $$unsorted) (W $$unsorted) (Y $$unsorted) (Z $$unsorted)) (or (not (tptp.product X W Y)) (not (tptp.product X Z Y)) (tptp.equalish W Z)))) (or (not (tptp.product tptp.e_2 tptp.e_4 tptp.e_1)) (not (tptp.product tptp.e_2 tptp.e_3 tptp.e_1)) (tptp.equalish tptp.e_4 tptp.e_3))) :rule or :premises (t154.t1))
% 0.16/0.51  (step t154.t3 (cl (or (not (tptp.product tptp.e_2 tptp.e_4 tptp.e_1)) (not (tptp.product tptp.e_2 tptp.e_3 tptp.e_1)) (tptp.equalish tptp.e_4 tptp.e_3))) :rule resolution :premises (t154.t2 t154.a0))
% 0.16/0.51  (step t154 (cl (not (forall ((X $$unsorted) (W $$unsorted) (Y $$unsorted) (Z $$unsorted)) (or (not (tptp.product X W Y)) (not (tptp.product X Z Y)) (tptp.equalish W Z)))) (or (not (tptp.product tptp.e_2 tptp.e_4 tptp.e_1)) (not (tptp.product tptp.e_2 tptp.e_3 tptp.e_1)) (tptp.equalish tptp.e_4 tptp.e_3))) :rule subproof :discharge (t154.a0))
% 0.16/0.51  (step t155 (cl (=> (forall ((X $$unsorted) (W $$unsorted) (Y $$unsorted) (Z $$unsorted)) (or (not (tptp.product X W Y)) (not (tptp.product X Z Y)) (tptp.equalish W Z))) (or (not (tptp.product tptp.e_2 tptp.e_4 tptp.e_1)) (not (tptp.product tptp.e_2 tptp.e_3 tptp.e_1)) (tptp.equalish tptp.e_4 tptp.e_3))) (or (not (tptp.product tptp.e_2 tptp.e_4 tptp.e_1)) (not (tptp.product tptp.e_2 tptp.e_3 tptp.e_1)) (tptp.equalish tptp.e_4 tptp.e_3))) :rule resolution :premises (t153 t154))
% 0.16/0.51  (step t156 (cl (=> (forall ((X $$unsorted) (W $$unsorted) (Y $$unsorted) (Z $$unsorted)) (or (not (tptp.product X W Y)) (not (tptp.product X Z Y)) (tptp.equalish W Z))) (or (not (tptp.product tptp.e_2 tptp.e_4 tptp.e_1)) (not (tptp.product tptp.e_2 tptp.e_3 tptp.e_1)) (tptp.equalish tptp.e_4 tptp.e_3))) (not (or (not (tptp.product tptp.e_2 tptp.e_4 tptp.e_1)) (not (tptp.product tptp.e_2 tptp.e_3 tptp.e_1)) (tptp.equalish tptp.e_4 tptp.e_3)))) :rule implies_neg2)
% 0.16/0.51  (step t157 (cl (=> (forall ((X $$unsorted) (W $$unsorted) (Y $$unsorted) (Z $$unsorted)) (or (not (tptp.product X W Y)) (not (tptp.product X Z Y)) (tptp.equalish W Z))) (or (not (tptp.product tptp.e_2 tptp.e_4 tptp.e_1)) (not (tptp.product tptp.e_2 tptp.e_3 tptp.e_1)) (tptp.equalish tptp.e_4 tptp.e_3))) (=> (forall ((X $$unsorted) (W $$unsorted) (Y $$unsorted) (Z $$unsorted)) (or (not (tptp.product X W Y)) (not (tptp.product X Z Y)) (tptp.equalish W Z))) (or (not (tptp.product tptp.e_2 tptp.e_4 tptp.e_1)) (not (tptp.product tptp.e_2 tptp.e_3 tptp.e_1)) (tptp.equalish tptp.e_4 tptp.e_3)))) :rule resolution :premises (t155 t156))
% 0.16/0.51  (step t158 (cl (=> (forall ((X $$unsorted) (W $$unsorted) (Y $$unsorted) (Z $$unsorted)) (or (not (tptp.product X W Y)) (not (tptp.product X Z Y)) (tptp.equalish W Z))) (or (not (tptp.product tptp.e_2 tptp.e_4 tptp.e_1)) (not (tptp.product tptp.e_2 tptp.e_3 tptp.e_1)) (tptp.equalish tptp.e_4 tptp.e_3)))) :rule contraction :premises (t157))
% 0.16/0.51  (step t159 (cl (not (forall ((X $$unsorted) (W $$unsorted) (Y $$unsorted) (Z $$unsorted)) (or (not (tptp.product X W Y)) (not (tptp.product X Z Y)) (tptp.equalish W Z)))) (or (not (tptp.product tptp.e_2 tptp.e_4 tptp.e_1)) (not (tptp.product tptp.e_2 tptp.e_3 tptp.e_1)) (tptp.equalish tptp.e_4 tptp.e_3))) :rule implies :premises (t158))
% 0.16/0.51  (step t160 (cl (or (not (tptp.product tptp.e_2 tptp.e_4 tptp.e_1)) (not (tptp.product tptp.e_2 tptp.e_3 tptp.e_1)) (tptp.equalish tptp.e_4 tptp.e_3))) :rule resolution :premises (t159 a28))
% 0.16/0.51  (step t161 (cl (not (tptp.product tptp.e_2 tptp.e_3 tptp.e_1))) :rule resolution :premises (t100 a25 t152 t160))
% 0.16/0.51  (step t162 (cl (not (or (not (tptp.product tptp.e_2 tptp.e_2 tptp.e_2)) (not (tptp.product tptp.e_2 tptp.e_3 tptp.e_2)) (tptp.equalish tptp.e_2 tptp.e_3))) (not (tptp.product tptp.e_2 tptp.e_2 tptp.e_2)) (not (tptp.product tptp.e_2 tptp.e_3 tptp.e_2)) (tptp.equalish tptp.e_2 tptp.e_3)) :rule or_pos)
% 0.16/0.51  (step t163 (cl (tptp.equalish tptp.e_2 tptp.e_3) (not (tptp.product tptp.e_2 tptp.e_2 tptp.e_2)) (not (tptp.product tptp.e_2 tptp.e_3 tptp.e_2)) (not (or (not (tptp.product tptp.e_2 tptp.e_2 tptp.e_2)) (not (tptp.product tptp.e_2 tptp.e_3 tptp.e_2)) (tptp.equalish tptp.e_2 tptp.e_3)))) :rule reordering :premises (t162))
% 0.16/0.51  (step t164 (cl (=> (forall ((X $$unsorted) (W $$unsorted) (Y $$unsorted) (Z $$unsorted)) (or (not (tptp.product X W Y)) (not (tptp.product X Z Y)) (tptp.equalish W Z))) (or (not (tptp.product tptp.e_2 tptp.e_2 tptp.e_2)) (not (tptp.product tptp.e_2 tptp.e_3 tptp.e_2)) (tptp.equalish tptp.e_2 tptp.e_3))) (forall ((X $$unsorted) (W $$unsorted) (Y $$unsorted) (Z $$unsorted)) (or (not (tptp.product X W Y)) (not (tptp.product X Z Y)) (tptp.equalish W Z)))) :rule implies_neg1)
