TSTP Solution File: GRP096-1 by Otter---3.3

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Otter---3.3
% Problem  : GRP096-1 : TPTP v8.1.0. Bugfixed v2.7.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : otter-tptp-script %s

% Computer : n014.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Wed Jul 27 12:56:02 EDT 2022

% Result   : Unsatisfiable 2.24s 2.46s
% Output   : Refutation 2.24s
% Verified : 
% SZS Type : Refutation
%            Derivation depth      :   14
%            Number of leaves      :    4
% Syntax   : Number of clauses     :   52 (  47 unt;   0 nHn;   6 RR)
%            Number of literals    :   67 (  66 equ;  20 neg)
%            Maximal clause size   :    4 (   1 avg)
%            Maximal term depth    :    7 (   2 avg)
%            Number of predicates  :    2 (   0 usr;   1 prp; 0-2 aty)
%            Number of functors    :   12 (  12 usr;   9 con; 0-2 aty)
%            Number of variables   :  130 (   0 sgn)

% Comments : 
%------------------------------------------------------------------------------
cnf(1,axiom,
    ( multiply(inverse(a1),a1) != multiply(inverse(b1),b1)
    | multiply(multiply(inverse(b2),b2),a2) != a2
    | multiply(multiply(a3,b3),c3) != multiply(a3,multiply(b3,c3))
    | multiply(a4,b4) != multiply(b4,a4) ),
    file('GRP096-1.p',unknown),
    [] ).

cnf(2,plain,
    ( multiply(inverse(b1),b1) != multiply(inverse(a1),a1)
    | multiply(multiply(inverse(b2),b2),a2) != a2
    | multiply(multiply(a3,b3),c3) != multiply(a3,multiply(b3,c3))
    | multiply(b4,a4) != multiply(a4,b4) ),
    inference(flip,[status(thm),theory(equality)],[inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[1])])]),
    [iquote('copy,1,flip.1,flip.4')] ).

cnf(3,axiom,
    A = A,
    file('GRP096-1.p',unknown),
    [] ).

cnf(4,axiom,
    divide(divide(A,inverse(divide(B,divide(A,C)))),C) = B,
    file('GRP096-1.p',unknown),
    [] ).

cnf(6,axiom,
    multiply(A,B) = divide(A,inverse(B)),
    file('GRP096-1.p',unknown),
    [] ).

cnf(7,plain,
    divide(A,inverse(B)) = multiply(A,B),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[6])]),
    [iquote('copy,6,flip.1')] ).

cnf(8,plain,
    ( multiply(inverse(b1),b1) != multiply(inverse(a1),a1)
    | multiply(multiply(inverse(b2),b2),a2) != a2
    | multiply(multiply(a3,b3),c3) != multiply(a3,multiply(b3,c3))
    | divide(b4,inverse(a4)) != multiply(a4,b4) ),
    inference(para_from,[status(thm),theory(equality)],[6,2]),
    [iquote('para_from,6.1.1,2.4.1')] ).

cnf(14,plain,
    divide(divide(A,inverse(divide(B,multiply(A,C)))),inverse(C)) = B,
    inference(para_into,[status(thm),theory(equality)],[4,7]),
    [iquote('para_into,4.1.1.1.2.1.2,7.1.1')] ).

cnf(19,plain,
    divide(A,inverse(divide(B,divide(A,divide(C,D))))) = divide(divide(C,inverse(B)),D),
    inference(flip,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[4,4])]),
    [iquote('para_into,4.1.1.1.2.1,4.1.1,flip.1')] ).

cnf(20,plain,
    divide(multiply(A,divide(B,divide(A,C))),C) = B,
    inference(para_into,[status(thm),theory(equality)],[4,7]),
    [iquote('para_into,4.1.1.1,7.1.1')] ).

cnf(24,plain,
    divide(multiply(multiply(A,divide(B,divide(A,C))),divide(D,B)),C) = D,
    inference(para_into,[status(thm),theory(equality)],[20,20]),
    [iquote('para_into,20.1.1.1.2.2,20.1.1')] ).

cnf(26,plain,
    divide(multiply(A,divide(B,multiply(A,C))),inverse(C)) = B,
    inference(para_into,[status(thm),theory(equality)],[20,7]),
    [iquote('para_into,20.1.1.1.2.2,7.1.1')] ).

