TSTP Solution File: CSR117+1 by Enigma---0.5.1

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Enigma---0.5.1
% Problem  : CSR117+1 : TPTP v8.1.0. Released v4.1.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : enigmatic-eprover.py %s %d 1

% Computer : n019.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 600s
% DateTime : Fri Jul 15 02:49:38 EDT 2022

% Result   : Theorem 7.45s 2.47s
% Output   : CNFRefutation 7.45s
% Verified : 
% SZS Type : Refutation
%            Derivation depth      :   13
%            Number of leaves      :   30
% Syntax   : Number of clauses     :   79 (  45 unt;   0 nHn;  79 RR)
%            Number of literals    :  235 (  12 equ; 167 neg)
%            Maximal clause size   :   18 (   2 avg)
%            Maximal term depth    :    2 (   1 avg)
%            Number of predicates  :   20 (  18 usr;   1 prp; 0-5 aty)
%            Number of functors    :   20 (  20 usr;  18 con; 0-1 aty)
%            Number of variables   :  116 (  11 sgn)

% Comments : 
%------------------------------------------------------------------------------
cnf(i_0_16,plain,
    ( s__Region(X1)
    | ~ s__GeographicArea(X1) ),
    file('/export/starexec/sandbox2/tmp/enigma-theBenchmark.p-qdnosuxl/lgb.p',i_0_16) ).

cnf(i_0_17,plain,
    ( s__GeographicArea(X1)
    | ~ s__GeopoliticalArea(X1) ),
    file('/export/starexec/sandbox2/tmp/enigma-theBenchmark.p-qdnosuxl/lgb.p',i_0_17) ).

cnf(i_0_28,plain,
    ( s__Sea(esk15_1(X1))
    | ~ s__City(X1)
    | ~ is_instance(X1,s__CoastalCitiesClass) ),
    file('/export/starexec/sandbox2/tmp/enigma-theBenchmark.p-qdnosuxl/lgb.p',i_0_28) ).

cnf(i_0_35,plain,
    is_instance(s__Copenhagen,s__CoastalCitiesClass),
    file('/export/starexec/sandbox2/tmp/enigma-theBenchmark.p-qdnosuxl/lgb.p',i_0_35) ).

cnf(i_0_102,plain,
    s__City(s__Copenhagen),
    file('/export/starexec/sandbox2/tmp/enigma-theBenchmark.p-qdnosuxl/lgb.p',i_0_102) ).

cnf(i_0_15,plain,
    ( s__Object(X1)
    | ~ s__Region(X1) ),
    file('/export/starexec/sandbox2/tmp/enigma-theBenchmark.p-qdnosuxl/lgb.p',i_0_15) ).

cnf(i_0_22,plain,
    ( s__BodyOfWater(X1)
    | ~ s__Sea(X1) ),
    file('/export/starexec/sandbox2/tmp/enigma-theBenchmark.p-qdnosuxl/lgb.p',i_0_22) ).

cnf(i_0_30,negated_conjecture,
    ( to_int(X1) != to_int(X2)
    | ~ s__Object(X3)
    | ~ s__Object(X4)
    | ~ s__SymbolicString(X5)
    | ~ s__SymbolicString(X6)
    | ~ s__SymbolicString(X7)
    | ~ s__SymbolicString(X8)
    | ~ real(X9)
    | ~ real(X2)
    | ~ real(X10)
    | ~ real(X1)
    | ~ int(X11)
    | ~ capital_city(X4,X3)
    | ~ is_instance(X3,s__OECDMemberEconomiesClass)
    | ~ look_different(X4,s__Moscow)
    | ~ s__capability(s__Flooding__t,s__located__m,X4)
    | ~ latlong(X4,X1,X10,X8,X7)
    | ~ latlong(s__Moscow,X2,X9,X6,X5) ),
    file('/export/starexec/sandbox2/tmp/enigma-theBenchmark.p-qdnosuxl/lgb.p',i_0_30) ).