% 0.16/0.51  (anchor :step t165)
% 0.16/0.51  (assume t165.a0 (forall ((X $$unsorted) (W $$unsorted) (Y $$unsorted) (Z $$unsorted)) (or (not (tptp.product X W Y)) (not (tptp.product X Z Y)) (tptp.equalish W Z))))
% 0.16/0.51  (step t165.t1 (cl (or (not (forall ((X $$unsorted) (W $$unsorted) (Y $$unsorted) (Z $$unsorted)) (or (not (tptp.product X W Y)) (not (tptp.product X Z Y)) (tptp.equalish W Z)))) (or (not (tptp.product tptp.e_2 tptp.e_2 tptp.e_2)) (not (tptp.product tptp.e_2 tptp.e_3 tptp.e_2)) (tptp.equalish tptp.e_2 tptp.e_3)))) :rule forall_inst :args ((:= X tptp.e_2) (:= W tptp.e_2) (:= Y tptp.e_2) (:= Z tptp.e_3)))
% 0.16/0.51  (step t165.t2 (cl (not (forall ((X $$unsorted) (W $$unsorted) (Y $$unsorted) (Z $$unsorted)) (or (not (tptp.product X W Y)) (not (tptp.product X Z Y)) (tptp.equalish W Z)))) (or (not (tptp.product tptp.e_2 tptp.e_2 tptp.e_2)) (not (tptp.product tptp.e_2 tptp.e_3 tptp.e_2)) (tptp.equalish tptp.e_2 tptp.e_3))) :rule or :premises (t165.t1))
% 0.16/0.51  (step t165.t3 (cl (or (not (tptp.product tptp.e_2 tptp.e_2 tptp.e_2)) (not (tptp.product tptp.e_2 tptp.e_3 tptp.e_2)) (tptp.equalish tptp.e_2 tptp.e_3))) :rule resolution :premises (t165.t2 t165.a0))
% 0.16/0.51  (step t165 (cl (not (forall ((X $$unsorted) (W $$unsorted) (Y $$unsorted) (Z $$unsorted)) (or (not (tptp.product X W Y)) (not (tptp.product X Z Y)) (tptp.equalish W Z)))) (or (not (tptp.product tptp.e_2 tptp.e_2 tptp.e_2)) (not (tptp.product tptp.e_2 tptp.e_3 tptp.e_2)) (tptp.equalish tptp.e_2 tptp.e_3))) :rule subproof :discharge (t165.a0))
% 0.16/0.51  (step t166 (cl (=> (forall ((X $$unsorted) (W $$unsorted) (Y $$unsorted) (Z $$unsorted)) (or (not (tptp.product X W Y)) (not (tptp.product X Z Y)) (tptp.equalish W Z))) (or (not (tptp.product tptp.e_2 tptp.e_2 tptp.e_2)) (not (tptp.product tptp.e_2 tptp.e_3 tptp.e_2)) (tptp.equalish tptp.e_2 tptp.e_3))) (or (not (tptp.product tptp.e_2 tptp.e_2 tptp.e_2)) (not (tptp.product tptp.e_2 tptp.e_3 tptp.e_2)) (tptp.equalish tptp.e_2 tptp.e_3))) :rule resolution :premises (t164 t165))
% 0.16/0.51  (step t167 (cl (=> (forall ((X $$unsorted) (W $$unsorted) (Y $$unsorted) (Z $$unsorted)) (or (not (tptp.product X W Y)) (not (tptp.product X Z Y)) (tptp.equalish W Z))) (or (not (tptp.product tptp.e_2 tptp.e_2 tptp.e_2)) (not (tptp.product tptp.e_2 tptp.e_3 tptp.e_2)) (tptp.equalish tptp.e_2 tptp.e_3))) (not (or (not (tptp.product tptp.e_2 tptp.e_2 tptp.e_2)) (not (tptp.product tptp.e_2 tptp.e_3 tptp.e_2)) (tptp.equalish tptp.e_2 tptp.e_3)))) :rule implies_neg2)
% 0.16/0.51  (step t168 (cl (=> (forall ((X $$unsorted) (W $$unsorted) (Y $$unsorted) (Z $$unsorted)) (or (not (tptp.product X W Y)) (not (tptp.product X Z Y)) (tptp.equalish W Z))) (or (not (tptp.product tptp.e_2 tptp.e_2 tptp.e_2)) (not (tptp.product tptp.e_2 tptp.e_3 tptp.e_2)) (tptp.equalish tptp.e_2 tptp.e_3))) (=> (forall ((X $$unsorted) (W $$unsorted) (Y $$unsorted) (Z $$unsorted)) (or (not (tptp.product X W Y)) (not (tptp.product X Z Y)) (tptp.equalish W Z))) (or (not (tptp.product tptp.e_2 tptp.e_2 tptp.e_2)) (not (tptp.product tptp.e_2 tptp.e_3 tptp.e_2)) (tptp.equalish tptp.e_2 tptp.e_3)))) :rule resolution :premises (t166 t167))
% 0.16/0.51  (step t169 (cl (=> (forall ((X $$unsorted) (W $$unsorted) (Y $$unsorted) (Z $$unsorted)) (or (not (tptp.product X W Y)) (not (tptp.product X Z Y)) (tptp.equalish W Z))) (or (not (tptp.product tptp.e_2 tptp.e_2 tptp.e_2)) (not (tptp.product tptp.e_2 tptp.e_3 tptp.e_2)) (tptp.equalish tptp.e_2 tptp.e_3)))) :rule contraction :premises (t168))
% 0.16/0.51  (step t170 (cl (not (forall ((X $$unsorted) (W $$unsorted) (Y $$unsorted) (Z $$unsorted)) (or (not (tptp.product X W Y)) (not (tptp.product X Z Y)) (tptp.equalish W Z)))) (or (not (tptp.product tptp.e_2 tptp.e_2 tptp.e_2)) (not (tptp.product tptp.e_2 tptp.e_3 tptp.e_2)) (tptp.equalish tptp.e_2 tptp.e_3))) :rule implies :premises (t169))
% 0.16/0.51  (step t171 (cl (or (not (tptp.product tptp.e_2 tptp.e_2 tptp.e_2)) (not (tptp.product tptp.e_2 tptp.e_3 tptp.e_2)) (tptp.equalish tptp.e_2 tptp.e_3))) :rule resolution :premises (t170 a28))
% 0.16/0.51  (step t172 (cl (not (tptp.product tptp.e_2 tptp.e_3 tptp.e_2))) :rule resolution :premises (t163 a18 t41 t171))
