TSTP Solution File: GRP079-1 by iProver---3.9

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : iProver---3.9
% Problem  : GRP079-1 : TPTP v8.1.2. Bugfixed v2.3.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : run_iprover %s %d THM

% Computer : n015.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Fri May  3 02:20:53 EDT 2024

% Result   : Unsatisfiable 3.90s 1.06s
% Output   : CNFRefutation 3.90s
% Verified : 
% SZS Type : ERROR: Analysing output (Could not find formula named definition)

% Comments : 
%------------------------------------------------------------------------------
cnf(c_49,plain,
    double_divide(double_divide(identity,X0),double_divide(double_divide(double_divide(X1,X2),double_divide(identity,identity)),double_divide(X0,X2))) = X1,
    file('/export/starexec/sandbox/benchmark/theBenchmark.p',single_axiom) ).

cnf(c_50,plain,
    double_divide(double_divide(X0,X1),identity) = multiply(X1,X0),
    file('/export/starexec/sandbox/benchmark/theBenchmark.p',multiply) ).

cnf(c_51,plain,
    double_divide(X0,identity) = inverse(X0),
    file('/export/starexec/sandbox/benchmark/theBenchmark.p',inverse) ).

cnf(c_52,plain,
    double_divide(X0,inverse(X0)) = identity,
    file('/export/starexec/sandbox/benchmark/theBenchmark.p',identity) ).

cnf(c_53,negated_conjecture,
    ( multiply(multiply(a3,b3),c3) != multiply(a3,multiply(b3,c3))
    | multiply(inverse(a1),a1) != identity
    | multiply(identity,a2) != a2 ),
    file('/export/starexec/sandbox/benchmark/theBenchmark.p',prove_these_axioms) ).

cnf(c_72,plain,
    inverse(double_divide(X0,X1)) = multiply(X1,X0),
    inference(demodulation,[status(thm)],[c_50,c_51]) ).

cnf(c_73,plain,
    double_divide(double_divide(identity,X0),double_divide(double_divide(double_divide(X1,X2),inverse(identity)),double_divide(X0,X2))) = X1,
    inference(demodulation,[status(thm)],[c_49,c_51]) ).

cnf(c_84,plain,
    multiply(a3,b3) = sP0_iProver_def,
    definition ).

cnf(c_85,plain,
    multiply(sP0_iProver_def,c3) = sP1_iProver_def,
    definition ).

cnf(c_86,plain,
    multiply(b3,c3) = sP2_iProver_def,
    definition ).

cnf(c_87,plain,
    multiply(a3,sP2_iProver_def) = sP3_iProver_def,
    definition ).

cnf(c_88,plain,
    inverse(a1) = sP4_iProver_def,
    definition ).

cnf(c_89,plain,
    multiply(sP4_iProver_def,a1) = sP5_iProver_def,
    definition ).

cnf(c_90,plain,
    multiply(identity,a2) = sP6_iProver_def,
    definition ).

cnf(c_91,negated_conjecture,
    ( sP1_iProver_def != sP3_iProver_def
    | sP5_iProver_def != identity
    | sP6_iProver_def != a2 ),
    inference(demodulation,[status(thm)],[c_53,c_90,c_88,c_89,c_86,c_87,c_84,c_85]) ).

cnf(c_156,plain,
    multiply(identity,X0) = inverse(inverse(X0)),
    inference(superposition,[status(thm)],[c_51,c_72]) ).

cnf(c_158,plain,
    double_divide(a1,sP4_iProver_def) = identity,
    inference(superposition,[status(thm)],[c_88,c_52]) ).

cnf(c_159,plain,
    double_divide(double_divide(X0,X1),multiply(X1,X0)) = identity,
    inference(superposition,[status(thm)],[c_72,c_52]) ).

cnf(c_160,plain,
    multiply(inverse(X0),X0) = inverse(identity),
    inference(superposition,[status(thm)],[c_52,c_72]) ).

cnf(c_163,plain,
    double_divide(inverse(identity),double_divide(double_divide(double_divide(X0,X1),inverse(identity)),double_divide(identity,X1))) = X0,
    inference(superposition,[status(thm)],[c_51,c_73]) ).

