TSTP Solution File: GRP002-4 by Otter---3.3

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Otter---3.3
% Problem  : GRP002-4 : TPTP v8.1.0. Released v1.0.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : otter-tptp-script %s

% Computer : n011.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Wed Jul 27 12:55:49 EDT 2022

% Result   : Unsatisfiable 1.99s 2.17s
% Output   : Refutation 1.99s
% Verified : 
% SZS Type : Refutation
%            Derivation depth      :   14
%            Number of leaves      :    7
% Syntax   : Number of clauses     :   53 (  53 unt;   0 nHn;   4 RR)
%            Number of literals    :   53 (  52 equ;   3 neg)
%            Maximal clause size   :    1 (   1 avg)
%            Maximal term depth    :    9 (   2 avg)
%            Number of predicates  :    2 (   0 usr;   1 prp; 0-2 aty)
%            Number of functors    :    6 (   6 usr;   3 con; 0-2 aty)
%            Number of variables   :  100 (   2 sgn)

% Comments : 
%------------------------------------------------------------------------------
cnf(1,axiom,
    commutator(commutator(a,b),b) != identity,
    file('GRP002-4.p',unknown),
    [] ).

cnf(4,axiom,
    multiply(identity,A) = A,
    file('GRP002-4.p',unknown),
    [] ).

cnf(5,axiom,
    multiply(inverse(A),A) = identity,
    file('GRP002-4.p',unknown),
    [] ).

cnf(8,axiom,
    multiply(multiply(A,B),C) = multiply(A,multiply(B,C)),
    file('GRP002-4.p',unknown),
    [] ).

cnf(10,axiom,
    multiply(A,identity) = A,
    file('GRP002-4.p',unknown),
    [] ).

cnf(13,axiom,
    commutator(A,B) = multiply(A,multiply(B,multiply(inverse(A),inverse(B)))),
    file('GRP002-4.p',unknown),
    [] ).

cnf(14,plain,
    multiply(A,multiply(B,multiply(inverse(A),inverse(B)))) = commutator(A,B),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[13])]),
    [iquote('copy,13,flip.1')] ).

cnf(17,axiom,
    multiply(A,multiply(A,A)) = identity,
    file('GRP002-4.p',unknown),
    [] ).

cnf(20,plain,
    multiply(inverse(A),multiply(A,B)) = B,
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[8,5]),4])]),
    [iquote('para_into,7.1.1.1,5.1.1,demod,4,flip.1')] ).

cnf(26,plain,
    multiply(A,multiply(B,multiply(A,multiply(B,multiply(A,B))))) = identity,
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[17,8]),8]),
    [iquote('para_into,16.1.1.2,7.1.1,demod,8')] ).

cnf(29,plain,
    multiply(A,multiply(A,multiply(A,B))) = B,
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[17,8]),4,8])]),
    [iquote('para_from,16.1.1,7.1.1.1,demod,4,8,flip.1')] ).

cnf(33,plain,
    inverse(A) = multiply(A,A),
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[20,17]),10]),
    [iquote('para_into,20.1.1.2,16.1.1,demod,10')] ).

cnf(37,plain,
    multiply(A,multiply(B,multiply(A,multiply(A,multiply(B,B))))) = commutator(A,B),
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[14]),33,33,8]),
    [iquote('back_demod,14,demod,33,33,8')] ).

cnf(41,plain,
    multiply(A,multiply(B,multiply(A,multiply(B,A)))) = multiply(B,B),
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[29,26]),10])]),
    [iquote('para_into,28.1.1.2.2,26.1.1,demod,10,flip.1')] ).

cnf(42,plain,
    multiply(A,multiply(B,multiply(C,multiply(A,multiply(B,multiply(C,A)))))) = multiply(B,multiply(C,multiply(B,C))),
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[41,8]),8,8]),
    [iquote('para_into,40.1.1.2.2.2,7.1.1,demod,8,8')] ).

cnf(44,plain,
    multiply(A,multiply(A,multiply(B,B))) = multiply(B,multiply(A,multiply(B,A))),
    inference(para_from,[status(thm),theory(equality)],[41,29]),
    [iquote('para_from,40.1.1,28.1.1.2.2')] ).

cnf(45,plain,
    multiply(A,multiply(B,multiply(A,multiply(B,multiply(A,C))))) = multiply(B,multiply(B,C)),
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[41,8]),8,8,8,8])]),
    [iquote('para_from,40.1.1,7.1.1.1,demod,8,8,8,8,flip.1')] ).