% 0.16/0.51  (step t173 (cl (not (or (not (tptp.product tptp.e_2 tptp.e_3 tptp.e_3)) (not (tptp.product tptp.e_3 tptp.e_3 tptp.e_3)) (tptp.equalish tptp.e_2 tptp.e_3))) (not (tptp.product tptp.e_2 tptp.e_3 tptp.e_3)) (not (tptp.product tptp.e_3 tptp.e_3 tptp.e_3)) (tptp.equalish tptp.e_2 tptp.e_3)) :rule or_pos)
% 0.16/0.51  (step t174 (cl (tptp.equalish tptp.e_2 tptp.e_3) (not (tptp.product tptp.e_2 tptp.e_3 tptp.e_3)) (not (tptp.product tptp.e_3 tptp.e_3 tptp.e_3)) (not (or (not (tptp.product tptp.e_2 tptp.e_3 tptp.e_3)) (not (tptp.product tptp.e_3 tptp.e_3 tptp.e_3)) (tptp.equalish tptp.e_2 tptp.e_3)))) :rule reordering :premises (t173))
% 0.16/0.51  (step t175 (cl (=> (forall ((X $$unsorted)) (tptp.product X X X)) (tptp.product tptp.e_3 tptp.e_3 tptp.e_3)) (forall ((X $$unsorted)) (tptp.product X X X))) :rule implies_neg1)
% 0.16/0.51  (anchor :step t176)
% 0.16/0.51  (assume t176.a0 (forall ((X $$unsorted)) (tptp.product X X X)))
% 0.16/0.51  (step t176.t1 (cl (or (not (forall ((X $$unsorted)) (tptp.product X X X))) (tptp.product tptp.e_3 tptp.e_3 tptp.e_3))) :rule forall_inst :args ((:= X tptp.e_3)))
% 0.16/0.51  (step t176.t2 (cl (not (forall ((X $$unsorted)) (tptp.product X X X))) (tptp.product tptp.e_3 tptp.e_3 tptp.e_3)) :rule or :premises (t176.t1))
% 0.16/0.51  (step t176.t3 (cl (tptp.product tptp.e_3 tptp.e_3 tptp.e_3)) :rule resolution :premises (t176.t2 t176.a0))
% 0.16/0.51  (step t176 (cl (not (forall ((X $$unsorted)) (tptp.product X X X))) (tptp.product tptp.e_3 tptp.e_3 tptp.e_3)) :rule subproof :discharge (t176.a0))
% 0.16/0.51  (step t177 (cl (=> (forall ((X $$unsorted)) (tptp.product X X X)) (tptp.product tptp.e_3 tptp.e_3 tptp.e_3)) (tptp.product tptp.e_3 tptp.e_3 tptp.e_3)) :rule resolution :premises (t175 t176))
% 0.16/0.51  (step t178 (cl (=> (forall ((X $$unsorted)) (tptp.product X X X)) (tptp.product tptp.e_3 tptp.e_3 tptp.e_3)) (not (tptp.product tptp.e_3 tptp.e_3 tptp.e_3))) :rule implies_neg2)
% 0.16/0.51  (step t179 (cl (=> (forall ((X $$unsorted)) (tptp.product X X X)) (tptp.product tptp.e_3 tptp.e_3 tptp.e_3)) (=> (forall ((X $$unsorted)) (tptp.product X X X)) (tptp.product tptp.e_3 tptp.e_3 tptp.e_3))) :rule resolution :premises (t177 t178))
% 0.16/0.51  (step t180 (cl (=> (forall ((X $$unsorted)) (tptp.product X X X)) (tptp.product tptp.e_3 tptp.e_3 tptp.e_3))) :rule contraction :premises (t179))
% 0.16/0.51  (step t181 (cl (not (forall ((X $$unsorted)) (tptp.product X X X))) (tptp.product tptp.e_3 tptp.e_3 tptp.e_3)) :rule implies :premises (t180))
% 0.16/0.51  (step t182 (cl (tptp.product tptp.e_3 tptp.e_3 tptp.e_3)) :rule resolution :premises (t181 a30))
% 0.16/0.51  (step t183 (cl (=> (forall ((W $$unsorted) (Y $$unsorted) (X $$unsorted) (Z $$unsorted)) (or (not (tptp.product W Y X)) (not (tptp.product Z Y X)) (tptp.equalish W Z))) (or (not (tptp.product tptp.e_2 tptp.e_3 tptp.e_3)) (not (tptp.product tptp.e_3 tptp.e_3 tptp.e_3)) (tptp.equalish tptp.e_2 tptp.e_3))) (forall ((W $$unsorted) (Y $$unsorted) (X $$unsorted) (Z $$unsorted)) (or (not (tptp.product W Y X)) (not (tptp.product Z Y X)) (tptp.equalish W Z)))) :rule implies_neg1)
% 0.16/0.51  (anchor :step t184)
% 0.16/0.51  (assume t184.a0 (forall ((W $$unsorted) (Y $$unsorted) (X $$unsorted) (Z $$unsorted)) (or (not (tptp.product W Y X)) (not (tptp.product Z Y X)) (tptp.equalish W Z))))
% 0.16/0.51  (step t184.t1 (cl (or (not (forall ((W $$unsorted) (Y $$unsorted) (X $$unsorted) (Z $$unsorted)) (or (not (tptp.product W Y X)) (not (tptp.product Z Y X)) (tptp.equalish W Z)))) (or (not (tptp.product tptp.e_2 tptp.e_3 tptp.e_3)) (not (tptp.product tptp.e_3 tptp.e_3 tptp.e_3)) (tptp.equalish tptp.e_2 tptp.e_3)))) :rule forall_inst :args ((:= W tptp.e_2) (:= Y tptp.e_3) (:= X tptp.e_3) (:= Z tptp.e_3)))
% 0.16/0.51  (step t184.t2 (cl (not (forall ((W $$unsorted) (Y $$unsorted) (X $$unsorted) (Z $$unsorted)) (or (not (tptp.product W Y X)) (not (tptp.product Z Y X)) (tptp.equalish W Z)))) (or (not (tptp.product tptp.e_2 tptp.e_3 tptp.e_3)) (not (tptp.product tptp.e_3 tptp.e_3 tptp.e_3)) (tptp.equalish tptp.e_2 tptp.e_3))) :rule or :premises (t184.t1))
% 0.16/0.51  (step t184.t3 (cl (or (not (tptp.product tptp.e_2 tptp.e_3 tptp.e_3)) (not (tptp.product tptp.e_3 tptp.e_3 tptp.e_3)) (tptp.equalish tptp.e_2 tptp.e_3))) :rule resolution :premises (t184.t2 t184.a0))
