TSTP Solution File: GRP032-3 by Moca---0.1

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Moca---0.1
% Problem  : GRP032-3 : TPTP v8.1.0. Released v1.0.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : moca.sh %s

% Computer : n014.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 600s
% DateTime : Sat Jul 16 10:52:02 EDT 2022

% Result   : Unsatisfiable 1.64s 1.80s
% Output   : Proof 1.64s
% Verified : 
% SZS Type : -

% Comments : 
%------------------------------------------------------------------------------
%----WARNING: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.03/0.12  % Problem  : GRP032-3 : TPTP v8.1.0. Released v1.0.0.
% 0.03/0.13  % Command  : moca.sh %s
% 0.14/0.34  % Computer : n014.cluster.edu
% 0.14/0.34  % Model    : x86_64 x86_64
% 0.14/0.34  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.14/0.34  % Memory   : 8042.1875MB
% 0.14/0.34  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.14/0.34  % CPULimit : 300
% 0.14/0.34  % WCLimit  : 600
% 0.14/0.34  % DateTime : Tue Jun 14 01:09:07 EDT 2022
% 0.14/0.34  % CPUTime  : 
% 1.64/1.80  % SZS status Unsatisfiable
% 1.64/1.80  % SZS output start Proof
% 1.64/1.80  The input problem is unsatisfiable because
% 1.64/1.80  
% 1.64/1.80  [1] the following set of Horn clauses is unsatisfiable:
% 1.64/1.80  
% 1.64/1.80  	product(identity, X, X)
% 1.64/1.80  	product(X, identity, X)
% 1.64/1.80  	product(inverse(X), X, identity)
% 1.64/1.80  	product(X, inverse(X), identity)
% 1.64/1.80  	product(X, Y, multiply(X, Y))
% 1.64/1.80  	product(X, Y, Z) & product(X, Y, W) ==> Z = W
% 1.64/1.80  	product(X, Y, U) & product(Y, Z, V) & product(U, Z, W) ==> product(X, V, W)
% 1.64/1.80  	product(X, Y, U) & product(Y, Z, V) & product(X, V, W) ==> product(U, Z, W)
% 1.64/1.80  	subgroup_member(A) & subgroup_member(B) & product(A, inverse(B), C) ==> subgroup_member(C)
% 1.64/1.80  	subgroup_member(a)
% 1.64/1.80  	subgroup_member(identity) ==> \bottom
% 1.64/1.80  
% 1.64/1.80  This holds because
% 1.64/1.80  
% 1.64/1.80  [2] the following E entails the following G (Claessen-Smallbone's transformation (2018)):
% 1.64/1.80  
% 1.64/1.80  E:
% 1.64/1.80  	f1(true__, Z, W) = Z
% 1.64/1.80  	f10(true__, A, C) = f9(subgroup_member(A), C)
% 1.64/1.80  	f11(product(A, inverse(B), C), B, A, C) = true__
% 1.64/1.80  	f11(true__, B, A, C) = f10(subgroup_member(B), A, C)
% 1.64/1.80  	f12(subgroup_member(identity)) = true__
% 1.64/1.80  	f12(true__) = false__
% 1.64/1.80  	f2(product(X, Y, W), X, Y, Z, W) = W
% 1.64/1.80  	f2(true__, X, Y, Z, W) = f1(product(X, Y, Z), Z, W)
% 1.64/1.80  	f3(true__, X, V, W) = product(X, V, W)
% 1.64/1.80  	f4(true__, X, Y, U, V, W) = f3(product(X, Y, U), X, V, W)
% 1.64/1.80  	f5(product(U, Z, W), Y, Z, V, X, U, W) = true__
% 1.64/1.80  	f5(true__, Y, Z, V, X, U, W) = f4(product(Y, Z, V), X, Y, U, V, W)
% 1.64/1.80  	f6(true__, U, Z, W) = product(U, Z, W)
% 1.64/1.80  	f7(true__, X, Y, U, Z, W) = f6(product(X, Y, U), U, Z, W)
% 1.64/1.80  	f8(product(X, V, W), Y, Z, V, X, U, W) = true__
% 1.64/1.80  	f8(true__, Y, Z, V, X, U, W) = f7(product(Y, Z, V), X, Y, U, Z, W)
% 1.64/1.80  	f9(true__, C) = subgroup_member(C)
% 1.64/1.80  	product(X, Y, multiply(X, Y)) = true__
% 1.64/1.80  	product(X, identity, X) = true__
% 1.64/1.80  	product(X, inverse(X), identity) = true__
% 1.64/1.80  	product(identity, X, X) = true__
