TSTP Solution File: GRP088-1 by iProver---3.9

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : iProver---3.9
% Problem  : GRP088-1 : TPTP v8.1.2. Bugfixed v2.7.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : run_iprover %s %d THM

% Computer : n007.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Fri May  3 02:20:55 EDT 2024

% Result   : Unsatisfiable 0.48s 1.15s
% Output   : CNFRefutation 0.48s
% Verified : 
% SZS Type : ERROR: Analysing output (Could not find formula named definition)

% Comments : 
%------------------------------------------------------------------------------
cnf(c_49,plain,
    divide(X0,divide(X1,divide(X2,divide(X0,X1)))) = X2,
    file('/export/starexec/sandbox/benchmark/theBenchmark.p',single_axiom) ).

cnf(c_50,plain,
    divide(X0,divide(divide(X1,X1),X2)) = multiply(X0,X2),
    file('/export/starexec/sandbox/benchmark/theBenchmark.p',multiply) ).

cnf(c_51,plain,
    divide(divide(X0,X0),X1) = inverse(X1),
    file('/export/starexec/sandbox/benchmark/theBenchmark.p',inverse) ).

cnf(c_52,negated_conjecture,
    ( multiply(multiply(inverse(b2),b2),a2) != a2
    | multiply(multiply(a3,b3),c3) != multiply(a3,multiply(b3,c3))
    | multiply(inverse(a1),a1) != multiply(inverse(b1),b1)
    | multiply(a4,b4) != multiply(b4,a4) ),
    file('/export/starexec/sandbox/benchmark/theBenchmark.p',prove_these_axioms) ).

cnf(c_70,plain,
    divide(X0,inverse(X1)) = multiply(X0,X1),
    inference(demodulation,[status(thm)],[c_50,c_51]) ).

cnf(c_81,plain,
    inverse(b2) = sP0_iProver_def,
    definition ).

cnf(c_82,plain,
    multiply(sP0_iProver_def,b2) = sP1_iProver_def,
    definition ).

cnf(c_83,plain,
    multiply(sP1_iProver_def,a2) = sP2_iProver_def,
    definition ).

cnf(c_84,plain,
    multiply(a3,b3) = sP3_iProver_def,
    definition ).

cnf(c_85,plain,
    multiply(sP3_iProver_def,c3) = sP4_iProver_def,
    definition ).

cnf(c_86,plain,
    multiply(b3,c3) = sP5_iProver_def,
    definition ).

cnf(c_87,plain,
    multiply(a3,sP5_iProver_def) = sP6_iProver_def,
    definition ).

cnf(c_88,plain,
    inverse(a1) = sP7_iProver_def,
    definition ).

cnf(c_89,plain,
    multiply(sP7_iProver_def,a1) = sP8_iProver_def,
    definition ).

cnf(c_90,plain,
    inverse(b1) = sP9_iProver_def,
    definition ).

cnf(c_91,plain,
    multiply(sP9_iProver_def,b1) = sP10_iProver_def,
    definition ).

cnf(c_92,plain,
    multiply(a4,b4) = sP11_iProver_def,
    definition ).

cnf(c_93,plain,
    multiply(b4,a4) = sP12_iProver_def,
    definition ).

cnf(c_94,negated_conjecture,
    ( sP2_iProver_def != a2
    | sP4_iProver_def != sP6_iProver_def
    | sP8_iProver_def != sP10_iProver_def
    | sP11_iProver_def != sP12_iProver_def ),
    inference(demodulation,[status(thm)],[c_52,c_93,c_92,c_90,c_91,c_88,c_89,c_86,c_87,c_84,c_85,c_81,c_82,c_83]) ).

cnf(c_172,plain,
    divide(X0,sP7_iProver_def) = multiply(X0,a1),
    inference(superposition,[status(thm)],[c_88,c_70]) ).

cnf(c_173,plain,
    divide(X0,sP9_iProver_def) = multiply(X0,b1),
    inference(superposition,[status(thm)],[c_90,c_70]) ).

