TSTP Solution File: GRP002-3 by EQP---0.9e

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : EQP---0.9e
% Problem  : GRP002-3 : TPTP v8.1.0. Released v1.0.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : tptp2X_and_run_eqp %s

% Computer : n025.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 600s
% DateTime : Sat Jul 16 08:44:09 EDT 2022

% Result   : Unsatisfiable 0.88s 1.36s
% Output   : Refutation 0.88s
% Verified : 
% SZS Type : Refutation
%            Derivation depth      :   19
%            Number of leaves      :    5
% Syntax   : Number of clauses     :   67 (  67 unt;   0 nHn;   3 RR)
%            Number of literals    :   67 (   0 equ;   2 neg)
%            Maximal clause size   :    1 (   1 avg)
%            Maximal term depth    :    9 (   2 avg)
%            Number of predicates  :    2 (   1 usr;   1 prp; 0-2 aty)
%            Number of functors    :    6 (   6 usr;   3 con; 0-2 aty)
%            Number of variables   :  133 (   3 sgn)

% Comments : 
%------------------------------------------------------------------------------
cnf(1,plain,
    equal(multiply(identity,A),A),
    file('GRP002-3.p',unknown),
    [] ).

cnf(2,plain,
    equal(multiply(inverse(A),A),identity),
    file('GRP002-3.p',unknown),
    [] ).

cnf(3,plain,
    equal(multiply(multiply(A,B),C),multiply(A,multiply(B,C))),
    file('GRP002-3.p',unknown),
    [] ).

cnf(4,plain,
    equal(multiply(A,multiply(B,multiply(inverse(A),inverse(B)))),commutator(A,B)),
    inference(flip,[status(thm),theory(equality)],[1]),
    [iquote('flip(1)')] ).

cnf(5,plain,
    equal(multiply(A,multiply(A,A)),identity),
    file('GRP002-3.p',unknown),
    [] ).

cnf(6,plain,
    ~ equal(commutator(commutator(a,b),b),identity),
    file('GRP002-3.p',unknown),
    [] ).

cnf(7,plain,
    equal(multiply(inverse(A),multiply(A,B)),B),
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para,[status(thm),theory(equality)],[2,3]),1]),1]),
    [iquote('para(2,3),demod([1]),flip(1)')] ).

cnf(11,plain,
    equal(multiply(commutator(A,B),C),multiply(A,multiply(B,multiply(inverse(A),multiply(inverse(B),C))))),
    inference(demod,[status(thm),theory(equality)],[inference(para,[status(thm),theory(equality)],[4,3]),3,3]),
    [iquote('para(4,3),demod([3,3])')] ).

cnf(12,plain,
    equal(multiply(A,multiply(B,multiply(inverse(A),multiply(inverse(B),C)))),multiply(commutator(A,B),C)),
    inference(flip,[status(thm),theory(equality)],[11]),
    [iquote('flip(11)')] ).

cnf(13,plain,
    equal(multiply(A,multiply(B,multiply(C,multiply(inverse(multiply(A,B)),inverse(C))))),commutator(multiply(A,B),C)),
    inference(flip,[status(thm),theory(equality)],[inference(para,[status(thm),theory(equality)],[4,3]),1]),
    [iquote('para(4,3),flip(1)')] ).

cnf(14,plain,
    equal(multiply(A,multiply(B,multiply(C,multiply(inverse(A),inverse(multiply(B,C)))))),commutator(A,multiply(B,C))),
    inference(para,[status(thm),theory(equality)],[3,4]),
    [iquote('para(3,4)')] ).

cnf(15,plain,
    equal(multiply(inverse(inverse(A)),identity),A),
    inference(para,[status(thm),theory(equality)],[2,7]),
    [iquote('para(2,7)')] ).

cnf(16,plain,
    equal(multiply(A,multiply(A,multiply(A,B))),B),
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para,[status(thm),theory(equality)],[5,3]),1,3]),1]),
    [iquote('para(5,3),demod([1,3]),flip(1)')] ).

cnf(17,plain,
    equal(multiply(A,multiply(B,multiply(A,multiply(B,multiply(A,B))))),identity),
    inference(demod,[status(thm),theory(equality)],[inference(para,[status(thm),theory(equality)],[3,5]),3]),
    [iquote('para(3,5),demod([3])')] ).