cnf(i_0_206,plain,
    look_different(s__Copenhagen,s__Moscow),
    file('/export/starexec/sandbox2/tmp/enigma-theBenchmark.p-qdnosuxl/lgb.p',i_0_206) ).

cnf(i_0_19,plain,
    ( s__GeopoliticalArea(X1)
    | ~ s__City(X1) ),
    file('/export/starexec/sandbox2/tmp/enigma-theBenchmark.p-qdnosuxl/lgb.p',i_0_19) ).

cnf(i_0_27,plain,
    ( s__orientation(X1,esk15_1(X1),s__Near)
    | ~ s__City(X1)
    | ~ is_instance(X1,s__CoastalCitiesClass) ),
    file('/export/starexec/sandbox2/tmp/enigma-theBenchmark.p-qdnosuxl/lgb.p',i_0_27) ).

cnf(i_0_21,plain,
    ( s__WaterArea(X1)
    | ~ s__BodyOfWater(X1) ),
    file('/export/starexec/sandbox2/tmp/enigma-theBenchmark.p-qdnosuxl/lgb.p',i_0_21) ).

cnf(i_0_29,plain,
    ( s__capability(s__Flooding__t,s__located__m,X1)
    | ~ s__City(X1)
    | ~ s__WaterArea(X2)
    | ~ s__orientation(X1,X2,s__Near) ),
    file('/export/starexec/sandbox2/tmp/enigma-theBenchmark.p-qdnosuxl/lgb.p',i_0_29) ).

cnf(i_0_41,plain,
    is_instance(s__Denmark,s__OECDMemberEconomiesClass),
    file('/export/starexec/sandbox2/tmp/enigma-theBenchmark.p-qdnosuxl/lgb.p',i_0_41) ).

cnf(i_0_103,plain,
    capital_city(s__Copenhagen,s__Denmark),
    file('/export/starexec/sandbox2/tmp/enigma-theBenchmark.p-qdnosuxl/lgb.p',i_0_103) ).

cnf(i_0_18,plain,
    ( s__GeopoliticalArea(X1)
    | ~ s__Nation(X1) ),
    file('/export/starexec/sandbox2/tmp/enigma-theBenchmark.p-qdnosuxl/lgb.p',i_0_18) ).

cnf(i_0_40,plain,
    s__Nation(s__Denmark),
    file('/export/starexec/sandbox2/tmp/enigma-theBenchmark.p-qdnosuxl/lgb.p',i_0_40) ).

cnf(i_0_238,plain,
    to_int('55.75695') = '55',
    file('/export/starexec/sandbox2/tmp/enigma-theBenchmark.p-qdnosuxl/lgb.p',i_0_238) ).

cnf(i_0_170,plain,
    real('55.75695'),
    file('/export/starexec/sandbox2/tmp/enigma-theBenchmark.p-qdnosuxl/lgb.p',i_0_170) ).

cnf(i_0_237,plain,
    to_int('55.67631') = '55',
    file('/export/starexec/sandbox2/tmp/enigma-theBenchmark.p-qdnosuxl/lgb.p',i_0_237) ).

cnf(i_0_150,plain,
    real('55.67631'),
    file('/export/starexec/sandbox2/tmp/enigma-theBenchmark.p-qdnosuxl/lgb.p',i_0_150) ).

cnf(i_0_174,plain,
    latlong(s__Moscow,'55.75695','37.614975',moscow,ru),
    file('/export/starexec/sandbox2/tmp/enigma-theBenchmark.p-qdnosuxl/lgb.p',i_0_174) ).

cnf(i_0_171,plain,
    real('37.614975'),
    file('/export/starexec/sandbox2/tmp/enigma-theBenchmark.p-qdnosuxl/lgb.p',i_0_171) ).

cnf(i_0_172,plain,
    s__SymbolicString(moscow),
    file('/export/starexec/sandbox2/tmp/enigma-theBenchmark.p-qdnosuxl/lgb.p',i_0_172) ).