cnf(c_174,plain,
    divide(X0,sP0_iProver_def) = multiply(X0,b2),
    inference(superposition,[status(thm)],[c_81,c_70]) ).

cnf(c_184,plain,
    divide(multiply(sP7_iProver_def,a1),X0) = inverse(X0),
    inference(superposition,[status(thm)],[c_172,c_51]) ).

cnf(c_185,plain,
    divide(multiply(sP9_iProver_def,b1),X0) = inverse(X0),
    inference(superposition,[status(thm)],[c_173,c_51]) ).

cnf(c_186,plain,
    divide(multiply(sP0_iProver_def,b2),X0) = inverse(X0),
    inference(superposition,[status(thm)],[c_174,c_51]) ).

cnf(c_188,plain,
    multiply(divide(X0,X0),X1) = inverse(inverse(X1)),
    inference(superposition,[status(thm)],[c_51,c_70]) ).

cnf(c_192,plain,
    divide(sP1_iProver_def,X0) = inverse(X0),
    inference(light_normalisation,[status(thm)],[c_186,c_82]) ).

cnf(c_193,plain,
    divide(sP10_iProver_def,X0) = inverse(X0),
    inference(light_normalisation,[status(thm)],[c_185,c_91]) ).

cnf(c_194,plain,
    divide(sP8_iProver_def,X0) = inverse(X0),
    inference(light_normalisation,[status(thm)],[c_184,c_89]) ).

cnf(c_208,plain,
    divide(inverse(sP1_iProver_def),X0) = inverse(X0),
    inference(superposition,[status(thm)],[c_192,c_51]) ).

cnf(c_209,plain,
    multiply(sP1_iProver_def,X0) = inverse(inverse(X0)),
    inference(superposition,[status(thm)],[c_192,c_70]) ).

cnf(c_220,plain,
    multiply(sP10_iProver_def,X0) = inverse(inverse(X0)),
    inference(superposition,[status(thm)],[c_193,c_70]) ).

cnf(c_224,plain,
    multiply(sP1_iProver_def,X0) = multiply(sP10_iProver_def,X0),
    inference(light_normalisation,[status(thm)],[c_220,c_209]) ).

cnf(c_234,plain,
    divide(inverse(sP8_iProver_def),X0) = inverse(X0),
    inference(superposition,[status(thm)],[c_194,c_51]) ).

cnf(c_235,plain,
    multiply(sP8_iProver_def,X0) = inverse(inverse(X0)),
    inference(superposition,[status(thm)],[c_194,c_70]) ).

cnf(c_239,plain,
    multiply(sP1_iProver_def,X0) = multiply(sP8_iProver_def,X0),
    inference(light_normalisation,[status(thm)],[c_235,c_209]) ).

cnf(c_294,plain,
    divide(X0,inverse(divide(X1,divide(X0,divide(X2,X2))))) = X1,
    inference(superposition,[status(thm)],[c_51,c_49]) ).

cnf(c_302,plain,
    divide(X0,divide(X1,inverse(divide(X0,X1)))) = sP1_iProver_def,
    inference(superposition,[status(thm)],[c_192,c_49]) ).

cnf(c_307,plain,
    divide(X0,divide(inverse(X1),divide(X2,multiply(X0,X1)))) = X2,
    inference(superposition,[status(thm)],[c_70,c_49]) ).

cnf(c_321,plain,
    inverse(divide(X0,divide(X1,divide(sP8_iProver_def,X0)))) = X1,
    inference(superposition,[status(thm)],[c_49,c_194]) ).

cnf(c_322,plain,
    inverse(divide(X0,divide(X1,inverse(X0)))) = X1,
    inference(light_normalisation,[status(thm)],[c_321,c_194]) ).

cnf(c_407,plain,
    divide(X0,divide(X1,inverse(divide(X0,X1)))) = inverse(sP1_iProver_def),
    inference(superposition,[status(thm)],[c_208,c_49]) ).