cnf(31,plain,
    divide(multiply(A,B),C) = divide(divide(A,inverse(B)),C),
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[20,4]),19]),
    [iquote('para_into,20.1.1.1.2,4.1.1,demod,19')] ).

cnf(32,plain,
    multiply(multiply(A,divide(B,divide(A,inverse(C)))),C) = B,
    inference(para_into,[status(thm),theory(equality)],[20,7]),
    [iquote('para_into,20.1.1,7.1.1')] ).

cnf(44,plain,
    ( multiply(inverse(b1),b1) != multiply(inverse(a1),a1)
    | multiply(multiply(inverse(b2),b2),a2) != a2
    | divide(multiply(a3,b3),inverse(c3)) != multiply(a3,multiply(b3,c3))
    | divide(b4,inverse(a4)) != multiply(a4,b4) ),
    inference(para_into,[status(thm),theory(equality)],[8,6]),
    [iquote('para_into,8.3.1,6.1.1')] ).

cnf(48,plain,
    multiply(multiply(A,divide(B,multiply(A,C))),C) = B,
    inference(para_into,[status(thm),theory(equality)],[26,7]),
    [iquote('para_into,26.1.1,7.1.1')] ).

cnf(58,plain,
    multiply(divide(A,inverse(divide(B,multiply(A,C)))),C) = B,
    inference(para_into,[status(thm),theory(equality)],[48,6]),
    [iquote('para_into,48.1.1.1,6.1.1')] ).

cnf(61,plain,
    multiply(multiply(A,B),C) = divide(divide(A,inverse(B)),inverse(C)),
    inference(para_into,[status(thm),theory(equality)],[31,7]),
    [iquote('para_into,31.1.1,7.1.1')] ).

cnf(62,plain,
    divide(divide(A,inverse(B)),inverse(C)) = multiply(multiply(A,B),C),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[61])]),
    [iquote('copy,61,flip.1')] ).

cnf(71,plain,
    multiply(multiply(multiply(A,divide(B,divide(A,inverse(C)))),divide(D,B)),C) = D,
    inference(para_into,[status(thm),theory(equality)],[32,20]),
    [iquote('para_into,32.1.1.1.2.2,20.1.1')] ).

cnf(103,plain,
    multiply(multiply(divide(A,inverse(divide(B,multiply(A,C)))),divide(D,B)),C) = D,
    inference(para_from,[status(thm),theory(equality)],[58,48]),
    [iquote('para_from,58.1.1,48.1.1.1.2.2')] ).

cnf(211,plain,
    divide(A,inverse(divide(B,A))) = B,
    inference(para_into,[status(thm),theory(equality)],[24,32]),
    [iquote('para_into,24.1.1.1,32.1.1')] ).

cnf(224,plain,
    multiply(multiply(A,B),C) = multiply(multiply(D,divide(E,divide(D,multiply(A,C)))),divide(B,E)),
    inference(para_from,[status(thm),theory(equality)],[24,48]),
    [iquote('para_from,24.1.1,48.1.1.1.2')] ).

cnf(228,plain,
    multiply(multiply(A,divide(B,divide(A,divide(C,D)))),divide(E,B)) = divide(multiply(C,E),D),
    inference(flip,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[24,20])]),
    [iquote('para_from,24.1.1,20.1.1.1.2,flip.1')] ).

cnf(232,plain,
    multiply(multiply(A,divide(B,divide(A,multiply(C,D)))),divide(E,B)) = multiply(multiply(C,E),D),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[224])]),
    [iquote('copy,224,flip.1')] ).

cnf(246,plain,
    divide(A,inverse(divide(B,multiply(A,C)))) = divide(inverse(C),inverse(B)),
    inference(flip,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[211,14])]),
    [iquote('para_into,211.1.1.2.1,14.1.1,flip.1')] ).

cnf(259,plain,
    multiply(A,divide(B,A)) = B,
    inference(para_into,[status(thm),theory(equality)],[211,7]),
    [iquote('para_into,211.1.1,7.1.1')] ).

cnf(272,plain,
    multiply(multiply(divide(inverse(A),inverse(B)),divide(C,B)),A) = C,
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[103]),246]),
    [iquote('back_demod,103,demod,246')] ).