cnf(i_0_173,plain,
    s__SymbolicString(ru),
    file('/export/starexec/sandbox2/tmp/enigma-theBenchmark.p-qdnosuxl/lgb.p',i_0_173) ).

cnf(i_0_154,plain,
    latlong(s__Copenhagen,'55.67631','12.569355',copenhagen,dk),
    file('/export/starexec/sandbox2/tmp/enigma-theBenchmark.p-qdnosuxl/lgb.p',i_0_154) ).

cnf(i_0_151,plain,
    real('12.569355'),
    file('/export/starexec/sandbox2/tmp/enigma-theBenchmark.p-qdnosuxl/lgb.p',i_0_151) ).

cnf(i_0_152,plain,
    s__SymbolicString(copenhagen),
    file('/export/starexec/sandbox2/tmp/enigma-theBenchmark.p-qdnosuxl/lgb.p',i_0_152) ).

cnf(i_0_153,plain,
    s__SymbolicString(dk),
    file('/export/starexec/sandbox2/tmp/enigma-theBenchmark.p-qdnosuxl/lgb.p',i_0_153) ).

cnf(i_0_239,plain,
    int('60'),
    file('/export/starexec/sandbox2/tmp/enigma-theBenchmark.p-qdnosuxl/lgb.p',i_0_239) ).

cnf(c_0_270,plain,
    ( s__Region(X1)
    | ~ s__GeographicArea(X1) ),
    i_0_16 ).

cnf(c_0_271,plain,
    ( s__GeographicArea(X1)
    | ~ s__GeopoliticalArea(X1) ),
    i_0_17 ).

cnf(c_0_272,plain,
    ( s__Sea(esk15_1(X1))
    | ~ s__City(X1)
    | ~ is_instance(X1,s__CoastalCitiesClass) ),
    i_0_28 ).

cnf(c_0_273,plain,
    is_instance(s__Copenhagen,s__CoastalCitiesClass),
    i_0_35 ).

cnf(c_0_274,plain,
    s__City(s__Copenhagen),
    i_0_102 ).

cnf(c_0_275,plain,
    ( s__Object(X1)
    | ~ s__Region(X1) ),
    i_0_15 ).

cnf(c_0_276,plain,
    ( s__Region(X1)
    | ~ s__GeopoliticalArea(X1) ),
    inference(spm,[status(thm)],[c_0_270,c_0_271]) ).

cnf(c_0_277,plain,
    ( s__BodyOfWater(X1)
    | ~ s__Sea(X1) ),
    i_0_22 ).

cnf(c_0_278,plain,
    s__Sea(esk15_1(s__Copenhagen)),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_272,c_0_273]),c_0_274])]) ).

cnf(c_0_279,negated_conjecture,
    ( to_int(X1) != to_int(X2)
    | ~ s__Object(X3)
    | ~ s__Object(X4)
    | ~ s__SymbolicString(X5)
    | ~ s__SymbolicString(X6)
    | ~ s__SymbolicString(X7)
    | ~ s__SymbolicString(X8)
    | ~ real(X9)
    | ~ real(X2)
    | ~ real(X10)
    | ~ real(X1)
    | ~ int(X11)
    | ~ capital_city(X4,X3)
    | ~ is_instance(X3,s__OECDMemberEconomiesClass)
    | ~ look_different(X4,s__Moscow)
    | ~ s__capability(s__Flooding__t,s__located__m,X4)
    | ~ latlong(X4,X1,X10,X8,X7)
    | ~ latlong(s__Moscow,X2,X9,X6,X5) ),
    i_0_30 ).

cnf(c_0_280,plain,
    look_different(s__Copenhagen,s__Moscow),
    i_0_206 ).

cnf(c_0_281,plain,
    ( s__Object(X1)
    | ~ s__GeopoliticalArea(X1) ),
    inference(spm,[status(thm)],[c_0_275,c_0_276]) ).

cnf(c_0_282,plain,
    ( s__GeopoliticalArea(X1)
    | ~ s__City(X1) ),
    i_0_19 ).