cnf(18,plain,
    equal(multiply(inverse(A),identity),multiply(A,A)),
    inference(para,[status(thm),theory(equality)],[5,7]),
    [iquote('para(5,7)')] ).

cnf(19,plain,
    equal(multiply(inverse(A),inverse(A)),A),
    inference(demod,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[15]),18]),
    [iquote('back_demod(15),demod([18])')] ).

cnf(21,plain,
    equal(multiply(inverse(inverse(A)),A),inverse(A)),
    inference(para,[status(thm),theory(equality)],[19,7]),
    [iquote('para(19,7)')] ).

cnf(23,plain,
    equal(multiply(inverse(A),commutator(A,B)),multiply(B,multiply(inverse(A),inverse(B)))),
    inference(para,[status(thm),theory(equality)],[4,7]),
    [iquote('para(4,7)')] ).

cnf(24,plain,
    equal(multiply(A,multiply(inverse(B),inverse(A))),multiply(inverse(B),commutator(B,A))),
    inference(flip,[status(thm),theory(equality)],[23]),
    [iquote('flip(23)')] ).

cnf(25,plain,
    equal(multiply(inverse(inverse(A)),B),multiply(A,B)),
    inference(para,[status(thm),theory(equality)],[7,7]),
    [iquote('para(7,7)')] ).

cnf(26,plain,
    equal(inverse(A),multiply(A,A)),
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[21]),25]),1]),
    [iquote('back_demod(21),demod([25]),flip(1)')] ).

cnf(27,plain,
    equal(multiply(A,multiply(B,multiply(B,multiply(A,A)))),multiply(B,multiply(B,commutator(B,A)))),
    inference(demod,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[24]),26,26,3,26,3]),
    [iquote('back_demod(24),demod([26,26,3,26,3])')] ).

cnf(28,plain,
    equal(multiply(A,multiply(A,commutator(A,B))),multiply(B,multiply(A,multiply(A,multiply(B,B))))),
    inference(flip,[status(thm),theory(equality)],[27]),
    [iquote('flip(27)')] ).

cnf(31,plain,
    equal(multiply(A,identity),A),
    inference(demod,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[19]),26,26,3,5]),
    [iquote('back_demod(19),demod([26,26,3,5])')] ).

cnf(33,plain,
    equal(multiply(A,multiply(B,multiply(C,multiply(A,multiply(A,multiply(B,multiply(C,multiply(B,C)))))))),commutator(A,multiply(B,C))),
    inference(demod,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[14]),26,26,3,3]),
    [iquote('back_demod(14),demod([26,26,3,3])')] ).

cnf(34,plain,
    equal(multiply(A,multiply(B,multiply(C,multiply(A,multiply(B,multiply(A,multiply(B,multiply(C,C)))))))),commutator(multiply(A,B),C)),
    inference(demod,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[13]),26,3,26,3,3,3]),
    [iquote('back_demod(13),demod([26,3,26,3,3,3])')] ).

cnf(35,plain,
    equal(multiply(commutator(A,B),C),multiply(A,multiply(B,multiply(A,multiply(A,multiply(B,multiply(B,C))))))),
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[12]),26,26,3,3]),1]),
    [iquote('back_demod(12),demod([26,26,3,3]),flip(1)')] ).

cnf(37,plain,
    equal(multiply(A,multiply(B,multiply(A,multiply(A,multiply(B,B))))),commutator(A,B)),
    inference(demod,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[4]),26,26,3]),
    [iquote('back_demod(4),demod([26,26,3])')] ).

cnf(38,plain,
    equal(multiply(A,multiply(B,multiply(C,multiply(A,multiply(B,multiply(C,multiply(A,multiply(B,C)))))))),identity),
    inference(demod,[status(thm),theory(equality)],[inference(para,[status(thm),theory(equality)],[3,17]),3,3]),
    [iquote('para(3,17),demod([3,3])')] ).

cnf(40,plain,
    equal(multiply(A,multiply(B,multiply(A,multiply(B,A)))),multiply(B,B)),
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para,[status(thm),theory(equality)],[17,16]),31]),1]),
    [iquote('para(17,16),demod([31]),flip(1)')] ).

cnf(45,plain,
    equal(multiply(A,multiply(B,multiply(C,multiply(B,multiply(C,multiply(A,A)))))),multiply(B,multiply(C,multiply(B,multiply(C,commutator(multiply(B,C),A)))))),
    inference(demod,[status(thm),theory(equality)],[inference(para,[status(thm),theory(equality)],[3,27]),3,3,3]),
    [iquote('para(3,27),demod([3,3,3])')] ).