cnf(c_418,plain,
    inverse(sP1_iProver_def) = sP1_iProver_def,
    inference(light_normalisation,[status(thm)],[c_407,c_302]) ).

cnf(c_445,plain,
    divide(X0,sP1_iProver_def) = multiply(X0,sP1_iProver_def),
    inference(superposition,[status(thm)],[c_418,c_70]) ).

cnf(c_452,plain,
    multiply(sP1_iProver_def,sP1_iProver_def) = sP1_iProver_def,
    inference(superposition,[status(thm)],[c_418,c_209]) ).

cnf(c_519,plain,
    divide(X0,divide(X1,inverse(divide(X0,X1)))) = inverse(sP8_iProver_def),
    inference(superposition,[status(thm)],[c_234,c_49]) ).

cnf(c_530,plain,
    inverse(sP8_iProver_def) = sP1_iProver_def,
    inference(light_normalisation,[status(thm)],[c_519,c_302]) ).

cnf(c_621,plain,
    divide(X0,sP1_iProver_def) = multiply(X0,sP8_iProver_def),
    inference(superposition,[status(thm)],[c_530,c_70]) ).

cnf(c_623,plain,
    multiply(X0,sP1_iProver_def) = multiply(X0,sP8_iProver_def),
    inference(light_normalisation,[status(thm)],[c_621,c_445]) ).

cnf(c_721,plain,
    multiply(divide(X0,X0),X1) = multiply(sP1_iProver_def,X1),
    inference(demodulation,[status(thm)],[c_188,c_209]) ).

cnf(c_798,plain,
    inverse(divide(X0,multiply(X1,X0))) = X1,
    inference(demodulation,[status(thm)],[c_322,c_70]) ).

cnf(c_803,plain,
    inverse(inverse(multiply(X0,sP8_iProver_def))) = X0,
    inference(superposition,[status(thm)],[c_194,c_798]) ).

cnf(c_805,plain,
    inverse(divide(c3,sP5_iProver_def)) = b3,
    inference(superposition,[status(thm)],[c_86,c_798]) ).

cnf(c_827,plain,
    inverse(inverse(multiply(X0,sP1_iProver_def))) = X0,
    inference(light_normalisation,[status(thm)],[c_803,c_623]) ).

cnf(c_859,plain,
    multiply(X0,divide(c3,sP5_iProver_def)) = divide(X0,b3),
    inference(superposition,[status(thm)],[c_805,c_70]) ).

cnf(c_1081,plain,
    multiply(sP1_iProver_def,multiply(X0,sP1_iProver_def)) = X0,
    inference(demodulation,[status(thm)],[c_827,c_209]) ).

cnf(c_1082,plain,
    multiply(sP1_iProver_def,multiply(sP1_iProver_def,sP1_iProver_def)) = divide(X0,X0),
    inference(superposition,[status(thm)],[c_721,c_1081]) ).

cnf(c_1083,plain,
    multiply(sP1_iProver_def,multiply(sP1_iProver_def,sP1_iProver_def)) = sP10_iProver_def,
    inference(superposition,[status(thm)],[c_224,c_1081]) ).

cnf(c_1084,plain,
    multiply(sP1_iProver_def,multiply(sP1_iProver_def,sP1_iProver_def)) = sP8_iProver_def,
    inference(superposition,[status(thm)],[c_239,c_1081]) ).

cnf(c_1086,plain,
    sP1_iProver_def = sP8_iProver_def,
    inference(light_normalisation,[status(thm)],[c_1084,c_452]) ).

cnf(c_1087,plain,
    sP1_iProver_def = sP10_iProver_def,
    inference(light_normalisation,[status(thm)],[c_1083,c_452]) ).

cnf(c_1088,plain,
    divide(X0,X0) = sP1_iProver_def,
    inference(light_normalisation,[status(thm)],[c_1082,c_452]) ).