cnf(303,plain,
    multiply(inverse(divide(A,B)),A) = B,
    inference(para_into,[status(thm),theory(equality)],[259,211]),
    [iquote('para_into,259.1.1.2,211.1.1')] ).

cnf(308,plain,
    multiply(inverse(A),B) = multiply(C,divide(B,multiply(C,A))),
    inference(para_into,[status(thm),theory(equality)],[259,26]),
    [iquote('para_into,259.1.1.2,26.1.1')] ).

cnf(310,plain,
    multiply(multiply(A,divide(B,divide(A,C))),divide(D,B)) = multiply(C,D),
    inference(flip,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[259,24])]),
    [iquote('para_into,259.1.1.2,24.1.1,flip.1')] ).

cnf(314,plain,
    multiply(A,divide(B,multiply(A,C))) = multiply(inverse(C),B),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[308])]),
    [iquote('copy,308,flip.1')] ).

cnf(318,plain,
    multiply(multiply(A,B),C) = multiply(multiply(A,C),B),
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[232]),310]),
    [iquote('back_demod,232,demod,310')] ).

cnf(322,plain,
    multiply(divide(A,B),C) = divide(multiply(A,C),B),
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[228]),310]),
    [iquote('back_demod,228,demod,310')] ).

cnf(336,plain,
    multiply(multiply(inverse(A),B),A) = B,
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[71]),310]),
    [iquote('back_demod,71,demod,310')] ).

cnf(338,plain,
    divide(multiply(A,B),A) = B,
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[24]),310]),
    [iquote('back_demod,24,demod,310')] ).

cnf(349,plain,
    divide(divide(A,B),inverse(B)) = A,
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[272]),322,322,336]),
    [iquote('back_demod,272,demod,322,322,336')] ).

cnf(422,plain,
    divide(A,divide(B,B)) = A,
    inference(flip,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[338,20])]),
    [iquote('para_into,337.1.1,20.1.1,flip.1')] ).

cnf(441,plain,
    multiply(inverse(A),A) = divide(B,B),
    inference(para_into,[status(thm),theory(equality)],[303,422]),
    [iquote('para_into,303.1.1.1.1,422.1.1')] ).

cnf(455,plain,
    divide(A,A) = multiply(inverse(B),B),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[441])]),
    [iquote('copy,441,flip.1')] ).

cnf(502,plain,
    divide(A,inverse(inverse(B))) = divide(A,B),
    inference(para_into,[status(thm),theory(equality)],[349,349]),
    [iquote('para_into,349.1.1.1,349.1.1')] ).

cnf(503,plain,
    divide(A,inverse(B)) = multiply(B,A),
    inference(para_into,[status(thm),theory(equality)],[349,338]),
    [iquote('para_into,349.1.1.1,337.1.1')] ).

cnf(507,plain,
    multiply(A,divide(B,multiply(A,C))) = divide(B,C),
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[349,26]),502])]),
    [iquote('para_into,349.1.1.1,26.1.1,demod,502,flip.1')] ).

cnf(509,plain,
    divide(multiply(A,B),B) = A,
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[349,7]),502]),
    [iquote('para_into,349.1.1.1,7.1.1,demod,502')] ).

cnf(523,plain,
    multiply(inverse(A),B) = divide(B,A),
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[314]),507])]),
    [iquote('back_demod,314,demod,507,flip.1')] ).

cnf(572,plain,
    divide(A,A) = divide(B,B),
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[455]),523]),
    [iquote('back_demod,455,demod,523')] ).

cnf(596,plain,
    ( divide(b1,b1) != divide(a1,a1)
    | a2 != a2
    | divide(multiply(a3,b3),inverse(c3)) != multiply(a3,multiply(b3,c3))
    | divide(b4,inverse(a4)) != multiply(a4,b4) ),
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[44]),523,523,523,322,338]),
    [iquote('back_demod,44,demod,523,523,523,322,338')] ).

cnf(646,plain,
    multiply(A,B) = multiply(B,A),
    inference(para_from,[status(thm),theory(equality)],[509,259]),
    [iquote('para_from,509.1.1,259.1.1.2')] ).

cnf(817,plain,
    divide(multiply(A,B),inverse(C)) = multiply(multiply(B,A),C),
    inference(para_from,[status(thm),theory(equality)],[503,62]),
    [iquote('para_from,503.1.1,62.1.1.1')] ).