cnf(47,plain,
    multiply(A,multiply(B,multiply(A,B))) = multiply(B,multiply(B,multiply(A,A))),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[44])]),
    [iquote('copy,44,flip.1')] ).

cnf(50,plain,
    multiply(A,multiply(B,multiply(C,multiply(A,multiply(A,multiply(B,multiply(C,multiply(B,C)))))))) = commutator(A,multiply(B,C)),
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[37,8]),8]),
    [iquote('para_into,36.1.1.2.2.2.2,7.1.1,demod,8')] ).

cnf(54,plain,
    multiply(A,multiply(B,multiply(C,multiply(A,multiply(B,multiply(A,multiply(B,multiply(C,C)))))))) = commutator(multiply(A,B),C),
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[37,8]),8,8]),
    [iquote('para_into,36.1.1.2.2.2,7.1.1,demod,8,8')] ).

cnf(58,plain,
    commutator(multiply(A,A),A) = identity,
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[37,17]),10,8,17])]),
    [iquote('para_into,36.1.1.2.2,16.1.1,demod,10,8,17,flip.1')] ).

cnf(64,plain,
    multiply(commutator(A,B),C) = multiply(A,multiply(B,multiply(A,multiply(A,multiply(B,multiply(B,C)))))),
    inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[37,8]),8,8,8,8]),
    [iquote('para_from,36.1.1,7.1.1.1,demod,8,8,8,8')] ).

cnf(88,plain,
    commutator(multiply(A,multiply(B,multiply(A,B))),multiply(A,B)) = identity,
    inference(para_into,[status(thm),theory(equality)],[58,8]),
    [iquote('para_into,58.1.1.1,7.1.1')] ).

cnf(97,plain,
    multiply(A,multiply(B,multiply(B,multiply(A,multiply(B,A))))) = commutator(A,B),
    inference(para_from,[status(thm),theory(equality)],[44,37]),
    [iquote('para_from,44.1.1,36.1.1.2.2')] ).

cnf(100,plain,
    commutator(multiply(A,B),multiply(B,multiply(B,multiply(A,A)))) = identity,
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[88,44]),8,8,29,29]),
    [iquote('para_into,88.1.1.1.2.2,44.1.1,demod,8,8,29,29')] ).

cnf(118,plain,
    commutator(commutator(A,B),commutator(B,A)) = identity,
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[100,37]),8,8,8,8,8,8,8,8,29,29,37]),
    [iquote('para_into,100.1.1.1,36.1.1,demod,8,8,8,8,8,8,8,8,29,29,37')] ).

cnf(131,plain,
    multiply(A,multiply(B,multiply(A,commutator(B,A)))) = multiply(B,multiply(A,A)),
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[45,37]),29]),
    [iquote('para_into,45.1.1.2.2.2,36.1.1,demod,29')] ).

cnf(133,plain,
    multiply(A,multiply(A,multiply(B,multiply(A,multiply(B,B))))) = commutator(B,A),
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[45,42]),97])]),
    [iquote('para_into,45.1.1.2.2,42.1.1,demod,97,flip.1')] ).

cnf(152,plain,
    multiply(A,multiply(B,commutator(B,A))) = multiply(B,A),
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[47,47]),8,8,29,17,10,8,8,8,8,133])]),
    [iquote('para_into,47.1.1.2.2,47.1.1,demod,8,8,29,17,10,8,8,8,8,133,flip.1')] ).

cnf(157,plain,
    multiply(A,multiply(B,multiply(A,multiply(A,multiply(B,multiply(B,commutator(A,B))))))) = commutator(B,A),
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[47,37]),8,8,8,8,8,8,8,8,8,8,8,8,29,29,37]),
    [iquote('para_into,47.1.1.2.2,36.1.1,demod,8,8,8,8,8,8,8,8,8,8,8,8,29,29,37')] ).

cnf(174,plain,
    multiply(A,multiply(A,multiply(B,A))) = multiply(B,commutator(B,A)),
    inference(para_from,[status(thm),theory(equality)],[152,29]),
    [iquote('para_from,152.1.1,28.1.1.2.2')] ).

cnf(178,plain,
    multiply(A,commutator(A,B)) = multiply(B,multiply(B,multiply(A,B))),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[174])]),
    [iquote('copy,174,flip.1')] ).

cnf(188,plain,
    multiply(A,multiply(B,multiply(A,multiply(A,commutator(B,A))))) = multiply(B,commutator(B,multiply(A,multiply(B,multiply(B,multiply(A,A)))))),
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[174,37]),8,8,8,8,8,8,8,8,29,29]),
    [iquote('para_into,174.1.1.2.2,36.1.1,demod,8,8,8,8,8,8,8,8,29,29')] ).