cnf(c_1095,plain,
    ( a2 != sP2_iProver_def
    | sP1_iProver_def != sP10_iProver_def
    | sP4_iProver_def != sP6_iProver_def
    | sP11_iProver_def != sP12_iProver_def ),
    inference(demodulation,[status(thm)],[c_94,c_1086]) ).

cnf(c_1096,plain,
    ( a2 != sP2_iProver_def
    | sP4_iProver_def != sP6_iProver_def
    | sP11_iProver_def != sP12_iProver_def ),
    inference(forward_subsumption_resolution,[status(thm)],[c_1095,c_1087]) ).

cnf(c_1151,plain,
    divide(X0,divide(X0,divide(X1,sP1_iProver_def))) = X1,
    inference(superposition,[status(thm)],[c_1088,c_49]) ).

cnf(c_1152,plain,
    divide(X0,divide(X1,sP1_iProver_def)) = divide(X0,X1),
    inference(superposition,[status(thm)],[c_1088,c_49]) ).

cnf(c_1153,plain,
    multiply(inverse(X0),X0) = sP1_iProver_def,
    inference(superposition,[status(thm)],[c_1088,c_70]) ).

cnf(c_1221,plain,
    inverse(divide(X0,sP1_iProver_def)) = inverse(X0),
    inference(superposition,[status(thm)],[c_1153,c_798]) ).

cnf(c_1226,plain,
    inverse(multiply(X0,sP1_iProver_def)) = inverse(X0),
    inference(light_normalisation,[status(thm)],[c_1221,c_445]) ).

cnf(c_1355,plain,
    multiply(sP1_iProver_def,multiply(X0,sP1_iProver_def)) = inverse(inverse(X0)),
    inference(superposition,[status(thm)],[c_1226,c_209]) ).

cnf(c_1358,plain,
    multiply(sP1_iProver_def,X0) = X0,
    inference(light_normalisation,[status(thm)],[c_1355,c_209,c_1081]) ).

cnf(c_1360,plain,
    inverse(inverse(X0)) = X0,
    inference(demodulation,[status(thm)],[c_209,c_1358]) ).

cnf(c_1363,plain,
    a2 = sP2_iProver_def,
    inference(demodulation,[status(thm)],[c_83,c_1358]) ).

cnf(c_1364,plain,
    multiply(X0,sP1_iProver_def) = X0,
    inference(demodulation,[status(thm)],[c_1081,c_1358]) ).

cnf(c_1367,plain,
    divide(X0,sP1_iProver_def) = X0,
    inference(demodulation,[status(thm)],[c_445,c_1364]) ).

cnf(c_1369,plain,
    ( sP4_iProver_def != sP6_iProver_def
    | sP11_iProver_def != sP12_iProver_def ),
    inference(backward_subsumption_resolution,[status(thm)],[c_1096,c_1363]) ).

cnf(c_1416,plain,
    divide(c3,sP5_iProver_def) = divide(sP1_iProver_def,b3),
    inference(superposition,[status(thm)],[c_1358,c_859]) ).

cnf(c_1446,plain,
    multiply(X0,inverse(X1)) = divide(X0,X1),
    inference(superposition,[status(thm)],[c_1360,c_70]) ).

cnf(c_1457,plain,
    multiply(X0,divide(X1,X0)) = X1,
    inference(demodulation,[status(thm)],[c_294,c_70,c_1088,c_1367]) ).

cnf(c_1461,plain,
    multiply(inverse(X0),multiply(X1,X0)) = X1,
    inference(superposition,[status(thm)],[c_70,c_1457]) ).

cnf(c_1555,plain,
    divide(c3,sP5_iProver_def) = inverse(b3),
    inference(demodulation,[status(thm)],[c_1416,c_192]) ).

cnf(c_1557,plain,
    multiply(sP5_iProver_def,inverse(b3)) = c3,
    inference(superposition,[status(thm)],[c_1555,c_1457]) ).

cnf(c_1559,plain,
    divide(sP5_iProver_def,b3) = c3,
    inference(demodulation,[status(thm)],[c_1557,c_1446]) ).