cnf(c_166,plain,
    double_divide(double_divide(identity,X0),double_divide(double_divide(identity,inverse(identity)),double_divide(X0,inverse(X1)))) = X1,
    inference(superposition,[status(thm)],[c_52,c_73]) ).

cnf(c_169,plain,
    double_divide(double_divide(identity,X0),double_divide(double_divide(double_divide(X1,inverse(X0)),inverse(identity)),identity)) = X1,
    inference(superposition,[status(thm)],[c_52,c_73]) ).

cnf(c_173,plain,
    multiply(double_divide(double_divide(double_divide(X0,X1),inverse(identity)),double_divide(X2,X1)),double_divide(identity,X2)) = inverse(X0),
    inference(superposition,[status(thm)],[c_73,c_72]) ).

cnf(c_186,plain,
    multiply(sP4_iProver_def,a1) = inverse(identity),
    inference(superposition,[status(thm)],[c_158,c_72]) ).

cnf(c_187,plain,
    inverse(identity) = sP5_iProver_def,
    inference(light_normalisation,[status(thm)],[c_186,c_89]) ).

cnf(c_192,plain,
    double_divide(identity,sP5_iProver_def) = identity,
    inference(superposition,[status(thm)],[c_187,c_52]) ).

cnf(c_202,plain,
    double_divide(inverse(X0),multiply(identity,X0)) = identity,
    inference(superposition,[status(thm)],[c_156,c_52]) ).

cnf(c_211,plain,
    multiply(inverse(X0),X0) = sP5_iProver_def,
    inference(light_normalisation,[status(thm)],[c_160,c_187]) ).

cnf(c_215,plain,
    multiply(multiply(identity,X0),inverse(X0)) = sP5_iProver_def,
    inference(superposition,[status(thm)],[c_156,c_211]) ).

cnf(c_321,plain,
    double_divide(sP5_iProver_def,double_divide(double_divide(double_divide(X0,X1),sP5_iProver_def),double_divide(identity,X1))) = X0,
    inference(light_normalisation,[status(thm)],[c_163,c_187]) ).

cnf(c_323,plain,
    double_divide(sP5_iProver_def,double_divide(double_divide(identity,sP5_iProver_def),double_divide(identity,inverse(X0)))) = X0,
    inference(superposition,[status(thm)],[c_52,c_321]) ).

cnf(c_326,plain,
    double_divide(sP5_iProver_def,double_divide(identity,identity)) = identity,
    inference(superposition,[status(thm)],[c_192,c_321]) ).

cnf(c_330,plain,
    double_divide(sP5_iProver_def,double_divide(double_divide(double_divide(X0,identity),sP5_iProver_def),inverse(identity))) = X0,
    inference(superposition,[status(thm)],[c_51,c_321]) ).

cnf(c_338,plain,
    double_divide(sP5_iProver_def,double_divide(double_divide(inverse(X0),sP5_iProver_def),sP5_iProver_def)) = X0,
    inference(light_normalisation,[status(thm)],[c_330,c_51,c_187]) ).

cnf(c_340,plain,
    double_divide(sP5_iProver_def,double_divide(identity,double_divide(identity,inverse(X0)))) = X0,
    inference(light_normalisation,[status(thm)],[c_323,c_192]) ).

cnf(c_418,plain,
    double_divide(sP5_iProver_def,sP5_iProver_def) = identity,
    inference(demodulation,[status(thm)],[c_326,c_51,c_187]) ).

cnf(c_419,plain,
    double_divide(sP5_iProver_def,double_divide(double_divide(identity,sP5_iProver_def),double_divide(identity,sP5_iProver_def))) = sP5_iProver_def,
    inference(superposition,[status(thm)],[c_418,c_321]) ).

cnf(c_423,plain,
    identity = sP5_iProver_def,
    inference(light_normalisation,[status(thm)],[c_419,c_192,c_326]) ).

