TSTP Solution File: GRP109-1 by Twee---2.4.2

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Twee---2.4.2
% Problem  : GRP109-1 : TPTP v8.1.2. Bugfixed v2.7.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : parallel-twee %s --tstp --conditional-encoding if --smaller --drop-non-horn --give-up-on-saturation --explain-encoding --formal-proof

% Computer : n013.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Thu Aug 31 01:17:01 EDT 2023

% Result   : Unsatisfiable 0.20s 0.42s
% Output   : Proof 0.20s
% Verified : 
% SZS Type : -

% Comments : 
%------------------------------------------------------------------------------
%----WARNING: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.10/0.12  % Problem  : GRP109-1 : TPTP v8.1.2. Bugfixed v2.7.0.
% 0.10/0.13  % Command  : parallel-twee %s --tstp --conditional-encoding if --smaller --drop-non-horn --give-up-on-saturation --explain-encoding --formal-proof
% 0.13/0.34  % Computer : n013.cluster.edu
% 0.13/0.34  % Model    : x86_64 x86_64
% 0.13/0.34  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.13/0.34  % Memory   : 8042.1875MB
% 0.13/0.34  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.13/0.34  % CPULimit : 300
% 0.13/0.34  % WCLimit  : 300
% 0.13/0.34  % DateTime : Mon Aug 28 23:42:47 EDT 2023
% 0.13/0.35  % CPUTime  : 
% 0.20/0.42  Command-line arguments: --no-flatten-goal
% 0.20/0.42  
% 0.20/0.42  % SZS status Unsatisfiable
% 0.20/0.42  
% 0.20/0.43  % SZS output start Proof
% 0.20/0.43  Take the following subset of the input axioms:
% 0.20/0.43    fof(multiply, axiom, ![X, Y]: multiply(X, Y)=inverse(double_divide(Y, X))).
% 0.20/0.43    fof(prove_these_axioms, negated_conjecture, multiply(inverse(a1), a1)!=multiply(inverse(b1), b1) | (multiply(multiply(inverse(b2), b2), a2)!=a2 | (multiply(multiply(a3, b3), c3)!=multiply(a3, multiply(b3, c3)) | multiply(a4, b4)!=multiply(b4, a4)))).
% 0.20/0.43    fof(single_axiom, axiom, ![Z, X2, Y2]: double_divide(inverse(double_divide(X2, inverse(double_divide(inverse(Y2), double_divide(X2, Z))))), Z)=Y2).
% 0.20/0.43  
% 0.20/0.43  Now clausify the problem and encode Horn clauses using encoding 3 of
% 0.20/0.43  http://www.cse.chalmers.se/~nicsma/papers/horn.pdf.
% 0.20/0.43  We repeatedly replace C & s=t => u=v by the two clauses:
% 0.20/0.43    fresh(y, y, x1...xn) = u
% 0.20/0.43    C => fresh(s, t, x1...xn) = v
% 0.20/0.43  where fresh is a fresh function symbol and x1..xn are the free
% 0.20/0.43  variables of u and v.
% 0.20/0.43  A predicate p(X) is encoded as p(X)=true (this is sound, because the
% 0.20/0.43  input problem has no model of domain size 1).
% 0.20/0.43  
% 0.20/0.43  The encoding turns the above axioms into the following unit equations and goals:
% 0.20/0.43  
% 0.20/0.43  Axiom 1 (multiply): multiply(X, Y) = inverse(double_divide(Y, X)).
% 0.20/0.43  Axiom 2 (single_axiom): double_divide(inverse(double_divide(X, inverse(double_divide(inverse(Y), double_divide(X, Z))))), Z) = Y.
% 0.20/0.43  
% 0.20/0.43  Lemma 3: double_divide(multiply(multiply(double_divide(X, Y), inverse(Z)), X), Y) = Z.
% 0.20/0.43  Proof:
% 0.20/0.43    double_divide(multiply(multiply(double_divide(X, Y), inverse(Z)), X), Y)
% 0.20/0.43  = { by axiom 1 (multiply) }
% 0.20/0.43    double_divide(multiply(inverse(double_divide(inverse(Z), double_divide(X, Y))), X), Y)
% 0.20/0.43  = { by axiom 1 (multiply) }
% 0.20/0.43    double_divide(inverse(double_divide(X, inverse(double_divide(inverse(Z), double_divide(X, Y))))), Y)
% 0.20/0.43  = { by axiom 2 (single_axiom) }
% 0.20/0.43    Z
% 0.20/0.43  
% 0.20/0.43  Lemma 4: multiply(X, multiply(multiply(double_divide(Y, X), inverse(Z)), Y)) = inverse(Z).