% 0.16/0.51  (step t184 (cl (not (forall ((W $$unsorted) (Y $$unsorted) (X $$unsorted) (Z $$unsorted)) (or (not (tptp.product W Y X)) (not (tptp.product Z Y X)) (tptp.equalish W Z)))) (or (not (tptp.product tptp.e_2 tptp.e_3 tptp.e_3)) (not (tptp.product tptp.e_3 tptp.e_3 tptp.e_3)) (tptp.equalish tptp.e_2 tptp.e_3))) :rule subproof :discharge (t184.a0))
% 0.16/0.51  (step t185 (cl (=> (forall ((W $$unsorted) (Y $$unsorted) (X $$unsorted) (Z $$unsorted)) (or (not (tptp.product W Y X)) (not (tptp.product Z Y X)) (tptp.equalish W Z))) (or (not (tptp.product tptp.e_2 tptp.e_3 tptp.e_3)) (not (tptp.product tptp.e_3 tptp.e_3 tptp.e_3)) (tptp.equalish tptp.e_2 tptp.e_3))) (or (not (tptp.product tptp.e_2 tptp.e_3 tptp.e_3)) (not (tptp.product tptp.e_3 tptp.e_3 tptp.e_3)) (tptp.equalish tptp.e_2 tptp.e_3))) :rule resolution :premises (t183 t184))
% 0.16/0.51  (step t186 (cl (=> (forall ((W $$unsorted) (Y $$unsorted) (X $$unsorted) (Z $$unsorted)) (or (not (tptp.product W Y X)) (not (tptp.product Z Y X)) (tptp.equalish W Z))) (or (not (tptp.product tptp.e_2 tptp.e_3 tptp.e_3)) (not (tptp.product tptp.e_3 tptp.e_3 tptp.e_3)) (tptp.equalish tptp.e_2 tptp.e_3))) (not (or (not (tptp.product tptp.e_2 tptp.e_3 tptp.e_3)) (not (tptp.product tptp.e_3 tptp.e_3 tptp.e_3)) (tptp.equalish tptp.e_2 tptp.e_3)))) :rule implies_neg2)
% 0.16/0.51  (step t187 (cl (=> (forall ((W $$unsorted) (Y $$unsorted) (X $$unsorted) (Z $$unsorted)) (or (not (tptp.product W Y X)) (not (tptp.product Z Y X)) (tptp.equalish W Z))) (or (not (tptp.product tptp.e_2 tptp.e_3 tptp.e_3)) (not (tptp.product tptp.e_3 tptp.e_3 tptp.e_3)) (tptp.equalish tptp.e_2 tptp.e_3))) (=> (forall ((W $$unsorted) (Y $$unsorted) (X $$unsorted) (Z $$unsorted)) (or (not (tptp.product W Y X)) (not (tptp.product Z Y X)) (tptp.equalish W Z))) (or (not (tptp.product tptp.e_2 tptp.e_3 tptp.e_3)) (not (tptp.product tptp.e_3 tptp.e_3 tptp.e_3)) (tptp.equalish tptp.e_2 tptp.e_3)))) :rule resolution :premises (t185 t186))
% 0.16/0.51  (step t188 (cl (=> (forall ((W $$unsorted) (Y $$unsorted) (X $$unsorted) (Z $$unsorted)) (or (not (tptp.product W Y X)) (not (tptp.product Z Y X)) (tptp.equalish W Z))) (or (not (tptp.product tptp.e_2 tptp.e_3 tptp.e_3)) (not (tptp.product tptp.e_3 tptp.e_3 tptp.e_3)) (tptp.equalish tptp.e_2 tptp.e_3)))) :rule contraction :premises (t187))
% 0.16/0.51  (step t189 (cl (not (forall ((W $$unsorted) (Y $$unsorted) (X $$unsorted) (Z $$unsorted)) (or (not (tptp.product W Y X)) (not (tptp.product Z Y X)) (tptp.equalish W Z)))) (or (not (tptp.product tptp.e_2 tptp.e_3 tptp.e_3)) (not (tptp.product tptp.e_3 tptp.e_3 tptp.e_3)) (tptp.equalish tptp.e_2 tptp.e_3))) :rule implies :premises (t188))
% 0.16/0.51  (step t190 (cl (or (not (tptp.product tptp.e_2 tptp.e_3 tptp.e_3)) (not (tptp.product tptp.e_3 tptp.e_3 tptp.e_3)) (tptp.equalish tptp.e_2 tptp.e_3))) :rule resolution :premises (t189 a29))
% 0.16/0.51  (step t191 (cl (not (tptp.product tptp.e_2 tptp.e_3 tptp.e_3))) :rule resolution :premises (t174 a18 t182 t190))
% 0.16/0.51  (step t192 (cl (=> (forall ((X $$unsorted) (Y $$unsorted)) (or (not (tptp.group_element X)) (not (tptp.group_element Y)) (tptp.product X Y tptp.e_1) (tptp.product X Y tptp.e_2) (tptp.product X Y tptp.e_3) (tptp.product X Y tptp.e_4))) (or (not (tptp.group_element tptp.e_2)) (not (tptp.group_element tptp.e_3)) (tptp.product tptp.e_2 tptp.e_3 tptp.e_1) (tptp.product tptp.e_2 tptp.e_3 tptp.e_2) (tptp.product tptp.e_2 tptp.e_3 tptp.e_3) (tptp.product tptp.e_2 tptp.e_3 tptp.e_4))) (forall ((X $$unsorted) (Y $$unsorted)) (or (not (tptp.group_element X)) (not (tptp.group_element Y)) (tptp.product X Y tptp.e_1) (tptp.product X Y tptp.e_2) (tptp.product X Y tptp.e_3) (tptp.product X Y tptp.e_4)))) :rule implies_neg1)
% 0.16/0.51  (anchor :step t193)
% 0.16/0.51  (assume t193.a0 (forall ((X $$unsorted) (Y $$unsorted)) (or (not (tptp.group_element X)) (not (tptp.group_element Y)) (tptp.product X Y tptp.e_1) (tptp.product X Y tptp.e_2) (tptp.product X Y tptp.e_3) (tptp.product X Y tptp.e_4))))
% 0.16/0.51  (step t193.t1 (cl (or (not (forall ((X $$unsorted) (Y $$unsorted)) (or (not (tptp.group_element X)) (not (tptp.group_element Y)) (tptp.product X Y tptp.e_1) (tptp.product X Y tptp.e_2) (tptp.product X Y tptp.e_3) (tptp.product X Y tptp.e_4)))) (or (not (tptp.group_element tptp.e_2)) (not (tptp.group_element tptp.e_3)) (tptp.product tptp.e_2 tptp.e_3 tptp.e_1) (tptp.product tptp.e_2 tptp.e_3 tptp.e_2) (tptp.product tptp.e_2 tptp.e_3 tptp.e_3) (tptp.product tptp.e_2 tptp.e_3 tptp.e_4)))) :rule forall_inst :args ((:= X tptp.e_2) (:= Y tptp.e_3)))