cnf(c_430,plain,
    double_divide(double_divide(X0,X1),multiply(X1,X0)) = sP5_iProver_def,
    inference(demodulation,[status(thm)],[c_159,c_423]) ).

cnf(c_431,plain,
    multiply(multiply(sP5_iProver_def,X0),inverse(X0)) = sP5_iProver_def,
    inference(demodulation,[status(thm)],[c_215,c_423]) ).

cnf(c_433,plain,
    double_divide(inverse(X0),multiply(sP5_iProver_def,X0)) = sP5_iProver_def,
    inference(demodulation,[status(thm)],[c_202,c_423]) ).

cnf(c_436,plain,
    multiply(sP5_iProver_def,X0) = inverse(inverse(X0)),
    inference(demodulation,[status(thm)],[c_156,c_423]) ).

cnf(c_438,plain,
    double_divide(sP5_iProver_def,sP5_iProver_def) = sP5_iProver_def,
    inference(demodulation,[status(thm)],[c_192,c_423]) ).

cnf(c_439,plain,
    inverse(sP5_iProver_def) = sP5_iProver_def,
    inference(demodulation,[status(thm)],[c_187,c_423]) ).

cnf(c_441,plain,
    double_divide(X0,inverse(X0)) = sP5_iProver_def,
    inference(demodulation,[status(thm)],[c_52,c_423]) ).

cnf(c_442,plain,
    double_divide(X0,sP5_iProver_def) = inverse(X0),
    inference(demodulation,[status(thm)],[c_51,c_423]) ).

cnf(c_443,plain,
    multiply(sP5_iProver_def,a2) = sP6_iProver_def,
    inference(demodulation,[status(thm)],[c_90,c_423]) ).

cnf(c_444,plain,
    ( a2 != sP6_iProver_def
    | sP1_iProver_def != sP3_iProver_def
    | sP5_iProver_def != sP5_iProver_def ),
    inference(demodulation,[status(thm)],[c_91,c_423]) ).

cnf(c_445,plain,
    ( a2 != sP6_iProver_def
    | sP1_iProver_def != sP3_iProver_def ),
    inference(equality_resolution_simp,[status(thm)],[c_444]) ).

cnf(c_480,plain,
    multiply(sP5_iProver_def,double_divide(X0,X1)) = inverse(multiply(X1,X0)),
    inference(superposition,[status(thm)],[c_72,c_436]) ).

cnf(c_518,plain,
    double_divide(double_divide(sP5_iProver_def,X0),double_divide(sP5_iProver_def,double_divide(X0,inverse(X1)))) = X1,
    inference(light_normalisation,[status(thm)],[c_166,c_423,c_438,c_439]) ).

cnf(c_521,plain,
    double_divide(double_divide(sP5_iProver_def,X0),double_divide(sP5_iProver_def,sP5_iProver_def)) = X0,
    inference(superposition,[status(thm)],[c_441,c_518]) ).

cnf(c_527,plain,
    double_divide(double_divide(sP5_iProver_def,X0),sP5_iProver_def) = X0,
    inference(light_normalisation,[status(thm)],[c_521,c_438]) ).

cnf(c_616,plain,
    double_divide(sP5_iProver_def,multiply(sP5_iProver_def,inverse(X0))) = X0,
    inference(demodulation,[status(thm)],[c_338,c_72,c_442]) ).

cnf(c_622,plain,
    multiply(multiply(sP5_iProver_def,inverse(X0)),sP5_iProver_def) = inverse(X0),
    inference(superposition,[status(thm)],[c_616,c_72]) ).

cnf(c_648,plain,
    multiply(X0,sP5_iProver_def) = X0,
    inference(demodulation,[status(thm)],[c_527,c_72,c_442]) ).

cnf(c_767,plain,
    multiply(sP5_iProver_def,inverse(X0)) = inverse(X0),
    inference(demodulation,[status(thm)],[c_622,c_648]) ).

cnf(c_769,plain,
    double_divide(sP5_iProver_def,inverse(X0)) = X0,
    inference(demodulation,[status(thm)],[c_616,c_767]) ).