cnf(1520,plain,
    multiply(multiply(A,B),C) = multiply(B,multiply(A,C)),
    inference(flip,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[318,646])]),
    [iquote('para_into,318.1.1,646.1.1,flip.1')] ).

cnf(1772,plain,
    divide(multiply(A,B),inverse(C)) = multiply(A,multiply(B,C)),
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[817]),1520]),
    [iquote('back_demod,817,demod,1520')] ).

cnf(2219,plain,
    $false,
    inference(hyper,[status(thm)],[1772,596,572,3,503]),
    [iquote('hyper,1772,596,572,3,503')] ).

%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.11/0.12  % Problem  : GRP096-1 : TPTP v8.1.0. Bugfixed v2.7.0.
% 0.11/0.12  % Command  : otter-tptp-script %s
% 0.12/0.33  % Computer : n014.cluster.edu
% 0.12/0.33  % Model    : x86_64 x86_64
% 0.12/0.33  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.12/0.33  % Memory   : 8042.1875MB
% 0.12/0.33  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.12/0.33  % CPULimit : 300
% 0.12/0.33  % WCLimit  : 300
% 0.12/0.33  % DateTime : Wed Jul 27 05:18:09 EDT 2022
% 0.12/0.33  % CPUTime  : 
% 2.24/2.46  ----- Otter 3.3f, August 2004 -----
% 2.24/2.46  The process was started by sandbox on n014.cluster.edu,
% 2.24/2.46  Wed Jul 27 05:18:09 2022
% 2.24/2.46  The command was "./otter".  The process ID is 27431.
% 2.24/2.46  
% 2.24/2.46  set(prolog_style_variables).
% 2.24/2.46  set(auto).
% 2.24/2.46     dependent: set(auto1).
% 2.24/2.46     dependent: set(process_input).
% 2.24/2.46     dependent: clear(print_kept).
% 2.24/2.46     dependent: clear(print_new_demod).
% 2.24/2.46     dependent: clear(print_back_demod).
% 2.24/2.46     dependent: clear(print_back_sub).
% 2.24/2.46     dependent: set(control_memory).
% 2.24/2.46     dependent: assign(max_mem, 12000).
% 2.24/2.46     dependent: assign(pick_given_ratio, 4).
% 2.24/2.46     dependent: assign(stats_level, 1).
% 2.24/2.46     dependent: assign(max_seconds, 10800).
% 2.24/2.46  clear(print_given).
% 2.24/2.46  
% 2.24/2.46  list(usable).
% 2.24/2.46  0 [] A=A.
% 2.24/2.46  0 [] divide(divide(X,inverse(divide(Y,divide(X,Z)))),Z)=Y.
% 2.24/2.46  0 [] multiply(X,Y)=divide(X,inverse(Y)).
% 2.24/2.46  0 [] multiply(inverse(a1),a1)!=multiply(inverse(b1),b1)|multiply(multiply(inverse(b2),b2),a2)!=a2|multiply(multiply(a3,b3),c3)!=multiply(a3,multiply(b3,c3))|multiply(a4,b4)!=multiply(b4,a4).
% 2.24/2.46  end_of_list.
% 2.24/2.46  
% 2.24/2.46  SCAN INPUT: prop=0, horn=1, equality=1, symmetry=0, max_lits=4.
% 2.24/2.46  
% 2.24/2.46  This is a Horn set with equality.  The strategy will be
% 2.24/2.46  Knuth-Bendix and hyper_res, with positive clauses in
% 2.24/2.46  sos and nonpositive clauses in usable.
% 2.24/2.46  
% 2.24/2.46     dependent: set(knuth_bendix).
% 2.24/2.46     dependent: set(anl_eq).
% 2.24/2.46     dependent: set(para_from).
% 2.24/2.46     dependent: set(para_into).
% 2.24/2.46     dependent: clear(para_from_right).
% 2.24/2.46     dependent: clear(para_into_right).
% 2.24/2.46     dependent: set(para_from_vars).
% 2.24/2.46     dependent: set(eq_units_both_ways).
% 2.24/2.46     dependent: set(dynamic_demod_all).
% 2.24/2.46     dependent: set(dynamic_demod).