% 0.16/0.51  (step t193.t2 (cl (not (forall ((X $$unsorted) (Y $$unsorted)) (or (not (tptp.group_element X)) (not (tptp.group_element Y)) (tptp.product X Y tptp.e_1) (tptp.product X Y tptp.e_2) (tptp.product X Y tptp.e_3) (tptp.product X Y tptp.e_4)))) (or (not (tptp.group_element tptp.e_2)) (not (tptp.group_element tptp.e_3)) (tptp.product tptp.e_2 tptp.e_3 tptp.e_1) (tptp.product tptp.e_2 tptp.e_3 tptp.e_2) (tptp.product tptp.e_2 tptp.e_3 tptp.e_3) (tptp.product tptp.e_2 tptp.e_3 tptp.e_4))) :rule or :premises (t193.t1))
% 0.16/0.51  (step t193.t3 (cl (or (not (tptp.group_element tptp.e_2)) (not (tptp.group_element tptp.e_3)) (tptp.product tptp.e_2 tptp.e_3 tptp.e_1) (tptp.product tptp.e_2 tptp.e_3 tptp.e_2) (tptp.product tptp.e_2 tptp.e_3 tptp.e_3) (tptp.product tptp.e_2 tptp.e_3 tptp.e_4))) :rule resolution :premises (t193.t2 t193.a0))
% 0.16/0.51  (step t193 (cl (not (forall ((X $$unsorted) (Y $$unsorted)) (or (not (tptp.group_element X)) (not (tptp.group_element Y)) (tptp.product X Y tptp.e_1) (tptp.product X Y tptp.e_2) (tptp.product X Y tptp.e_3) (tptp.product X Y tptp.e_4)))) (or (not (tptp.group_element tptp.e_2)) (not (tptp.group_element tptp.e_3)) (tptp.product tptp.e_2 tptp.e_3 tptp.e_1) (tptp.product tptp.e_2 tptp.e_3 tptp.e_2) (tptp.product tptp.e_2 tptp.e_3 tptp.e_3) (tptp.product tptp.e_2 tptp.e_3 tptp.e_4))) :rule subproof :discharge (t193.a0))
% 0.16/0.51  (step t194 (cl (=> (forall ((X $$unsorted) (Y $$unsorted)) (or (not (tptp.group_element X)) (not (tptp.group_element Y)) (tptp.product X Y tptp.e_1) (tptp.product X Y tptp.e_2) (tptp.product X Y tptp.e_3) (tptp.product X Y tptp.e_4))) (or (not (tptp.group_element tptp.e_2)) (not (tptp.group_element tptp.e_3)) (tptp.product tptp.e_2 tptp.e_3 tptp.e_1) (tptp.product tptp.e_2 tptp.e_3 tptp.e_2) (tptp.product tptp.e_2 tptp.e_3 tptp.e_3) (tptp.product tptp.e_2 tptp.e_3 tptp.e_4))) (or (not (tptp.group_element tptp.e_2)) (not (tptp.group_element tptp.e_3)) (tptp.product tptp.e_2 tptp.e_3 tptp.e_1) (tptp.product tptp.e_2 tptp.e_3 tptp.e_2) (tptp.product tptp.e_2 tptp.e_3 tptp.e_3) (tptp.product tptp.e_2 tptp.e_3 tptp.e_4))) :rule resolution :premises (t192 t193))
% 0.16/0.51  (step t195 (cl (=> (forall ((X $$unsorted) (Y $$unsorted)) (or (not (tptp.group_element X)) (not (tptp.group_element Y)) (tptp.product X Y tptp.e_1) (tptp.product X Y tptp.e_2) (tptp.product X Y tptp.e_3) (tptp.product X Y tptp.e_4))) (or (not (tptp.group_element tptp.e_2)) (not (tptp.group_element tptp.e_3)) (tptp.product tptp.e_2 tptp.e_3 tptp.e_1) (tptp.product tptp.e_2 tptp.e_3 tptp.e_2) (tptp.product tptp.e_2 tptp.e_3 tptp.e_3) (tptp.product tptp.e_2 tptp.e_3 tptp.e_4))) (not (or (not (tptp.group_element tptp.e_2)) (not (tptp.group_element tptp.e_3)) (tptp.product tptp.e_2 tptp.e_3 tptp.e_1) (tptp.product tptp.e_2 tptp.e_3 tptp.e_2) (tptp.product tptp.e_2 tptp.e_3 tptp.e_3) (tptp.product tptp.e_2 tptp.e_3 tptp.e_4)))) :rule implies_neg2)
% 0.16/0.51  (step t196 (cl (=> (forall ((X $$unsorted) (Y $$unsorted)) (or (not (tptp.group_element X)) (not (tptp.group_element Y)) (tptp.product X Y tptp.e_1) (tptp.product X Y tptp.e_2) (tptp.product X Y tptp.e_3) (tptp.product X Y tptp.e_4))) (or (not (tptp.group_element tptp.e_2)) (not (tptp.group_element tptp.e_3)) (tptp.product tptp.e_2 tptp.e_3 tptp.e_1) (tptp.product tptp.e_2 tptp.e_3 tptp.e_2) (tptp.product tptp.e_2 tptp.e_3 tptp.e_3) (tptp.product tptp.e_2 tptp.e_3 tptp.e_4))) (=> (forall ((X $$unsorted) (Y $$unsorted)) (or (not (tptp.group_element X)) (not (tptp.group_element Y)) (tptp.product X Y tptp.e_1) (tptp.product X Y tptp.e_2) (tptp.product X Y tptp.e_3) (tptp.product X Y tptp.e_4))) (or (not (tptp.group_element tptp.e_2)) (not (tptp.group_element tptp.e_3)) (tptp.product tptp.e_2 tptp.e_3 tptp.e_1) (tptp.product tptp.e_2 tptp.e_3 tptp.e_2) (tptp.product tptp.e_2 tptp.e_3 tptp.e_3) (tptp.product tptp.e_2 tptp.e_3 tptp.e_4)))) :rule resolution :premises (t194 t195))
% 0.16/0.51  (step t197 (cl (=> (forall ((X $$unsorted) (Y $$unsorted)) (or (not (tptp.group_element X)) (not (tptp.group_element Y)) (tptp.product X Y tptp.e_1) (tptp.product X Y tptp.e_2) (tptp.product X Y tptp.e_3) (tptp.product X Y tptp.e_4))) (or (not (tptp.group_element tptp.e_2)) (not (tptp.group_element tptp.e_3)) (tptp.product tptp.e_2 tptp.e_3 tptp.e_1) (tptp.product tptp.e_2 tptp.e_3 tptp.e_2) (tptp.product tptp.e_2 tptp.e_3 tptp.e_3) (tptp.product tptp.e_2 tptp.e_3 tptp.e_4)))) :rule contraction :premises (t196))