cnf(53,plain,
    equal(multiply(A,multiply(A,multiply(B,B))),multiply(B,multiply(A,multiply(B,A)))),
    inference(para,[status(thm),theory(equality)],[40,16]),
    [iquote('para(40,16)')] ).

cnf(54,plain,
    equal(multiply(A,multiply(B,multiply(A,B))),multiply(B,multiply(B,multiply(A,A)))),
    inference(flip,[status(thm),theory(equality)],[53]),
    [iquote('flip(53)')] ).

cnf(58,plain,
    equal(multiply(A,multiply(B,multiply(B,multiply(A,multiply(A,B))))),commutator(A,multiply(B,B))),
    inference(demod,[status(thm),theory(equality)],[inference(para,[status(thm),theory(equality)],[5,33]),31]),
    [iquote('para(5,33),demod([31])')] ).

cnf(60,plain,
    equal(multiply(A,multiply(B,multiply(B,multiply(A,multiply(B,A))))),commutator(A,multiply(B,A))),
    inference(para,[status(thm),theory(equality)],[16,33]),
    [iquote('para(16,33)')] ).

cnf(64,plain,
    equal(multiply(A,multiply(A,multiply(B,multiply(B,multiply(A,A))))),multiply(B,multiply(A,B))),
    inference(para,[status(thm),theory(equality)],[54,16]),
    [iquote('para(54,16)')] ).

cnf(65,plain,
    equal(multiply(A,multiply(B,A)),multiply(B,multiply(B,multiply(A,multiply(A,multiply(B,B)))))),
    inference(flip,[status(thm),theory(equality)],[64]),
    [iquote('flip(64)')] ).

cnf(68,plain,
    equal(commutator(A,multiply(B,A)),commutator(multiply(A,B),B)),
    inference(demod,[status(thm),theory(equality)],[inference(para,[status(thm),theory(equality)],[5,34]),31,60]),
    [iquote('para(5,34),demod([31,60])')] ).

cnf(69,plain,
    equal(commutator(multiply(A,B),B),commutator(A,multiply(B,A))),
    inference(flip,[status(thm),theory(equality)],[68]),
    [iquote('flip(68)')] ).

cnf(72,plain,
    equal(multiply(A,multiply(A,multiply(B,multiply(A,multiply(B,B))))),commutator(multiply(A,A),B)),
    inference(para,[status(thm),theory(equality)],[16,34]),
    [iquote('para(16,34)')] ).

cnf(74,plain,
    equal(commutator(A,multiply(B,multiply(C,A))),commutator(multiply(A,multiply(B,C)),multiply(B,C))),
    inference(para,[status(thm),theory(equality)],[3,68]),
    [iquote('para(3,68)')] ).

cnf(75,plain,
    equal(commutator(multiply(A,multiply(B,C)),multiply(B,C)),commutator(A,multiply(B,multiply(C,A)))),
    inference(flip,[status(thm),theory(equality)],[74]),
    [iquote('flip(74)')] ).

cnf(98,plain,
    equal(multiply(A,multiply(B,multiply(B,multiply(A,multiply(B,multiply(B,A)))))),B),
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para,[status(thm),theory(equality)],[38,16]),31]),1]),
    [iquote('para(38,16),demod([31]),flip(1)')] ).

cnf(102,plain,
    equal(commutator(A,multiply(B,A)),commutator(A,B)),
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para,[status(thm),theory(equality)],[40,33]),37]),1]),
    [iquote('para(40,33),demod([37]),flip(1)')] ).

cnf(103,plain,
    equal(commutator(multiply(A,B),B),commutator(A,B)),
    inference(demod,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[69]),102]),
    [iquote('back_demod(69),demod([102])')] ).

cnf(104,plain,
    equal(commutator(A,multiply(B,multiply(C,A))),commutator(A,multiply(B,C))),
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[75]),103]),1]),
    [iquote('back_demod(75),demod([103]),flip(1)')] ).

cnf(106,plain,
    equal(commutator(multiply(A,multiply(A,B)),A),commutator(multiply(A,A),B)),
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para,[status(thm),theory(equality)],[40,34]),3,72,3]),1]),
    [iquote('para(40,34),demod([3,72,3]),flip(1)')] ).