cnf(c_1608,plain,
    divide(X0,divide(X0,X1)) = X1,
    inference(light_normalisation,[status(thm)],[c_1151,c_1152]) ).

cnf(c_1613,plain,
    divide(X0,multiply(X0,X1)) = inverse(X1),
    inference(superposition,[status(thm)],[c_70,c_1608]) ).

cnf(c_1625,plain,
    divide(sP5_iProver_def,c3) = b3,
    inference(superposition,[status(thm)],[c_1559,c_1608]) ).

cnf(c_1649,plain,
    divide(a4,sP11_iProver_def) = inverse(b4),
    inference(superposition,[status(thm)],[c_92,c_1613]) ).

cnf(c_1652,plain,
    divide(sP3_iProver_def,sP4_iProver_def) = inverse(c3),
    inference(superposition,[status(thm)],[c_85,c_1613]) ).

cnf(c_1653,plain,
    divide(a3,sP6_iProver_def) = inverse(sP5_iProver_def),
    inference(superposition,[status(thm)],[c_87,c_1613]) ).

cnf(c_1721,plain,
    multiply(c3,b3) = sP5_iProver_def,
    inference(superposition,[status(thm)],[c_1625,c_1457]) ).

cnf(c_1744,plain,
    multiply(inverse(b3),sP5_iProver_def) = c3,
    inference(superposition,[status(thm)],[c_1721,c_1461]) ).

cnf(c_1750,plain,
    multiply(sP11_iProver_def,inverse(b4)) = a4,
    inference(superposition,[status(thm)],[c_1649,c_1457]) ).

cnf(c_1754,plain,
    multiply(sP4_iProver_def,inverse(c3)) = sP3_iProver_def,
    inference(superposition,[status(thm)],[c_1652,c_1457]) ).

cnf(c_1756,plain,
    divide(a3,inverse(sP5_iProver_def)) = sP6_iProver_def,
    inference(superposition,[status(thm)],[c_1653,c_1608]) ).

cnf(c_1760,plain,
    divide(inverse(b3),c3) = inverse(sP5_iProver_def),
    inference(superposition,[status(thm)],[c_1744,c_1613]) ).

cnf(c_1762,plain,
    divide(sP11_iProver_def,b4) = a4,
    inference(demodulation,[status(thm)],[c_1750,c_1446]) ).

cnf(c_1764,plain,
    multiply(b4,a4) = sP11_iProver_def,
    inference(superposition,[status(thm)],[c_1762,c_1457]) ).

cnf(c_1765,plain,
    sP11_iProver_def = sP12_iProver_def,
    inference(demodulation,[status(thm)],[c_93,c_1764]) ).

cnf(c_1766,plain,
    sP4_iProver_def != sP6_iProver_def,
    inference(backward_subsumption_resolution,[status(thm)],[c_1369,c_1765]) ).

cnf(c_1798,plain,
    divide(sP4_iProver_def,c3) = sP3_iProver_def,
    inference(demodulation,[status(thm)],[c_1754,c_1446]) ).

cnf(c_1799,plain,
    divide(sP4_iProver_def,sP3_iProver_def) = c3,
    inference(superposition,[status(thm)],[c_1798,c_1608]) ).

cnf(c_2233,plain,
    divide(a3,divide(inverse(b3),divide(X0,sP3_iProver_def))) = X0,
    inference(superposition,[status(thm)],[c_84,c_307]) ).

cnf(c_2447,plain,
    divide(a3,divide(inverse(b3),c3)) = sP4_iProver_def,
    inference(superposition,[status(thm)],[c_1799,c_2233]) ).

cnf(c_2451,plain,
    sP4_iProver_def = sP6_iProver_def,
    inference(light_normalisation,[status(thm)],[c_2447,c_1756,c_1760]) ).

cnf(c_2452,plain,
    $false,
    inference(forward_subsumption_resolution,[status(thm)],[c_2451,c_1766]) ).