% 0.16/0.51  (step t198 (cl (not (forall ((X $$unsorted) (Y $$unsorted)) (or (not (tptp.group_element X)) (not (tptp.group_element Y)) (tptp.product X Y tptp.e_1) (tptp.product X Y tptp.e_2) (tptp.product X Y tptp.e_3) (tptp.product X Y tptp.e_4)))) (or (not (tptp.group_element tptp.e_2)) (not (tptp.group_element tptp.e_3)) (tptp.product tptp.e_2 tptp.e_3 tptp.e_1) (tptp.product tptp.e_2 tptp.e_3 tptp.e_2) (tptp.product tptp.e_2 tptp.e_3 tptp.e_3) (tptp.product tptp.e_2 tptp.e_3 tptp.e_4))) :rule implies :premises (t197))
% 0.16/0.51  (step t199 (cl (or (not (tptp.group_element tptp.e_2)) (not (tptp.group_element tptp.e_3)) (tptp.product tptp.e_2 tptp.e_3 tptp.e_1) (tptp.product tptp.e_2 tptp.e_3 tptp.e_2) (tptp.product tptp.e_2 tptp.e_3 tptp.e_3) (tptp.product tptp.e_2 tptp.e_3 tptp.e_4))) :rule resolution :premises (t198 a26))
% 0.16/0.51  (step t200 (cl (tptp.product tptp.e_2 tptp.e_3 tptp.e_4)) :rule resolution :premises (t98 a11 a12 t161 t172 t191 t199))
% 0.16/0.51  (step t201 (cl (=> (forall ((W $$unsorted) (Y $$unsorted) (X $$unsorted) (Z $$unsorted)) (or (not (tptp.product W Y X)) (not (tptp.product Z Y X)) (tptp.equalish W Z))) (or (not (tptp.product tptp.e_1 tptp.e_3 tptp.e_4)) (not (tptp.product tptp.e_2 tptp.e_3 tptp.e_4)) (tptp.equalish tptp.e_1 tptp.e_2))) (forall ((W $$unsorted) (Y $$unsorted) (X $$unsorted) (Z $$unsorted)) (or (not (tptp.product W Y X)) (not (tptp.product Z Y X)) (tptp.equalish W Z)))) :rule implies_neg1)
% 0.16/0.51  (anchor :step t202)
% 0.16/0.51  (assume t202.a0 (forall ((W $$unsorted) (Y $$unsorted) (X $$unsorted) (Z $$unsorted)) (or (not (tptp.product W Y X)) (not (tptp.product Z Y X)) (tptp.equalish W Z))))
% 0.16/0.51  (step t202.t1 (cl (or (not (forall ((W $$unsorted) (Y $$unsorted) (X $$unsorted) (Z $$unsorted)) (or (not (tptp.product W Y X)) (not (tptp.product Z Y X)) (tptp.equalish W Z)))) (or (not (tptp.product tptp.e_1 tptp.e_3 tptp.e_4)) (not (tptp.product tptp.e_2 tptp.e_3 tptp.e_4)) (tptp.equalish tptp.e_1 tptp.e_2)))) :rule forall_inst :args ((:= W tptp.e_1) (:= Y tptp.e_3) (:= X tptp.e_4) (:= Z tptp.e_2)))
% 0.16/0.51  (step t202.t2 (cl (not (forall ((W $$unsorted) (Y $$unsorted) (X $$unsorted) (Z $$unsorted)) (or (not (tptp.product W Y X)) (not (tptp.product Z Y X)) (tptp.equalish W Z)))) (or (not (tptp.product tptp.e_1 tptp.e_3 tptp.e_4)) (not (tptp.product tptp.e_2 tptp.e_3 tptp.e_4)) (tptp.equalish tptp.e_1 tptp.e_2))) :rule or :premises (t202.t1))
% 0.16/0.51  (step t202.t3 (cl (or (not (tptp.product tptp.e_1 tptp.e_3 tptp.e_4)) (not (tptp.product tptp.e_2 tptp.e_3 tptp.e_4)) (tptp.equalish tptp.e_1 tptp.e_2))) :rule resolution :premises (t202.t2 t202.a0))
% 0.16/0.51  (step t202 (cl (not (forall ((W $$unsorted) (Y $$unsorted) (X $$unsorted) (Z $$unsorted)) (or (not (tptp.product W Y X)) (not (tptp.product Z Y X)) (tptp.equalish W Z)))) (or (not (tptp.product tptp.e_1 tptp.e_3 tptp.e_4)) (not (tptp.product tptp.e_2 tptp.e_3 tptp.e_4)) (tptp.equalish tptp.e_1 tptp.e_2))) :rule subproof :discharge (t202.a0))
% 0.16/0.51  (step t203 (cl (=> (forall ((W $$unsorted) (Y $$unsorted) (X $$unsorted) (Z $$unsorted)) (or (not (tptp.product W Y X)) (not (tptp.product Z Y X)) (tptp.equalish W Z))) (or (not (tptp.product tptp.e_1 tptp.e_3 tptp.e_4)) (not (tptp.product tptp.e_2 tptp.e_3 tptp.e_4)) (tptp.equalish tptp.e_1 tptp.e_2))) (or (not (tptp.product tptp.e_1 tptp.e_3 tptp.e_4)) (not (tptp.product tptp.e_2 tptp.e_3 tptp.e_4)) (tptp.equalish tptp.e_1 tptp.e_2))) :rule resolution :premises (t201 t202))
% 0.16/0.51  (step t204 (cl (=> (forall ((W $$unsorted) (Y $$unsorted) (X $$unsorted) (Z $$unsorted)) (or (not (tptp.product W Y X)) (not (tptp.product Z Y X)) (tptp.equalish W Z))) (or (not (tptp.product tptp.e_1 tptp.e_3 tptp.e_4)) (not (tptp.product tptp.e_2 tptp.e_3 tptp.e_4)) (tptp.equalish tptp.e_1 tptp.e_2))) (not (or (not (tptp.product tptp.e_1 tptp.e_3 tptp.e_4)) (not (tptp.product tptp.e_2 tptp.e_3 tptp.e_4)) (tptp.equalish tptp.e_1 tptp.e_2)))) :rule implies_neg2)
% 0.16/0.51  (step t205 (cl (=> (forall ((W $$unsorted) (Y $$unsorted) (X $$unsorted) (Z $$unsorted)) (or (not (tptp.product W Y X)) (not (tptp.product Z Y X)) (tptp.equalish W Z))) (or (not (tptp.product tptp.e_1 tptp.e_3 tptp.e_4)) (not (tptp.product tptp.e_2 tptp.e_3 tptp.e_4)) (tptp.equalish tptp.e_1 tptp.e_2))) (=> (forall ((W $$unsorted) (Y $$unsorted) (X $$unsorted) (Z $$unsorted)) (or (not (tptp.product W Y X)) (not (tptp.product Z Y X)) (tptp.equalish W Z))) (or (not (tptp.product tptp.e_1 tptp.e_3 tptp.e_4)) (not (tptp.product tptp.e_2 tptp.e_3 tptp.e_4)) (tptp.equalish tptp.e_1 tptp.e_2)))) :rule resolution :premises (t203 t204))