% 0.20/0.43  Proof:
% 0.20/0.43    multiply(X, multiply(multiply(double_divide(Y, X), inverse(Z)), Y))
% 0.20/0.43  = { by axiom 1 (multiply) }
% 0.20/0.43    inverse(double_divide(multiply(multiply(double_divide(Y, X), inverse(Z)), Y), X))
% 0.20/0.43  = { by lemma 3 }
% 0.20/0.43    inverse(Z)
% 0.20/0.43  
% 0.20/0.43  Lemma 5: double_divide(inverse(X), multiply(X, inverse(Y))) = Y.
% 0.20/0.43  Proof:
% 0.20/0.43    double_divide(inverse(X), multiply(X, inverse(Y)))
% 0.20/0.43  = { by lemma 4 R->L }
% 0.20/0.43    double_divide(multiply(multiply(X, inverse(Y)), multiply(multiply(double_divide(Z, multiply(X, inverse(Y))), inverse(X)), Z)), multiply(X, inverse(Y)))
% 0.20/0.43  = { by lemma 3 R->L }
% 0.20/0.43    double_divide(multiply(multiply(double_divide(multiply(multiply(double_divide(Z, multiply(X, inverse(Y))), inverse(X)), Z), multiply(X, inverse(Y))), inverse(Y)), multiply(multiply(double_divide(Z, multiply(X, inverse(Y))), inverse(X)), Z)), multiply(X, inverse(Y)))
% 0.20/0.43  = { by lemma 3 }
% 0.20/0.43    Y
% 0.20/0.43  
% 0.20/0.43  Lemma 6: multiply(multiply(X, inverse(Y)), inverse(X)) = inverse(Y).
% 0.20/0.43  Proof:
% 0.20/0.43    multiply(multiply(X, inverse(Y)), inverse(X))
% 0.20/0.43  = { by axiom 1 (multiply) }
% 0.20/0.43    inverse(double_divide(inverse(X), multiply(X, inverse(Y))))
% 0.20/0.43  = { by lemma 5 }
% 0.20/0.43    inverse(Y)
% 0.20/0.43  
% 0.20/0.43  Lemma 7: double_divide(inverse(multiply(X, inverse(Y))), inverse(Y)) = X.
% 0.20/0.43  Proof:
% 0.20/0.43    double_divide(inverse(multiply(X, inverse(Y))), inverse(Y))
% 0.20/0.43  = { by lemma 6 R->L }
% 0.20/0.43    double_divide(inverse(multiply(X, inverse(Y))), multiply(multiply(X, inverse(Y)), inverse(X)))
% 0.20/0.44  = { by lemma 5 }
% 0.20/0.44    X
% 0.20/0.44  
% 0.20/0.44  Lemma 8: multiply(multiply(X, multiply(Y, Z)), inverse(X)) = multiply(Y, Z).
% 0.20/0.44  Proof:
% 0.20/0.44    multiply(multiply(X, multiply(Y, Z)), inverse(X))
% 0.20/0.44  = { by axiom 1 (multiply) }
% 0.20/0.44    multiply(multiply(X, inverse(double_divide(Z, Y))), inverse(X))
% 0.20/0.44  = { by lemma 6 }
% 0.20/0.44    inverse(double_divide(Z, Y))
% 0.20/0.44  = { by axiom 1 (multiply) R->L }
% 0.20/0.44    multiply(Y, Z)
% 0.20/0.44  
% 0.20/0.44  Lemma 9: multiply(X, multiply(Y, inverse(X))) = Y.
% 0.20/0.44  Proof:
% 0.20/0.44    multiply(X, multiply(Y, inverse(X)))
% 0.20/0.44  = { by lemma 7 R->L }
% 0.20/0.44    double_divide(inverse(multiply(multiply(X, multiply(Y, inverse(X))), inverse(X))), inverse(X))
% 0.20/0.44  = { by lemma 8 }
% 0.20/0.44    double_divide(inverse(multiply(Y, inverse(X))), inverse(X))
% 0.20/0.44  = { by lemma 7 }
% 0.20/0.44    Y
% 0.20/0.44  
% 0.20/0.44  Lemma 10: multiply(Y, multiply(X, Z)) = multiply(X, multiply(Y, Z)).
% 0.20/0.44  Proof:
% 0.20/0.44    multiply(Y, multiply(X, Z))
% 0.20/0.44  = { by lemma 9 R->L }
% 0.20/0.44    multiply(Y, multiply(multiply(double_divide(Z, Y), multiply(X, inverse(double_divide(Z, Y)))), Z))
% 0.20/0.44  = { by axiom 1 (multiply) }
% 0.20/0.44    multiply(Y, multiply(multiply(double_divide(Z, Y), inverse(double_divide(inverse(double_divide(Z, Y)), X))), Z))
% 0.20/0.44  = { by lemma 4 }
% 0.20/0.44    inverse(double_divide(inverse(double_divide(Z, Y)), X))
% 0.20/0.44  = { by axiom 1 (multiply) R->L }
% 0.20/0.44    multiply(X, inverse(double_divide(Z, Y)))
% 0.20/0.44  = { by axiom 1 (multiply) R->L }
% 0.20/0.44    multiply(X, multiply(Y, Z))
% 0.20/0.44  
% 0.20/0.44  Lemma 11: multiply(X, multiply(Y, inverse(Y))) = X.