%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.07/0.13  % Problem  : GRP088-1 : TPTP v8.1.2. Bugfixed v2.7.0.
% 0.07/0.14  % Command  : run_iprover %s %d THM
% 0.14/0.35  % Computer : n007.cluster.edu
% 0.14/0.35  % Model    : x86_64 x86_64
% 0.14/0.35  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.14/0.35  % Memory   : 8042.1875MB
% 0.14/0.35  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.14/0.35  % CPULimit : 300
% 0.14/0.35  % WCLimit  : 300
% 0.14/0.35  % DateTime : Thu May  2 23:48:20 EDT 2024
% 0.14/0.35  % CPUTime  : 
% 0.20/0.48  Running first-order theorem proving
% 0.20/0.48  Running: /export/starexec/sandbox/solver/bin/run_problem --schedule fof_schedule --heuristic_context casc_unsat --no_cores 8 /export/starexec/sandbox/benchmark/theBenchmark.p 300
% 0.48/1.15  % SZS status Started for theBenchmark.p
% 0.48/1.15  % SZS status Unsatisfiable for theBenchmark.p
% 0.48/1.15  
% 0.48/1.15  %---------------- iProver v3.9 (pre CASC 2024/SMT-COMP 2024) ----------------%
% 0.48/1.15  
% 0.48/1.15  ------  iProver source info
% 0.48/1.15  
% 0.48/1.15  git: date: 2024-05-02 19:28:25 +0000
% 0.48/1.15  git: sha1: a33b5eb135c74074ba803943bb12f2ebd971352f
% 0.48/1.15  git: non_committed_changes: false
% 0.48/1.15  
% 0.48/1.15  ------ Parsing...successful
% 0.48/1.15  
% 0.48/1.15  
% 0.48/1.15  
% 0.48/1.15  ------ Preprocessing... sup_sim: 1  sf_s  rm: 0 0s  sf_e  pe_s  pe_e 
% 0.48/1.15  
% 0.48/1.15  ------ Preprocessing... gs_s  sp: 0 0s  gs_e  snvd_s sp: 0 0s snvd_e 
% 0.48/1.15  
% 0.48/1.15  ------ Preprocessing... sf_s  rm: 0 0s  sf_e 
% 0.48/1.15  ------ Proving...
% 0.48/1.15  ------ Problem Properties 
% 0.48/1.15  
% 0.48/1.15  
% 0.48/1.15  clauses                                 17
% 0.48/1.15  conjectures                             1
% 0.48/1.15  EPR                                     1
% 0.48/1.15  Horn                                    17
% 0.48/1.15  unary                                   16
% 0.48/1.15  binary                                  0
% 0.48/1.15  lits                                    20
% 0.48/1.15  lits eq                                 20
% 0.48/1.15  fd_pure                                 0
% 0.48/1.15  fd_pseudo                               0
% 0.48/1.15  fd_cond                                 0
% 0.48/1.15  fd_pseudo_cond                          0
% 0.48/1.15  AC symbols                              0
% 0.48/1.15  
% 0.48/1.15  ------ Schedule dynamic 5 is on 
% 0.48/1.15  
% 0.48/1.15  ------ Input Options "--resolution_flag false --inst_lit_sel_side none" Time Limit: 10.
% 0.48/1.15  
% 0.48/1.15  
% 0.48/1.15  ------ 
% 0.48/1.15  Current options:
% 0.48/1.15  ------ 
% 0.48/1.15  
% 0.48/1.15  
% 0.48/1.15  
% 0.48/1.15  
% 0.48/1.15  ------ Proving...
% 0.48/1.15  
% 0.48/1.15  
% 0.48/1.15  % SZS status Unsatisfiable for theBenchmark.p
% 0.48/1.15  
% 0.48/1.15  % SZS output start CNFRefutation for theBenchmark.p
% See solution above
% 0.48/1.15  
% 0.48/1.16  
%------------------------------------------------------------------------------