cnf(129,plain,
    equal(commutator(multiply(A,B),multiply(A,A)),commutator(A,B)),
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para,[status(thm),theory(equality)],[16,104]),103]),1]),
    [iquote('para(16,104),demod([103]),flip(1)')] ).

cnf(144,plain,
    equal(commutator(multiply(A,A),multiply(A,B)),commutator(B,A)),
    inference(flip,[status(thm),theory(equality)],[inference(para,[status(thm),theory(equality)],[16,106]),1]),
    [iquote('para(16,106),flip(1)')] ).

cnf(158,plain,
    equal(multiply(A,multiply(B,multiply(A,multiply(B,commutator(A,B))))),multiply(B,multiply(A,multiply(B,A)))),
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para,[status(thm),theory(equality)],[5,45]),31,103]),1]),
    [iquote('para(5,45),demod([31,103]),flip(1)')] ).

cnf(212,plain,
    equal(multiply(A,multiply(B,multiply(B,multiply(A,multiply(B,multiply(B,multiply(A,C))))))),multiply(B,C)),
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para,[status(thm),theory(equality)],[98,3]),3,3,3,3,3]),1]),
    [iquote('para(98,3),demod([3,3,3,3,3]),flip(1)')] ).

cnf(221,plain,
    equal(commutator(A,multiply(A,multiply(B,multiply(A,B)))),commutator(multiply(A,A),B)),
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para,[status(thm),theory(equality)],[16,58]),3,3,72,3]),1]),
    [iquote('para(16,58),demod([3,3,72,3]),flip(1)')] ).

cnf(222,plain,
    equal(commutator(A,multiply(B,B)),commutator(multiply(A,B),A)),
    inference(demod,[status(thm),theory(equality)],[inference(para,[status(thm),theory(equality)],[16,221]),3,3,16,144]),
    [iquote('para(16,221),demod([3,3,16,144])')] ).

cnf(223,plain,
    equal(commutator(multiply(A,B),A),commutator(A,multiply(B,B))),
    inference(flip,[status(thm),theory(equality)],[222]),
    [iquote('flip(222)')] ).

cnf(254,plain,
    equal(commutator(multiply(A,A),B),commutator(B,A)),
    inference(demod,[status(thm),theory(equality)],[inference(para,[status(thm),theory(equality)],[40,223]),3,3,3,40,5,31,102]),
    [iquote('para(40,223),demod([3,3,3,40,5,31,102])')] ).

cnf(255,plain,
    equal(commutator(A,B),commutator(multiply(B,B),A)),
    inference(flip,[status(thm),theory(equality)],[254]),
    [iquote('flip(254)')] ).

cnf(260,plain,
    ~ equal(commutator(commutator(multiply(b,b),a),b),identity),
    inference(para,[status(thm),theory(equality)],[255,6]),
    [iquote('para(255,6)')] ).

cnf(301,plain,
    equal(commutator(A,multiply(A,B)),commutator(A,B)),
    inference(demod,[status(thm),theory(equality)],[inference(para,[status(thm),theory(equality)],[255,129]),3,5,31]),
    [iquote('para(255,129),demod([3,5,31])')] ).

cnf(382,plain,
    equal(multiply(A,multiply(B,multiply(B,multiply(A,multiply(A,multiply(B,commutator(B,A))))))),commutator(A,multiply(B,multiply(B,multiply(A,multiply(A,multiply(B,multiply(B,multiply(A,A))))))))),
    inference(demod,[status(thm),theory(equality)],[inference(para,[status(thm),theory(equality)],[27,58]),3,3,3,16,16,3,3,3,3,3,3]),
    [iquote('para(27,58),demod([3,3,3,16,16,3,3,3,3,3,3])')] ).

cnf(383,plain,
    equal(commutator(A,multiply(B,multiply(B,multiply(A,multiply(A,multiply(B,multiply(B,multiply(A,A)))))))),multiply(A,multiply(B,multiply(B,multiply(A,multiply(A,multiply(B,commutator(B,A)))))))),
    inference(flip,[status(thm),theory(equality)],[382]),
    [iquote('flip(382)')] ).