cnf(c_772,plain,
    multiply(sP5_iProver_def,multiply(X0,X1)) = multiply(X0,X1),
    inference(superposition,[status(thm)],[c_72,c_767]) ).

cnf(c_813,plain,
    multiply(sP5_iProver_def,X0) = X0,
    inference(superposition,[status(thm)],[c_648,c_772]) ).

cnf(c_820,plain,
    double_divide(inverse(X0),X0) = sP5_iProver_def,
    inference(demodulation,[status(thm)],[c_433,c_813]) ).

cnf(c_821,plain,
    multiply(X0,inverse(X0)) = sP5_iProver_def,
    inference(demodulation,[status(thm)],[c_431,c_813]) ).

cnf(c_822,plain,
    inverse(inverse(X0)) = X0,
    inference(demodulation,[status(thm)],[c_436,c_813]) ).

cnf(c_825,plain,
    a2 = sP6_iProver_def,
    inference(demodulation,[status(thm)],[c_443,c_813]) ).

cnf(c_826,plain,
    sP1_iProver_def != sP3_iProver_def,
    inference(backward_subsumption_resolution,[status(thm)],[c_445,c_825]) ).

cnf(c_836,plain,
    double_divide(sP5_iProver_def,double_divide(sP5_iProver_def,X0)) = X0,
    inference(light_normalisation,[status(thm)],[c_340,c_423,c_769]) ).

cnf(c_841,plain,
    multiply(double_divide(sP5_iProver_def,X0),sP5_iProver_def) = inverse(X0),
    inference(superposition,[status(thm)],[c_836,c_72]) ).

cnf(c_852,plain,
    double_divide(sP5_iProver_def,X0) = inverse(X0),
    inference(demodulation,[status(thm)],[c_841,c_648]) ).

cnf(c_871,plain,
    inverse(multiply(X0,X1)) = double_divide(X1,X0),
    inference(superposition,[status(thm)],[c_72,c_822]) ).

cnf(c_884,plain,
    double_divide(multiply(X0,X1),double_divide(X1,X0)) = sP5_iProver_def,
    inference(superposition,[status(thm)],[c_72,c_820]) ).

cnf(c_913,plain,
    double_divide(inverse(X0),double_divide(double_divide(double_divide(X1,inverse(X0)),sP5_iProver_def),sP5_iProver_def)) = X1,
    inference(light_normalisation,[status(thm)],[c_169,c_423,c_439,c_852]) ).

cnf(c_914,plain,
    double_divide(inverse(X0),double_divide(X1,inverse(X0))) = X1,
    inference(demodulation,[status(thm)],[c_913,c_72,c_442,c_480,c_871]) ).

cnf(c_925,plain,
    double_divide(X0,double_divide(X1,X0)) = X1,
    inference(superposition,[status(thm)],[c_822,c_914]) ).

cnf(c_932,plain,
    double_divide(b3,a3) = inverse(sP0_iProver_def),
    inference(superposition,[status(thm)],[c_84,c_871]) ).

cnf(c_934,plain,
    double_divide(c3,sP0_iProver_def) = inverse(sP1_iProver_def),
    inference(superposition,[status(thm)],[c_85,c_871]) ).

cnf(c_935,plain,
    double_divide(sP2_iProver_def,a3) = inverse(sP3_iProver_def),
    inference(superposition,[status(thm)],[c_87,c_871]) ).

cnf(c_988,plain,
    double_divide(a3,inverse(sP0_iProver_def)) = b3,
    inference(superposition,[status(thm)],[c_932,c_925]) ).

cnf(c_990,plain,
    double_divide(sP0_iProver_def,inverse(sP1_iProver_def)) = c3,
    inference(superposition,[status(thm)],[c_934,c_925]) ).

cnf(c_996,plain,
    double_divide(double_divide(X0,X1),X0) = X1,
    inference(superposition,[status(thm)],[c_925,c_925]) ).

cnf(c_999,plain,
    multiply(double_divide(X0,X1),X1) = inverse(X0),
    inference(superposition,[status(thm)],[c_925,c_72]) ).