% 0.16/0.51  (step t206 (cl (=> (forall ((W $$unsorted) (Y $$unsorted) (X $$unsorted) (Z $$unsorted)) (or (not (tptp.product W Y X)) (not (tptp.product Z Y X)) (tptp.equalish W Z))) (or (not (tptp.product tptp.e_1 tptp.e_3 tptp.e_4)) (not (tptp.product tptp.e_2 tptp.e_3 tptp.e_4)) (tptp.equalish tptp.e_1 tptp.e_2)))) :rule contraction :premises (t205))
% 0.16/0.51  (step t207 (cl (not (forall ((W $$unsorted) (Y $$unsorted) (X $$unsorted) (Z $$unsorted)) (or (not (tptp.product W Y X)) (not (tptp.product Z Y X)) (tptp.equalish W Z)))) (or (not (tptp.product tptp.e_1 tptp.e_3 tptp.e_4)) (not (tptp.product tptp.e_2 tptp.e_3 tptp.e_4)) (tptp.equalish tptp.e_1 tptp.e_2))) :rule implies :premises (t206))
% 0.16/0.51  (step t208 (cl (or (not (tptp.product tptp.e_1 tptp.e_3 tptp.e_4)) (not (tptp.product tptp.e_2 tptp.e_3 tptp.e_4)) (tptp.equalish tptp.e_1 tptp.e_2))) :rule resolution :premises (t207 a29))
% 0.16/0.51  (step t209 (cl (not (tptp.product tptp.e_1 tptp.e_3 tptp.e_4))) :rule resolution :premises (t96 a14 t200 t208))
% 0.16/0.51  (step t210 (cl (=> (forall ((X $$unsorted) (Y $$unsorted)) (or (not (tptp.group_element X)) (not (tptp.group_element Y)) (tptp.product X Y tptp.e_1) (tptp.product X Y tptp.e_2) (tptp.product X Y tptp.e_3) (tptp.product X Y tptp.e_4))) (or (not (tptp.group_element tptp.e_1)) (not (tptp.group_element tptp.e_3)) (tptp.product tptp.e_1 tptp.e_3 tptp.e_1) (tptp.product tptp.e_1 tptp.e_3 tptp.e_2) (tptp.product tptp.e_1 tptp.e_3 tptp.e_3) (tptp.product tptp.e_1 tptp.e_3 tptp.e_4))) (forall ((X $$unsorted) (Y $$unsorted)) (or (not (tptp.group_element X)) (not (tptp.group_element Y)) (tptp.product X Y tptp.e_1) (tptp.product X Y tptp.e_2) (tptp.product X Y tptp.e_3) (tptp.product X Y tptp.e_4)))) :rule implies_neg1)
% 0.16/0.51  (anchor :step t211)
% 0.16/0.51  (assume t211.a0 (forall ((X $$unsorted) (Y $$unsorted)) (or (not (tptp.group_element X)) (not (tptp.group_element Y)) (tptp.product X Y tptp.e_1) (tptp.product X Y tptp.e_2) (tptp.product X Y tptp.e_3) (tptp.product X Y tptp.e_4))))
% 0.16/0.51  (step t211.t1 (cl (or (not (forall ((X $$unsorted) (Y $$unsorted)) (or (not (tptp.group_element X)) (not (tptp.group_element Y)) (tptp.product X Y tptp.e_1) (tptp.product X Y tptp.e_2) (tptp.product X Y tptp.e_3) (tptp.product X Y tptp.e_4)))) (or (not (tptp.group_element tptp.e_1)) (not (tptp.group_element tptp.e_3)) (tptp.product tptp.e_1 tptp.e_3 tptp.e_1) (tptp.product tptp.e_1 tptp.e_3 tptp.e_2) (tptp.product tptp.e_1 tptp.e_3 tptp.e_3) (tptp.product tptp.e_1 tptp.e_3 tptp.e_4)))) :rule forall_inst :args ((:= X tptp.e_1) (:= Y tptp.e_3)))
% 0.16/0.51  (step t211.t2 (cl (not (forall ((X $$unsorted) (Y $$unsorted)) (or (not (tptp.group_element X)) (not (tptp.group_element Y)) (tptp.product X Y tptp.e_1) (tptp.product X Y tptp.e_2) (tptp.product X Y tptp.e_3) (tptp.product X Y tptp.e_4)))) (or (not (tptp.group_element tptp.e_1)) (not (tptp.group_element tptp.e_3)) (tptp.product tptp.e_1 tptp.e_3 tptp.e_1) (tptp.product tptp.e_1 tptp.e_3 tptp.e_2) (tptp.product tptp.e_1 tptp.e_3 tptp.e_3) (tptp.product tptp.e_1 tptp.e_3 tptp.e_4))) :rule or :premises (t211.t1))
% 0.16/0.51  (step t211.t3 (cl (or (not (tptp.group_element tptp.e_1)) (not (tptp.group_element tptp.e_3)) (tptp.product tptp.e_1 tptp.e_3 tptp.e_1) (tptp.product tptp.e_1 tptp.e_3 tptp.e_2) (tptp.product tptp.e_1 tptp.e_3 tptp.e_3) (tptp.product tptp.e_1 tptp.e_3 tptp.e_4))) :rule resolution :premises (t211.t2 t211.a0))
% 0.16/0.51  (step t211 (cl (not (forall ((X $$unsorted) (Y $$unsorted)) (or (not (tptp.group_element X)) (not (tptp.group_element Y)) (tptp.product X Y tptp.e_1) (tptp.product X Y tptp.e_2) (tptp.product X Y tptp.e_3) (tptp.product X Y tptp.e_4)))) (or (not (tptp.group_element tptp.e_1)) (not (tptp.group_element tptp.e_3)) (tptp.product tptp.e_1 tptp.e_3 tptp.e_1) (tptp.product tptp.e_1 tptp.e_3 tptp.e_2) (tptp.product tptp.e_1 tptp.e_3 tptp.e_3) (tptp.product tptp.e_1 tptp.e_3 tptp.e_4))) :rule subproof :discharge (t211.a0))