cnf(386,plain,
    equal(commutator(A,multiply(B,multiply(A,multiply(A,multiply(B,multiply(B,multiply(A,commutator(A,B)))))))),identity),
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para,[status(thm),theory(equality)],[28,58]),37,3,35,3,35,212,158,40,5,31,5,3,35,301,301]),1]),
    [iquote('para(28,58),demod([37,3,35,3,35,212,158,40,5,31,5,3,35,301,301]),flip(1)')] ).

cnf(500,plain,
    equal(multiply(A,multiply(A,multiply(B,multiply(B,multiply(A,multiply(A,multiply(B,B))))))),multiply(B,A)),
    inference(para,[status(thm),theory(equality)],[65,16]),
    [iquote('para(65,16)')] ).

cnf(501,plain,
    equal(multiply(A,multiply(B,multiply(B,multiply(A,multiply(A,multiply(B,commutator(B,A))))))),commutator(A,B)),
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[383]),500,301]),1]),
    [iquote('back_demod(383),demod([500,301]),flip(1)')] ).

cnf(502,plain,
    equal(commutator(A,commutator(B,A)),identity),
    inference(demod,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[386]),501]),
    [iquote('back_demod(386),demod([501])')] ).

cnf(509,plain,
    equal(commutator(A,commutator(A,B)),identity),
    inference(para,[status(thm),theory(equality)],[254,502]),
    [iquote('para(254,502)')] ).

cnf(523,plain,
    equal(commutator(commutator(multiply(A,A),B),A),identity),
    inference(flip,[status(thm),theory(equality)],[inference(para,[status(thm),theory(equality)],[509,254]),1]),
    [iquote('para(509,254),flip(1)')] ).

cnf(524,plain,
    $false,
    inference(conflict,[status(thm)],[523,260]),
    [iquote('conflict(523,260)')] ).