cnf(198,plain,
    multiply(A,commutator(A,multiply(B,multiply(A,multiply(A,multiply(B,B)))))) = multiply(B,multiply(A,multiply(B,multiply(B,commutator(A,B))))),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[188])]),
    [iquote('copy,188,flip.1')] ).

cnf(238,plain,
    multiply(A,multiply(B,multiply(C,multiply(A,multiply(A,multiply(C,multiply(C,multiply(B,B)))))))) = commutator(A,multiply(B,C)),
    inference(para_into,[status(thm),theory(equality)],[50,47]),
    [iquote('para_into,50.1.1.2.2.2.2.2,47.1.1')] ).

cnf(239,plain,
    commutator(A,multiply(B,A)) = commutator(A,B),
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[50,41]),37])]),
    [iquote('para_into,50.1.1.2.2.2.2,40.1.1,demod,37,flip.1')] ).

cnf(246,plain,
    multiply(A,multiply(A,multiply(B,multiply(B,multiply(A,B))))) = commutator(A,multiply(A,B)),
    inference(para_into,[status(thm),theory(equality)],[50,29]),
    [iquote('para_into,50.1.1.2.2.2,28.1.1')] ).

cnf(292,plain,
    commutator(A,multiply(B,multiply(C,A))) = commutator(A,multiply(B,C)),
    inference(para_into,[status(thm),theory(equality)],[239,8]),
    [iquote('para_into,239.1.1.2,7.1.1')] ).

cnf(301,plain,
    commutator(commutator(multiply(A,B),B),commutator(B,A)) = identity,
    inference(para_from,[status(thm),theory(equality)],[239,118]),
    [iquote('para_from,239.1.1,118.1.1.2')] ).

cnf(355,plain,
    commutator(multiply(A,B),B) = commutator(A,B),
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[178,301]),10,64,8,29,8,131,8,29,17,10,64,157]),
    [iquote('para_into,178.1.1.2,301.1.1,demod,10,64,8,29,8,131,8,29,17,10,64,157')] ).

cnf(386,plain,
    commutator(A,multiply(A,B)) = commutator(A,B),
    inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[178,29]),246]),
    [iquote('para_from,178.1.1,28.1.1.2.2,demod,246')] ).

cnf(403,plain,
    commutator(A,B) = commutator(multiply(B,B),A),
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[54,44]),41,133]),
    [iquote('para_into,54.1.1.2.2.2.2.2,44.1.1,demod,41,133')] ).

cnf(409,plain,
    commutator(multiply(A,A),B) = commutator(B,A),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[403])]),
    [iquote('copy,403,flip.1')] ).

cnf(464,plain,
    commutator(A,multiply(B,B)) = commutator(B,A),
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[355,29]),292,386,386]),
    [iquote('para_into,355.1.1.1,28.1.1,demod,292,386,386')] ).

cnf(478,plain,
    commutator(A,B) = commutator(B,multiply(A,A)),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[464])]),
    [iquote('copy,464,flip.1')] ).

cnf(498,plain,
    commutator(A,multiply(B,multiply(A,multiply(A,multiply(B,B))))) = commutator(A,commutator(A,B)),
    inference(flip,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[386,37])]),
    [iquote('para_into,385.1.1.2,36.1.1,flip.1')] ).

cnf(525,plain,
    multiply(A,multiply(B,multiply(A,multiply(A,commutator(B,A))))) = multiply(B,commutator(B,commutator(B,A))),
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[198]),498])]),
    [iquote('back_demod,198,demod,498,flip.1')] ).

cnf(557,plain,
    commutator(commutator(multiply(b,b),a),b) != identity,
    inference(para_from,[status(thm),theory(equality)],[403,1]),
    [iquote('para_from,403.1.1,1.1.1.1')] ).

cnf(565,plain,
    multiply(A,multiply(B,multiply(B,commutator(A,B)))) = multiply(B,multiply(B,A)),
    inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[409,152]),8,8]),
    [iquote('para_from,409.1.1,152.1.1.2.2,demod,8,8')] ).

cnf(567,plain,
    multiply(A,commutator(A,commutator(A,B))) = A,
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[525]),565,29])]),
    [iquote('back_demod,525,demod,565,29,flip.1')] ).

cnf(624,plain,
    commutator(b,commutator(b,a)) != identity,
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[557,478]),64,565,8,8,238,386]),
    [iquote('para_into,557.1.1,478.1.1,demod,64,565,8,8,238,386')] ).

cnf(727,plain,
    commutator(A,commutator(A,B)) = identity,
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[567,29]),17])]),
    [iquote('para_from,567.1.1,28.1.1.2.2,demod,17,flip.1')] ).

cnf(729,plain,
    $false,
    inference(binary,[status(thm)],[727,624]),
    [iquote('binary,727.1,624.1')] ).