% 2.24/2.46     dependent: set(order_eq).
% 2.24/2.46     dependent: set(back_demod).
% 2.24/2.46     dependent: set(lrpo).
% 2.24/2.46     dependent: set(hyper_res).
% 2.24/2.46     dependent: clear(order_hyper).
% 2.24/2.46  
% 2.24/2.46  ------------> process usable:
% 2.24/2.46  ** KEPT (pick-wt=35): 2 [copy,1,flip.1,flip.4] multiply(inverse(b1),b1)!=multiply(inverse(a1),a1)|multiply(multiply(inverse(b2),b2),a2)!=a2|multiply(multiply(a3,b3),c3)!=multiply(a3,multiply(b3,c3))|multiply(b4,a4)!=multiply(a4,b4).
% 2.24/2.46  
% 2.24/2.46  ------------> process sos:
% 2.24/2.46  ** KEPT (pick-wt=3): 3 [] A=A.
% 2.24/2.46  ** KEPT (pick-wt=12): 4 [] divide(divide(A,inverse(divide(B,divide(A,C)))),C)=B.
% 2.24/2.46  ---> New Demodulator: 5 [new_demod,4] divide(divide(A,inverse(divide(B,divide(A,C)))),C)=B.
% 2.24/2.46  ** KEPT (pick-wt=8): 6 [] multiply(A,B)=divide(A,inverse(B)).
% 2.24/2.46    Following clause subsumed by 3 during input processing: 0 [copy,3,flip.1] A=A.
% 2.24/2.46  >>>> Starting back demodulation with 5.
% 2.24/2.46  ** KEPT (pick-wt=8): 7 [copy,6,flip.1] divide(A,inverse(B))=multiply(A,B).
% 2.24/2.46    Following clause subsumed by 6 during input processing: 0 [copy,7,flip.1] multiply(A,B)=divide(A,inverse(B)).
% 2.24/2.46  
% 2.24/2.46  ======= end of input processing =======
% 2.24/2.46  
% 2.24/2.46  =========== start of search ===========
% 2.24/2.46  
% 2.24/2.46  
% 2.24/2.46  Resetting weight limit to 11.
% 2.24/2.46  
% 2.24/2.46  
% 2.24/2.46  Resetting weight limit to 11.
% 2.24/2.46  
% 2.24/2.46  sos_size=986
% 2.24/2.46  
% 2.24/2.46  -------- PROOF -------- 
% 2.24/2.46  
% 2.24/2.46  -----> EMPTY CLAUSE at   0.58 sec ----> 2219 [hyper,1772,596,572,3,503] $F.
% 2.24/2.46  
% 2.24/2.46  Length of proof is 47.  Level of proof is 13.
% 2.24/2.46  
% 2.24/2.46  ---------------- PROOF ----------------
% 2.24/2.46  % SZS status Unsatisfiable
% 2.24/2.46  % SZS output start Refutation
% See solution above
% 2.24/2.46  ------------ end of proof -------------
% 2.24/2.46  
% 2.24/2.46  
% 2.24/2.46  Search stopped by max_proofs option.
% 2.24/2.46  
% 2.24/2.46  
% 2.24/2.46  Search stopped by max_proofs option.
% 2.24/2.46  
% 2.24/2.46  ============ end of search ============
% 2.24/2.46  
% 2.24/2.46  -------------- statistics -------------
% 2.24/2.46  clauses given                375
% 2.24/2.46  clauses generated         102949
% 2.24/2.46  clauses kept                1818
% 2.24/2.46  clauses forward subsumed   41258
% 2.24/2.46  clauses back subsumed         37
% 2.24/2.46  Kbytes malloced             4882
% 2.24/2.46  
% 2.24/2.46  ----------- times (seconds) -----------
% 2.24/2.46  user CPU time          0.58          (0 hr, 0 min, 0 sec)
% 2.24/2.46  system CPU time        0.00          (0 hr, 0 min, 0 sec)
% 2.24/2.46  wall-clock time        2             (0 hr, 0 min, 2 sec)
% 2.24/2.46  
% 2.24/2.46  That finishes the proof of the theorem.
% 2.24/2.46  
% 2.24/2.46  Process 27431 finished Wed Jul 27 05:18:11 2022
% 2.24/2.46  Otter interrupted
% 2.24/2.46  PROOF FOUND
%------------------------------------------------------------------------------