%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.07/0.14  % Problem  : GRP002-3 : TPTP v8.1.0. Released v1.0.0.
% 0.07/0.14  % Command  : tptp2X_and_run_eqp %s
% 0.14/0.36  % Computer : n025.cluster.edu
% 0.14/0.36  % Model    : x86_64 x86_64
% 0.14/0.36  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.14/0.36  % Memory   : 8042.1875MB
% 0.14/0.36  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.14/0.36  % CPULimit : 300
% 0.14/0.36  % WCLimit  : 600
% 0.14/0.36  % DateTime : Tue Jun 14 01:01:24 EDT 2022
% 0.14/0.36  % CPUTime  : 
% 0.88/1.36  ----- EQP 0.9e, May 2009 -----
% 0.88/1.36  The job began on n025.cluster.edu, Tue Jun 14 01:01:25 2022
% 0.88/1.36  The command was "./eqp09e".
% 0.88/1.36  
% 0.88/1.36  set(prolog_style_variables).
% 0.88/1.36  set(lrpo).
% 0.88/1.36  set(basic_paramod).
% 0.88/1.36  set(functional_subsume).
% 0.88/1.36  set(ordered_paramod).
% 0.88/1.36  set(prime_paramod).
% 0.88/1.36  set(para_pairs).
% 0.88/1.36  assign(pick_given_ratio,4).
% 0.88/1.36  clear(print_kept).
% 0.88/1.36  clear(print_new_demod).
% 0.88/1.36  clear(print_back_demod).
% 0.88/1.36  clear(print_given).
% 0.88/1.36  assign(max_mem,64000).
% 0.88/1.36  end_of_commands.
% 0.88/1.36  
% 0.88/1.36  Usable:
% 0.88/1.36  end_of_list.
% 0.88/1.36  
% 0.88/1.36  Sos:
% 0.88/1.36  0 (wt=-1) [] multiply(identity,A) = A.
% 0.88/1.36  0 (wt=-1) [] multiply(inverse(A),A) = identity.
% 0.88/1.36  0 (wt=-1) [] multiply(multiply(A,B),C) = multiply(A,multiply(B,C)).
% 0.88/1.36  0 (wt=-1) [] commutator(A,B) = multiply(A,multiply(B,multiply(inverse(A),inverse(B)))).
% 0.88/1.36  0 (wt=-1) [] multiply(A,multiply(A,A)) = identity.
% 0.88/1.36  0 (wt=-1) [] -(commutator(commutator(a,b),b) = identity).
% 0.88/1.36  end_of_list.
% 0.88/1.36  
% 0.88/1.36  Demodulators:
% 0.88/1.36  end_of_list.
% 0.88/1.36  
% 0.88/1.36  Passive:
% 0.88/1.36  end_of_list.
% 0.88/1.36  
% 0.88/1.36  Starting to process input.
% 0.88/1.36  
% 0.88/1.36  ** KEPT: 1 (wt=5) [] multiply(identity,A) = A.
% 0.88/1.36  1 is a new demodulator.
% 0.88/1.36  
% 0.88/1.36  ** KEPT: 2 (wt=6) [] multiply(inverse(A),A) = identity.
% 0.88/1.36  2 is a new demodulator.
% 0.88/1.36  
% 0.88/1.36  ** KEPT: 3 (wt=11) [] multiply(multiply(A,B),C) = multiply(A,multiply(B,C)).
% 0.88/1.36  3 is a new demodulator.
% 0.88/1.36  
% 0.88/1.36  ** KEPT: 4 (wt=13) [flip(1)] multiply(A,multiply(B,multiply(inverse(A),inverse(B)))) = commutator(A,B).
% 0.88/1.36  4 is a new demodulator.
% 0.88/1.36  
% 0.88/1.36  ** KEPT: 5 (wt=7) [] multiply(A,multiply(A,A)) = identity.
% 0.88/1.36  5 is a new demodulator.
% 0.88/1.36  
% 0.88/1.36  ** KEPT: 6 (wt=7) [] -(commutator(commutator(a,b),b) = identity).
% 0.88/1.36  ---------------- PROOF FOUND ----------------
% 0.88/1.36  % SZS status Unsatisfiable
% 0.88/1.36  
% 0.88/1.36  
% 0.88/1.36  After processing input:
% 0.88/1.36  
% 0.88/1.36  Usable:
% 0.88/1.36  end_of_list.
% 0.88/1.36  
% 0.88/1.36  Sos:
% 0.88/1.36  1 (wt=5) [] multiply(identity,A) = A.
% 0.88/1.36  2 (wt=6) [] multiply(inverse(A),A) = identity.
% 0.88/1.36  5 (wt=7) [] multiply(A,multiply(A,A)) = identity.
% 0.88/1.36  6 (wt=7) [] -(commutator(commutator(a,b),b) = identity).
% 0.88/1.36  3 (wt=11) [] multiply(multiply(A,B),C) = multiply(A,multiply(B,C)).
% 0.88/1.36  4 (wt=13) [flip(1)] multiply(A,multiply(B,multiply(inverse(A),inverse(B)))) = commutator(A,B).
% 0.88/1.36  end_of_list.
% 0.88/1.36  
% 0.88/1.36  Demodulators:
% 0.88/1.36  1 (wt=5) [] multiply(identity,A) = A.
% 0.88/1.36  2 (wt=6) [] multiply(inverse(A),A) = identity.
% 0.88/1.36  3 (wt=11) [] multiply(multiply(A,B),C) = multiply(A,multiply(B,C)).
% 0.88/1.36  4 (wt=13) [flip(1)] multiply(A,multiply(B,multiply(inverse(A),inverse(B)))) = commutator(A,B).
% 0.88/1.36  5 (wt=7) [] multiply(A,multiply(A,A)) = identity.
% 0.88/1.36  end_of_list.
% 0.88/1.36  
% 0.88/1.36  Passive:
% 0.88/1.36  end_of_list.
% 0.88/1.36  
% 0.88/1.36  UNIT CONFLICT from 523 and 260 at   0.09 seconds.
% 0.88/1.36  
% 0.88/1.36  ---------------- PROOF ----------------
% 0.88/1.36  % SZS output start Refutation
% See solution above
% 0.88/1.36  ------------ end of proof -------------
% 0.88/1.36  
% 0.88/1.36  
% 0.88/1.36  ------------- memory usage ------------
% 0.88/1.36  Memory dynamically allocated (tp_alloc): 1464.
% 0.88/1.36    type (bytes each)        gets      frees     in use      avail      bytes