cnf(c_1024,plain,
    double_divide(inverse(sP0_iProver_def),b3) = a3,
    inference(superposition,[status(thm)],[c_988,c_925]) ).

cnf(c_1032,plain,
    multiply(inverse(sP1_iProver_def),sP0_iProver_def) = inverse(c3),
    inference(superposition,[status(thm)],[c_990,c_72]) ).

cnf(c_1772,plain,
    double_divide(double_divide(X0,X1),sP5_iProver_def) = multiply(X1,X0),
    inference(superposition,[status(thm)],[c_884,c_925]) ).

cnf(c_1983,plain,
    double_divide(sP5_iProver_def,double_divide(X0,X1)) = multiply(X1,X0),
    inference(superposition,[status(thm)],[c_430,c_996]) ).

cnf(c_2034,plain,
    multiply(double_divide(multiply(X0,X1),double_divide(X2,X0)),double_divide(sP5_iProver_def,X2)) = inverse(X1),
    inference(light_normalisation,[status(thm)],[c_173,c_423,c_439,c_1772]) ).

cnf(c_2035,plain,
    multiply(double_divide(multiply(X0,X1),double_divide(X2,X0)),inverse(X2)) = inverse(X1),
    inference(demodulation,[status(thm)],[c_2034,c_852]) ).

cnf(c_2038,plain,
    multiply(double_divide(sP2_iProver_def,double_divide(X0,b3)),inverse(X0)) = inverse(c3),
    inference(superposition,[status(thm)],[c_86,c_2035]) ).

cnf(c_2046,plain,
    multiply(double_divide(sP5_iProver_def,double_divide(X0,X1)),inverse(X0)) = inverse(inverse(X1)),
    inference(superposition,[status(thm)],[c_821,c_2035]) ).

cnf(c_2103,plain,
    multiply(multiply(X0,X1),inverse(X1)) = inverse(inverse(X0)),
    inference(light_normalisation,[status(thm)],[c_2046,c_1983]) ).

cnf(c_2104,plain,
    multiply(multiply(X0,X1),inverse(X1)) = X0,
    inference(light_normalisation,[status(thm)],[c_2103,c_822]) ).

cnf(c_2560,plain,
    multiply(inverse(X0),inverse(X1)) = double_divide(X0,X1),
    inference(superposition,[status(thm)],[c_999,c_2104]) ).

cnf(c_2563,plain,
    multiply(inverse(c3),inverse(sP0_iProver_def)) = inverse(sP1_iProver_def),
    inference(superposition,[status(thm)],[c_1032,c_2104]) ).

cnf(c_3238,plain,
    multiply(double_divide(sP2_iProver_def,a3),inverse(inverse(sP0_iProver_def))) = inverse(c3),
    inference(superposition,[status(thm)],[c_1024,c_2038]) ).

cnf(c_3250,plain,
    multiply(inverse(sP3_iProver_def),inverse(inverse(sP0_iProver_def))) = inverse(c3),
    inference(light_normalisation,[status(thm)],[c_3238,c_935]) ).

cnf(c_5374,plain,
    double_divide(sP3_iProver_def,inverse(sP0_iProver_def)) = inverse(c3),
    inference(demodulation,[status(thm)],[c_3250,c_2560]) ).

cnf(c_5384,plain,
    multiply(inverse(c3),inverse(sP0_iProver_def)) = inverse(sP3_iProver_def),
    inference(superposition,[status(thm)],[c_5374,c_999]) ).

cnf(c_5387,plain,
    inverse(sP1_iProver_def) = inverse(sP3_iProver_def),
    inference(light_normalisation,[status(thm)],[c_5384,c_2563]) ).

cnf(c_5405,plain,
    inverse(inverse(sP1_iProver_def)) = sP3_iProver_def,
    inference(superposition,[status(thm)],[c_5387,c_822]) ).

cnf(c_5450,plain,
    sP1_iProver_def = sP3_iProver_def,
    inference(demodulation,[status(thm)],[c_5405,c_822]) ).

cnf(c_5451,plain,
    $false,
    inference(forward_subsumption_resolution,[status(thm)],[c_5450,c_826]) ).