%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.07/0.12  % Problem  : GRP002-4 : TPTP v8.1.0. Released v1.0.0.
% 0.07/0.12  % Command  : otter-tptp-script %s
% 0.14/0.34  % Computer : n011.cluster.edu
% 0.14/0.34  % Model    : x86_64 x86_64
% 0.14/0.34  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.14/0.34  % Memory   : 8042.1875MB
% 0.14/0.34  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.14/0.34  % CPULimit : 300
% 0.14/0.34  % WCLimit  : 300
% 0.14/0.34  % DateTime : Wed Jul 27 05:05:55 EDT 2022
% 0.14/0.34  % CPUTime  : 
% 1.99/2.17  ----- Otter 3.3f, August 2004 -----
% 1.99/2.17  The process was started by sandbox2 on n011.cluster.edu,
% 1.99/2.17  Wed Jul 27 05:05:55 2022
% 1.99/2.17  The command was "./otter".  The process ID is 31670.
% 1.99/2.17  
% 1.99/2.17  set(prolog_style_variables).
% 1.99/2.17  set(auto).
% 1.99/2.17     dependent: set(auto1).
% 1.99/2.17     dependent: set(process_input).
% 1.99/2.17     dependent: clear(print_kept).
% 1.99/2.17     dependent: clear(print_new_demod).
% 1.99/2.17     dependent: clear(print_back_demod).
% 1.99/2.17     dependent: clear(print_back_sub).
% 1.99/2.17     dependent: set(control_memory).
% 1.99/2.17     dependent: assign(max_mem, 12000).
% 1.99/2.17     dependent: assign(pick_given_ratio, 4).
% 1.99/2.17     dependent: assign(stats_level, 1).
% 1.99/2.17     dependent: assign(max_seconds, 10800).
% 1.99/2.17  clear(print_given).
% 1.99/2.17  
% 1.99/2.17  list(usable).
% 1.99/2.17  0 [] A=A.
% 1.99/2.17  0 [] multiply(identity,X)=X.
% 1.99/2.17  0 [] multiply(inverse(X),X)=identity.
% 1.99/2.17  0 [] multiply(multiply(X,Y),Z)=multiply(X,multiply(Y,Z)).
% 1.99/2.17  0 [] multiply(X,identity)=X.
% 1.99/2.17  0 [] multiply(X,inverse(X))=identity.
% 1.99/2.17  0 [] commutator(X,Y)=multiply(X,multiply(Y,multiply(inverse(X),inverse(Y)))).
% 1.99/2.17  0 [] multiply(X,multiply(X,X))=identity.
% 1.99/2.17  0 [] commutator(commutator(a,b),b)!=identity.
% 1.99/2.17  end_of_list.
% 1.99/2.17  
% 1.99/2.17  SCAN INPUT: prop=0, horn=1, equality=1, symmetry=0, max_lits=1.
% 1.99/2.17  
% 1.99/2.17  All clauses are units, and equality is present; the
% 1.99/2.17  strategy will be Knuth-Bendix with positive clauses in sos.
% 1.99/2.17  
% 1.99/2.17     dependent: set(knuth_bendix).
% 1.99/2.17     dependent: set(anl_eq).
% 1.99/2.17     dependent: set(para_from).
% 1.99/2.17     dependent: set(para_into).
% 1.99/2.17     dependent: clear(para_from_right).
% 1.99/2.17     dependent: clear(para_into_right).
% 1.99/2.17     dependent: set(para_from_vars).
% 1.99/2.17     dependent: set(eq_units_both_ways).
% 1.99/2.17     dependent: set(dynamic_demod_all).
% 1.99/2.17     dependent: set(dynamic_demod).
% 1.99/2.17     dependent: set(order_eq).
% 1.99/2.17     dependent: set(back_demod).
% 1.99/2.17     dependent: set(lrpo).
% 1.99/2.17  
% 1.99/2.17  ------------> process usable:
% 1.99/2.17  ** KEPT (pick-wt=7): 1 [] commutator(commutator(a,b),b)!=identity.
% 1.99/2.17  
% 1.99/2.17  ------------> process sos:
% 1.99/2.17  ** KEPT (pick-wt=3): 2 [] A=A.
% 1.99/2.17  ** KEPT (pick-wt=5): 3 [] multiply(identity,A)=A.
% 1.99/2.17  ---> New Demodulator: 4 [new_demod,3] multiply(identity,A)=A.