% 0.88/1.36  sym_ent (  96)               57          0         57          0      5.3 K
% 0.88/1.36  term (  16)              141912     125211      16701        126    326.6 K
% 0.88/1.36  gen_ptr (   8)           114040      13464     100576         66    786.3 K
% 0.88/1.36  context ( 808)            58385      58383          2         11     10.3 K
% 0.88/1.36  trail (  12)             412654     412654          0          6      0.1 K
% 0.88/1.36  bt_node (  68)            28877      28874          3         20      1.5 K
% 0.88/1.36  ac_position (285432)          0          0          0          0      0.0 K
% 0.88/1.36  ac_match_pos (14044)          0          0          0          0      0.0 K
% 0.88/1.36  ac_match_free_vars_pos (4020)
% 0.88/1.36                                0          0          0          0      0.0 K
% 0.88/1.36  discrim (  12)            13358       1036      12322          0    144.4 K
% 0.88/1.36  flat (  40)              270945     270945          0        113      4.4 K
% 0.88/1.36  discrim_pos (  12)         8406       8406          0          1      0.0 K
% 0.88/1.36  fpa_head (  12)            1218          0       1218          0     14.3 K
% 0.88/1.36  fpa_tree (  28)             601        601          0         25      0.7 K
% 0.88/1.36  fpa_pos (  36)              814        814          0          1      0.0 K
% 0.88/1.36  literal (  12)             2608       2085        523          1      6.1 K
% 0.88/1.36  clause (  24)              2608       2085        523          1     12.3 K
% 0.88/1.36  list (  12)                 350        294         56          4      0.7 K
% 0.88/1.36  list_pos (  20)            2045        411       1634          0     31.9 K
% 0.88/1.36  pair_index (   40)              2          0          2          0      0.1 K
% 0.88/1.36  
% 0.88/1.36  -------------- statistics -------------
% 0.88/1.36  Clauses input                  6
% 0.88/1.36    Usable input                   0
% 0.88/1.36    Sos input                      6
% 0.88/1.36    Demodulators input             0
% 0.88/1.36    Passive input                  0
% 0.88/1.36  
% 0.88/1.36  Processed BS (before search)   6
% 0.88/1.36  Forward subsumed BS            0
% 0.88/1.36  Kept BS                        6
% 0.88/1.36  New demodulators BS            5
% 0.88/1.36  Back demodulated BS            0
% 0.88/1.36  
% 0.88/1.36  Clauses or pairs given      2332
% 0.88/1.36  Clauses generated           1770
% 0.88/1.36  Forward subsumed            1253
% 0.88/1.36  Deleted by weight              0
% 0.88/1.36  Deleted by variable count      0
% 0.88/1.36  Kept                         517
% 0.88/1.36  New demodulators             286
% 0.88/1.36  Back demodulated              86
% 0.88/1.36  Ordered paramod prunes         0
% 0.88/1.36  Basic paramod prunes        3633
% 0.88/1.36  Prime paramod prunes         551
% 0.88/1.36  Semantic prunes                0
% 0.88/1.36  
% 0.88/1.36  Rewrite attmepts           32991
% 0.88/1.36  Rewrites                    7602
% 0.88/1.36  
% 0.88/1.36  FPA overloads                  0
% 0.88/1.36  FPA underloads                 0
% 0.88/1.36  
% 0.88/1.36  Usable size                    0
% 0.88/1.36  Sos size                     436
% 0.88/1.36  Demodulators size            240
% 0.88/1.36  Passive size                   0
% 0.88/1.36  Disabled size                 86
% 0.88/1.36  
% 0.88/1.36  Proofs found                   1
% 0.88/1.36  
% 0.88/1.36  ----------- times (seconds) ----------- Tue Jun 14 01:01:25 2022
% 0.88/1.36  
% 0.88/1.36  user CPU time             0.09   (0 hr, 0 min, 0 sec)
% 0.88/1.36  system CPU time           0.05   (0 hr, 0 min, 0 sec)
% 0.88/1.36  wall-clock time           0      (0 hr, 0 min, 0 sec)
% 0.88/1.36  input time                0.00
% 0.88/1.36  paramodulation time       0.02
% 0.88/1.36  demodulation time         0.01
% 0.88/1.36  orient time               0.01
% 0.88/1.36  weigh time                0.00
% 0.88/1.36  forward subsume time      0.00
% 0.88/1.36  back demod find time      0.03
% 0.88/1.36  conflict time             0.00
% 0.88/1.36  LRPO time                 0.00
% 0.88/1.36  store clause time         0.01
% 0.88/1.36  disable clause time       0.00
% 0.88/1.36  prime paramod time        0.00
% 0.88/1.36  semantics time            0.00
% 0.88/1.36  
% 0.88/1.36  EQP interrupted
%------------------------------------------------------------------------------