cnf(c_0_283,plain,
    ( s__orientation(X1,esk15_1(X1),s__Near)
    | ~ s__City(X1)
    | ~ is_instance(X1,s__CoastalCitiesClass) ),
    i_0_27 ).

cnf(c_0_284,plain,
    ( s__WaterArea(X1)
    | ~ s__BodyOfWater(X1) ),
    i_0_21 ).

cnf(c_0_285,plain,
    s__BodyOfWater(esk15_1(s__Copenhagen)),
    inference(spm,[status(thm)],[c_0_277,c_0_278]) ).

cnf(c_0_286,negated_conjecture,
    ( to_int(X1) != to_int(X2)
    | ~ latlong(s__Moscow,X2,X3,X4,X5)
    | ~ latlong(s__Copenhagen,X1,X6,X7,X8)
    | ~ s__capability(s__Flooding__t,s__located__m,s__Copenhagen)
    | ~ is_instance(X9,s__OECDMemberEconomiesClass)
    | ~ capital_city(s__Copenhagen,X9)
    | ~ int(X10)
    | ~ real(X6)
    | ~ real(X3)
    | ~ real(X2)
    | ~ real(X1)
    | ~ s__SymbolicString(X7)
    | ~ s__SymbolicString(X8)
    | ~ s__SymbolicString(X4)
    | ~ s__SymbolicString(X5)
    | ~ s__Object(s__Copenhagen)
    | ~ s__Object(X9) ),
    inference(spm,[status(thm)],[c_0_279,c_0_280]) ).

cnf(c_0_287,plain,
    ( s__Object(X1)
    | ~ s__City(X1) ),
    inference(spm,[status(thm)],[c_0_281,c_0_282]) ).

cnf(c_0_288,plain,
    ( s__capability(s__Flooding__t,s__located__m,X1)
    | ~ s__City(X1)
    | ~ s__WaterArea(X2)
    | ~ s__orientation(X1,X2,s__Near) ),
    i_0_29 ).

cnf(c_0_289,plain,
    s__orientation(s__Copenhagen,esk15_1(s__Copenhagen),s__Near),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_283,c_0_273]),c_0_274])]) ).

cnf(c_0_290,plain,
    s__WaterArea(esk15_1(s__Copenhagen)),
    inference(spm,[status(thm)],[c_0_284,c_0_285]) ).

cnf(c_0_291,negated_conjecture,
    ( to_int(X1) != to_int(X2)
    | ~ latlong(s__Moscow,X2,X3,X4,X5)
    | ~ latlong(s__Copenhagen,X1,X6,X7,X8)
    | ~ s__capability(s__Flooding__t,s__located__m,s__Copenhagen)
    | ~ is_instance(X9,s__OECDMemberEconomiesClass)
    | ~ capital_city(s__Copenhagen,X9)
    | ~ int(X10)
    | ~ real(X6)
    | ~ real(X3)
    | ~ real(X2)
    | ~ real(X1)
    | ~ s__SymbolicString(X7)
    | ~ s__SymbolicString(X8)
    | ~ s__SymbolicString(X4)
    | ~ s__SymbolicString(X5)
    | ~ s__Object(X9) ),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_286,c_0_287]),c_0_274])]) ).

cnf(c_0_292,plain,
    s__capability(s__Flooding__t,s__located__m,s__Copenhagen),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_288,c_0_289]),c_0_290]),c_0_274])]) ).

cnf(c_0_293,negated_conjecture,
    ( to_int(X1) != to_int(X2)
    | ~ latlong(s__Moscow,X2,X3,X4,X5)
    | ~ latlong(s__Copenhagen,X1,X6,X7,X8)
    | ~ is_instance(X9,s__OECDMemberEconomiesClass)
    | ~ capital_city(s__Copenhagen,X9)
    | ~ int(X10)
    | ~ real(X6)
    | ~ real(X3)
    | ~ real(X2)
    | ~ real(X1)
    | ~ s__SymbolicString(X7)
    | ~ s__SymbolicString(X8)
    | ~ s__SymbolicString(X4)
    | ~ s__SymbolicString(X5)
    | ~ s__Object(X9) ),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_291,c_0_292])]) ).