% 0.20/0.44  Proof:
% 0.20/0.44    multiply(X, multiply(Y, inverse(Y)))
% 0.20/0.44  = { by lemma 10 }
% 0.20/0.44    multiply(Y, multiply(X, inverse(Y)))
% 0.20/0.44  = { by lemma 9 }
% 0.20/0.44    X
% 0.20/0.44  
% 0.20/0.44  Lemma 12: multiply(Y, X) = multiply(X, Y).
% 0.20/0.44  Proof:
% 0.20/0.44    multiply(Y, X)
% 0.20/0.44  = { by lemma 11 R->L }
% 0.20/0.44    multiply(Y, multiply(X, multiply(Z, inverse(Z))))
% 0.20/0.44  = { by lemma 10 R->L }
% 0.20/0.44    multiply(X, multiply(Y, multiply(Z, inverse(Z))))
% 0.20/0.44  = { by lemma 11 }
% 0.20/0.44    multiply(X, Y)
% 0.20/0.44  
% 0.20/0.44  Goal 1 (prove_these_axioms): tuple(multiply(inverse(a1), a1), multiply(multiply(inverse(b2), b2), a2), multiply(multiply(a3, b3), c3), multiply(a4, b4)) = tuple(multiply(inverse(b1), b1), a2, multiply(a3, multiply(b3, c3)), multiply(b4, a4)).
% 0.20/0.44  Proof:
% 0.20/0.44    tuple(multiply(inverse(a1), a1), multiply(multiply(inverse(b2), b2), a2), multiply(multiply(a3, b3), c3), multiply(a4, b4))
% 0.20/0.44  = { by lemma 12 R->L }
% 0.20/0.44    tuple(multiply(a1, inverse(a1)), multiply(multiply(inverse(b2), b2), a2), multiply(multiply(a3, b3), c3), multiply(a4, b4))
% 0.20/0.44  = { by lemma 12 R->L }
% 0.20/0.44    tuple(multiply(a1, inverse(a1)), multiply(a2, multiply(inverse(b2), b2)), multiply(multiply(a3, b3), c3), multiply(a4, b4))
% 0.20/0.44  = { by lemma 12 R->L }
% 0.20/0.44    tuple(multiply(a1, inverse(a1)), multiply(a2, multiply(b2, inverse(b2))), multiply(multiply(a3, b3), c3), multiply(a4, b4))
% 0.20/0.44  = { by lemma 11 }
% 0.20/0.44    tuple(multiply(a1, inverse(a1)), a2, multiply(multiply(a3, b3), c3), multiply(a4, b4))
% 0.20/0.44  = { by lemma 12 R->L }
% 0.20/0.44    tuple(multiply(a1, inverse(a1)), a2, multiply(c3, multiply(a3, b3)), multiply(a4, b4))
% 0.20/0.44  = { by lemma 10 R->L }
% 0.20/0.44    tuple(multiply(a1, inverse(a1)), a2, multiply(a3, multiply(c3, b3)), multiply(a4, b4))
% 0.20/0.44  = { by lemma 12 R->L }
% 0.20/0.44    tuple(multiply(a1, inverse(a1)), a2, multiply(a3, multiply(b3, c3)), multiply(a4, b4))
% 0.20/0.44  = { by lemma 11 R->L }
% 0.20/0.44    tuple(multiply(multiply(a1, multiply(b1, inverse(b1))), inverse(a1)), a2, multiply(a3, multiply(b3, c3)), multiply(a4, b4))
% 0.20/0.44  = { by lemma 8 }
% 0.20/0.44    tuple(multiply(b1, inverse(b1)), a2, multiply(a3, multiply(b3, c3)), multiply(a4, b4))
% 0.20/0.44  = { by lemma 12 }
% 0.20/0.44    tuple(multiply(b1, inverse(b1)), a2, multiply(a3, multiply(b3, c3)), multiply(b4, a4))
% 0.20/0.44  = { by lemma 12 }
% 0.20/0.44    tuple(multiply(inverse(b1), b1), a2, multiply(a3, multiply(b3, c3)), multiply(b4, a4))
% 0.20/0.44  % SZS output end Proof
% 0.20/0.44  
% 0.20/0.44  RESULT: Unsatisfiable (the axioms are contradictory).
%------------------------------------------------------------------------------