%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.00/0.09  % Problem  : GRP079-1 : TPTP v8.1.2. Bugfixed v2.3.0.
% 0.00/0.09  % Command  : run_iprover %s %d THM
% 0.08/0.29  % Computer : n015.cluster.edu
% 0.08/0.29  % Model    : x86_64 x86_64
% 0.08/0.29  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.08/0.29  % Memory   : 8042.1875MB
% 0.08/0.29  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.08/0.29  % CPULimit : 300
% 0.08/0.29  % WCLimit  : 300
% 0.08/0.29  % DateTime : Fri May  3 00:07:05 EDT 2024
% 0.08/0.29  % CPUTime  : 
% 0.13/0.38  Running first-order theorem proving
% 0.13/0.38  Running: /export/starexec/sandbox/solver/bin/run_problem --schedule fof_schedule --heuristic_context casc_unsat --no_cores 8 /export/starexec/sandbox/benchmark/theBenchmark.p 300
% 3.90/1.06  % SZS status Started for theBenchmark.p
% 3.90/1.06  % SZS status Unsatisfiable for theBenchmark.p
% 3.90/1.06  
% 3.90/1.06  %---------------- iProver v3.9 (pre CASC 2024/SMT-COMP 2024) ----------------%
% 3.90/1.06  
% 3.90/1.06  ------  iProver source info
% 3.90/1.06  
% 3.90/1.06  git: date: 2024-05-02 19:28:25 +0000
% 3.90/1.06  git: sha1: a33b5eb135c74074ba803943bb12f2ebd971352f
% 3.90/1.06  git: non_committed_changes: false
% 3.90/1.06  
% 3.90/1.06  ------ Parsing...successful
% 3.90/1.06  
% 3.90/1.06  
% 3.90/1.06  
% 3.90/1.06  ------ Preprocessing... sup_sim: 2  sf_s  rm: 0 0s  sf_e  pe_s  pe_e 
% 3.90/1.06  
% 3.90/1.06  ------ Preprocessing... gs_s  sp: 0 0s  gs_e  snvd_s sp: 0 0s snvd_e 
% 3.90/1.06  
% 3.90/1.06  ------ Preprocessing... sf_s  rm: 0 0s  sf_e 
% 3.90/1.06  ------ Proving...
% 3.90/1.06  ------ Problem Properties 
% 3.90/1.06  
% 3.90/1.06  
% 3.90/1.06  clauses                                 12
% 3.90/1.06  conjectures                             1
% 3.90/1.06  EPR                                     1
% 3.90/1.06  Horn                                    12
% 3.90/1.06  unary                                   11
% 3.90/1.06  binary                                  0
% 3.90/1.06  lits                                    14
% 3.90/1.06  lits eq                                 14
% 3.90/1.06  fd_pure                                 0
% 3.90/1.06  fd_pseudo                               0
% 3.90/1.06  fd_cond                                 0
% 3.90/1.06  fd_pseudo_cond                          0
% 3.90/1.06  AC symbols                              0
% 3.90/1.06  
% 3.90/1.06  ------ Schedule dynamic 5 is on 
% 3.90/1.06  
% 3.90/1.06  ------ Input Options "--resolution_flag false --inst_lit_sel_side none" Time Limit: 10.
% 3.90/1.06  
% 3.90/1.06  
% 3.90/1.06  ------ 
% 3.90/1.06  Current options:
% 3.90/1.06  ------ 
% 3.90/1.06  
% 3.90/1.06  
% 3.90/1.06  
% 3.90/1.06  
% 3.90/1.06  ------ Proving...
% 3.90/1.06  
% 3.90/1.06  
% 3.90/1.06  % SZS status Unsatisfiable for theBenchmark.p
% 3.90/1.06  
% 3.90/1.06  % SZS output start CNFRefutation for theBenchmark.p
% See solution above
% 3.90/1.06  
% 3.90/1.07  
%------------------------------------------------------------------------------