% 1.64/1.80  	product(inverse(X), X, identity) = true__
% 1.64/1.80  	subgroup_member(a) = true__
% 1.64/1.80  G:
% 1.64/1.80  	true__ = false__
% 1.64/1.80  
% 1.64/1.80  This holds because
% 1.64/1.80  
% 1.64/1.80  [3] E entails the following ordered TRS and the lhs and rhs of G join by the TRS:
% 1.64/1.80  
% 1.64/1.80  
% 1.64/1.80  	f1(f3(true__, Y0, Y1, Y3), Y3, multiply(Y0, Y1)) -> multiply(Y0, Y1)
% 1.64/1.80  	f1(f3(true__, Y0, inverse(Y0), Y3), Y3, identity) -> identity
% 1.64/1.80  	f1(f3(true__, Y2, identity, Y3), Y3, Y2) -> Y2
% 1.64/1.81  	f1(f3(true__, identity, Y2, Y3), Y3, Y2) -> Y2
% 1.64/1.81  	f1(f3(true__, inverse(Y1), Y1, Y3), Y3, identity) -> identity
% 1.64/1.81  	f1(true__, Z, W) -> Z
% 1.64/1.81  	f10(f9(true__, Y1), Y0, multiply(Y0, inverse(Y1))) -> true__
% 1.64/1.81  	f10(f9(true__, Y1), Y1, identity) -> true__
% 1.64/1.81  	f10(f9(true__, Y1), identity, inverse(Y1)) -> true__
% 1.64/1.81  	f10(f9(true__, Y1), inverse(inverse(Y1)), identity) -> true__
% 1.64/1.81  	f10(true__, A, C) -> f9(f9(true__, A), C)
% 1.64/1.81  	f11(f3(true__, Y0, identity, Y2), identity, Y0, Y2) -> true__
% 1.64/1.81  	f11(product(A, inverse(B), C), B, A, C) -> true__
% 1.64/1.81  	f11(true__, B, A, C) -> f10(f9(true__, B), A, C)
% 1.64/1.81  	f12(f9(true__, identity)) -> true__
% 1.64/1.81  	f12(true__) -> false__
% 1.64/1.81  	f2(product(X, Y, W), X, Y, Z, W) -> W
% 1.64/1.81  	f2(true__, X, Y, Z, W) -> f1(f3(true__, X, Y, Z), Z, W)
% 1.64/1.81  	f3(true__, Y0, Y1, multiply(Y0, Y1)) -> true__
% 1.64/1.81  	f3(true__, Y0, inverse(Y0), identity) -> true__
% 1.64/1.81  	f3(true__, Y2, identity, Y2) -> true__
% 1.64/1.81  	f3(true__, identity, Y2, Y2) -> true__
% 1.64/1.81  	f3(true__, inverse(Y1), Y1, identity) -> true__
% 1.64/1.81  	f4(f3(true__, Y3, Y1, Y4), Y5, Y3, Y0, Y4, multiply(Y0, Y1)) -> true__
% 1.64/1.81  	f4(true__, X, Y, U, V, W) -> f3(f3(true__, X, Y, U), X, V, W)
% 1.64/1.81  	f5(product(U, Z, W), Y, Z, V, X, U, W) -> true__
% 1.64/1.81  	f5(true__, Y, Z, V, X, U, W) -> f4(f3(true__, Y, Z, V), X, Y, U, V, W)
% 1.64/1.81  	f6(true__, U, Z, W) -> f3(true__, U, Z, W)
% 1.64/1.81  	f7(true__, X, Y, U, Z, W) -> f6(f3(true__, X, Y, U), U, Z, W)
% 1.64/1.81  	f8(product(X, V, W), Y, Z, V, X, U, W) -> true__
% 1.64/1.81  	f8(true__, Y, Z, V, X, U, W) -> f7(f3(true__, Y, Z, V), X, Y, U, Z, W)
% 1.64/1.81  	f9(f9(true__, Y1), multiply(Y1, identity)) -> true__
% 1.64/1.81  	f9(f9(true__, Y1), multiply(Y1, inverse(a))) -> true__
% 1.64/1.81  	f9(f9(true__, identity), inverse(a)) -> true__
% 1.64/1.81  	f9(f9(true__, inverse(inverse(a))), identity) -> true__
% 1.64/1.81  	f9(true__, a) -> true__
% 1.64/1.81  	f9(true__, identity) -> true__
% 1.64/1.81  	f9(true__, inverse(a)) -> true__
% 1.64/1.81  	false__ -> true__
% 1.64/1.81  	inverse(identity) -> identity
% 1.64/1.81  	multiply(Y0, identity) -> Y0
% 1.64/1.81  	multiply(identity, Y0) -> Y0
% 1.64/1.81  	product(X, V, W) -> f3(true__, X, V, W)
% 1.64/1.81  	subgroup_member(C) -> f9(true__, C)
% 1.64/1.81  with the LPO induced by
% 1.64/1.81  	f2 > f1 > f8 > f7 > f6 > f5 > f4 > product > f3 > f11 > f10 > subgroup_member > f9 > multiply > inverse > identity > f12 > a > false__ > true__
% 1.64/1.81  
% 1.64/1.81  % SZS output end Proof
% 1.64/1.81  
%------------------------------------------------------------------------------