% 0.16/0.51  (step t212 (cl (=> (forall ((X $$unsorted) (Y $$unsorted)) (or (not (tptp.group_element X)) (not (tptp.group_element Y)) (tptp.product X Y tptp.e_1) (tptp.product X Y tptp.e_2) (tptp.product X Y tptp.e_3) (tptp.product X Y tptp.e_4))) (or (not (tptp.group_element tptp.e_1)) (not (tptp.group_element tptp.e_3)) (tptp.product tptp.e_1 tptp.e_3 tptp.e_1) (tptp.product tptp.e_1 tptp.e_3 tptp.e_2) (tptp.product tptp.e_1 tptp.e_3 tptp.e_3) (tptp.product tptp.e_1 tptp.e_3 tptp.e_4))) (or (not (tptp.group_element tptp.e_1)) (not (tptp.group_element tptp.e_3)) (tptp.product tptp.e_1 tptp.e_3 tptp.e_1) (tptp.product tptp.e_1 tptp.e_3 tptp.e_2) (tptp.product tptp.e_1 tptp.e_3 tptp.e_3) (tptp.product tptp.e_1 tptp.e_3 tptp.e_4))) :rule resolution :premises (t210 t211))
% 0.16/0.51  (step t213 (cl (=> (forall ((X $$unsorted) (Y $$unsorted)) (or (not (tptp.group_element X)) (not (tptp.group_element Y)) (tptp.product X Y tptp.e_1) (tptp.product X Y tptp.e_2) (tptp.product X Y tptp.e_3) (tptp.product X Y tptp.e_4))) (or (not (tptp.group_element tptp.e_1)) (not (tptp.group_element tptp.e_3)) (tptp.product tptp.e_1 tptp.e_3 tptp.e_1) (tptp.product tptp.e_1 tptp.e_3 tptp.e_2) (tptp.product tptp.e_1 tptp.e_3 tptp.e_3) (tptp.product tptp.e_1 tptp.e_3 tptp.e_4))) (not (or (not (tptp.group_element tptp.e_1)) (not (tptp.group_element tptp.e_3)) (tptp.product tptp.e_1 tptp.e_3 tptp.e_1) (tptp.product tptp.e_1 tptp.e_3 tptp.e_2) (tptp.product tptp.e_1 tptp.e_3 tptp.e_3) (tptp.product tptp.e_1 tptp.e_3 tptp.e_4)))) :rule implies_neg2)
% 0.16/0.51  (step t214 (cl (=> (forall ((X $$unsorted) (Y $$unsorted)) (or (not (tptp.group_element X)) (not (tptp.group_element Y)) (tptp.product X Y tptp.e_1) (tptp.product X Y tptp.e_2) (tptp.product X Y tptp.e_3) (tptp.product X Y tptp.e_4))) (or (not (tptp.group_element tptp.e_1)) (not (tptp.group_element tptp.e_3)) (tptp.product tptp.e_1 tptp.e_3 tptp.e_1) (tptp.product tptp.e_1 tptp.e_3 tptp.e_2) (tptp.product tptp.e_1 tptp.e_3 tptp.e_3) (tptp.product tptp.e_1 tptp.e_3 tptp.e_4))) (=> (forall ((X $$unsorted) (Y $$unsorted)) (or (not (tptp.group_element X)) (not (tptp.group_element Y)) (tptp.product X Y tptp.e_1) (tptp.product X Y tptp.e_2) (tptp.product X Y tptp.e_3) (tptp.product X Y tptp.e_4))) (or (not (tptp.group_element tptp.e_1)) (not (tptp.group_element tptp.e_3)) (tptp.product tptp.e_1 tptp.e_3 tptp.e_1) (tptp.product tptp.e_1 tptp.e_3 tptp.e_2) (tptp.product tptp.e_1 tptp.e_3 tptp.e_3) (tptp.product tptp.e_1 tptp.e_3 tptp.e_4)))) :rule resolution :premises (t212 t213))
% 0.16/0.51  (step t215 (cl (=> (forall ((X $$unsorted) (Y $$unsorted)) (or (not (tptp.group_element X)) (not (tptp.group_element Y)) (tptp.product X Y tptp.e_1) (tptp.product X Y tptp.e_2) (tptp.product X Y tptp.e_3) (tptp.product X Y tptp.e_4))) (or (not (tptp.group_element tptp.e_1)) (not (tptp.group_element tptp.e_3)) (tptp.product tptp.e_1 tptp.e_3 tptp.e_1) (tptp.product tptp.e_1 tptp.e_3 tptp.e_2) (tptp.product tptp.e_1 tptp.e_3 tptp.e_3) (tptp.product tptp.e_1 tptp.e_3 tptp.e_4)))) :rule contraction :premises (t214))
% 0.16/0.51  (step t216 (cl (not (forall ((X $$unsorted) (Y $$unsorted)) (or (not (tptp.group_element X)) (not (tptp.group_element Y)) (tptp.product X Y tptp.e_1) (tptp.product X Y tptp.e_2) (tptp.product X Y tptp.e_3) (tptp.product X Y tptp.e_4)))) (or (not (tptp.group_element tptp.e_1)) (not (tptp.group_element tptp.e_3)) (tptp.product tptp.e_1 tptp.e_3 tptp.e_1) (tptp.product tptp.e_1 tptp.e_3 tptp.e_2) (tptp.product tptp.e_1 tptp.e_3 tptp.e_3) (tptp.product tptp.e_1 tptp.e_3 tptp.e_4))) :rule implies :premises (t215))
% 0.16/0.51  (step t217 (cl (or (not (tptp.group_element tptp.e_1)) (not (tptp.group_element tptp.e_3)) (tptp.product tptp.e_1 tptp.e_3 tptp.e_1) (tptp.product tptp.e_1 tptp.e_3 tptp.e_2) (tptp.product tptp.e_1 tptp.e_3 tptp.e_3) (tptp.product tptp.e_1 tptp.e_3 tptp.e_4))) :rule resolution :premises (t216 a26))
% 0.16/0.51  (step t218 (cl (tptp.product tptp.e_1 tptp.e_3 tptp.e_3)) :rule resolution :premises (t11 a10 a12 t30 t94 t209 t217))
% 0.16/0.51  (step t219 (cl (not (or (not (tptp.product tptp.e_1 tptp.e_3 tptp.e_3)) (not (tptp.product tptp.e_3 tptp.e_3 tptp.e_3)) (tptp.equalish tptp.e_1 tptp.e_3)))) :rule resolution :premises (t9 a15 t218 t182))
% 0.16/0.51  (step t220 (cl) :rule resolution :premises (t7 t219 a29))
% 0.16/0.51  
% 0.16/0.51  % SZS output end Proof for /export/starexec/sandbox/tmp/tmp.pNl8DMJNbG/cvc5---1.0.5_2681.smt2
% 0.16/0.51  % cvc5---1.0.5 exiting
% 0.16/0.51  % cvc5---1.0.5 exiting
%------------------------------------------------------------------------------