% 1.99/2.17  ** KEPT (pick-wt=6): 5 [] multiply(inverse(A),A)=identity.
% 1.99/2.17  ---> New Demodulator: 6 [new_demod,5] multiply(inverse(A),A)=identity.
% 1.99/2.17  ** KEPT (pick-wt=11): 7 [] multiply(multiply(A,B),C)=multiply(A,multiply(B,C)).
% 1.99/2.17  ---> New Demodulator: 8 [new_demod,7] multiply(multiply(A,B),C)=multiply(A,multiply(B,C)).
% 1.99/2.17  ** KEPT (pick-wt=5): 9 [] multiply(A,identity)=A.
% 1.99/2.17  ---> New Demodulator: 10 [new_demod,9] multiply(A,identity)=A.
% 1.99/2.17  ** KEPT (pick-wt=6): 11 [] multiply(A,inverse(A))=identity.
% 1.99/2.17  ---> New Demodulator: 12 [new_demod,11] multiply(A,inverse(A))=identity.
% 1.99/2.17  ** KEPT (pick-wt=13): 14 [copy,13,flip.1] multiply(A,multiply(B,multiply(inverse(A),inverse(B))))=commutator(A,B).
% 1.99/2.17  ---> New Demodulator: 15 [new_demod,14] multiply(A,multiply(B,multiply(inverse(A),inverse(B))))=commutator(A,B).
% 1.99/2.17  ** KEPT (pick-wt=7): 16 [] multiply(A,multiply(A,A))=identity.
% 1.99/2.17  ---> New Demodulator: 17 [new_demod,16] multiply(A,multiply(A,A))=identity.
% 1.99/2.17    Following clause subsumed by 2 during input processing: 0 [copy,2,flip.1] A=A.
% 1.99/2.17  >>>> Starting back demodulation with 4.
% 1.99/2.17  >>>> Starting back demodulation with 6.
% 1.99/2.17  >>>> Starting back demodulation with 8.
% 1.99/2.17  >>>> Starting back demodulation with 10.
% 1.99/2.17  >>>> Starting back demodulation with 12.
% 1.99/2.17  >>>> Starting back demodulation with 15.
% 1.99/2.17  >>>> Starting back demodulation with 17.
% 1.99/2.17  
% 1.99/2.17  ======= end of input processing =======
% 1.99/2.17  
% 1.99/2.17  =========== start of search ===========
% 1.99/2.17  
% 1.99/2.17  -------- PROOF -------- 
% 1.99/2.17  
% 1.99/2.17  ----> UNIT CONFLICT at   0.04 sec ----> 729 [binary,727.1,624.1] $F.
% 1.99/2.17  
% 1.99/2.17  Length of proof is 45.  Level of proof is 13.
% 1.99/2.17  
% 1.99/2.17  ---------------- PROOF ----------------
% 1.99/2.17  % SZS status Unsatisfiable
% 1.99/2.17  % SZS output start Refutation
% See solution above
% 1.99/2.17  ------------ end of proof -------------
% 1.99/2.17  
% 1.99/2.17  
% 1.99/2.17  Search stopped by max_proofs option.
% 1.99/2.17  
% 1.99/2.17  
% 1.99/2.17  Search stopped by max_proofs option.
% 1.99/2.17  
% 1.99/2.17  ============ end of search ============
% 1.99/2.17  
% 1.99/2.17  -------------- statistics -------------
% 1.99/2.17  clauses given                 48
% 1.99/2.17  clauses generated           1176
% 1.99/2.17  clauses kept                 457
% 1.99/2.17  clauses forward subsumed    1019
% 1.99/2.17  clauses back subsumed          0
% 1.99/2.17  Kbytes malloced             2929
% 1.99/2.17  
% 1.99/2.17  ----------- times (seconds) -----------
% 1.99/2.17  user CPU time          0.04          (0 hr, 0 min, 0 sec)
% 1.99/2.17  system CPU time        0.00          (0 hr, 0 min, 0 sec)
% 1.99/2.17  wall-clock time        2             (0 hr, 0 min, 2 sec)
% 1.99/2.17  
% 1.99/2.17  That finishes the proof of the theorem.
% 1.99/2.17  
% 1.99/2.17  Process 31670 finished Wed Jul 27 05:05:57 2022
% 1.99/2.17  Otter interrupted
% 1.99/2.17  PROOF FOUND
%------------------------------------------------------------------------------