cnf(c_0_294,plain,
    is_instance(s__Denmark,s__OECDMemberEconomiesClass),
    i_0_41 ).

cnf(c_0_295,plain,
    capital_city(s__Copenhagen,s__Denmark),
    i_0_103 ).

cnf(c_0_296,plain,
    ( s__GeopoliticalArea(X1)
    | ~ s__Nation(X1) ),
    i_0_18 ).

cnf(c_0_297,plain,
    ( to_int(X1) != to_int(X2)
    | ~ latlong(s__Moscow,X2,X3,X4,X5)
    | ~ latlong(s__Copenhagen,X1,X6,X7,X8)
    | ~ int(X9)
    | ~ real(X6)
    | ~ real(X3)
    | ~ real(X2)
    | ~ real(X1)
    | ~ s__SymbolicString(X7)
    | ~ s__SymbolicString(X8)
    | ~ s__SymbolicString(X4)
    | ~ s__SymbolicString(X5)
    | ~ s__Object(s__Denmark) ),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_293,c_0_294]),c_0_295])]) ).

cnf(c_0_298,plain,
    ( s__Object(X1)
    | ~ s__Nation(X1) ),
    inference(spm,[status(thm)],[c_0_281,c_0_296]) ).

cnf(c_0_299,plain,
    s__Nation(s__Denmark),
    i_0_40 ).

cnf(c_0_300,plain,
    ( to_int(X1) != to_int(X2)
    | ~ latlong(s__Moscow,X2,X3,X4,X5)
    | ~ latlong(s__Copenhagen,X1,X6,X7,X8)
    | ~ int(X9)
    | ~ real(X6)
    | ~ real(X3)
    | ~ real(X2)
    | ~ real(X1)
    | ~ s__SymbolicString(X7)
    | ~ s__SymbolicString(X8)
    | ~ s__SymbolicString(X4)
    | ~ s__SymbolicString(X5) ),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_297,c_0_298]),c_0_299])]) ).

cnf(c_0_301,plain,
    to_int('55.75695') = '55',
    i_0_238 ).

cnf(c_0_302,plain,
    real('55.75695'),
    i_0_170 ).

cnf(c_0_303,plain,
    ( to_int(X1) != '55'
    | ~ latlong(s__Moscow,'55.75695',X2,X3,X4)
    | ~ latlong(s__Copenhagen,X1,X5,X6,X7)
    | ~ int(X8)
    | ~ real(X5)
    | ~ real(X2)
    | ~ real(X1)
    | ~ s__SymbolicString(X6)
    | ~ s__SymbolicString(X7)
    | ~ s__SymbolicString(X3)
    | ~ s__SymbolicString(X4) ),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_300,c_0_301]),c_0_302])]) ).

cnf(c_0_304,plain,
    to_int('55.67631') = '55',
    i_0_237 ).

cnf(c_0_305,plain,
    real('55.67631'),
    i_0_150 ).

cnf(c_0_306,plain,
    ( ~ latlong(s__Moscow,'55.75695',X1,X2,X3)
    | ~ latlong(s__Copenhagen,'55.67631',X4,X5,X6)
    | ~ int(X7)
    | ~ real(X4)
    | ~ real(X1)
    | ~ s__SymbolicString(X5)
    | ~ s__SymbolicString(X6)
    | ~ s__SymbolicString(X2)
    | ~ s__SymbolicString(X3) ),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_303,c_0_304]),c_0_305])]) ).

cnf(c_0_307,plain,
    latlong(s__Moscow,'55.75695','37.614975',moscow,ru),
    i_0_174 ).

cnf(c_0_308,plain,
    real('37.614975'),
    i_0_171 ).

cnf(c_0_309,plain,
    s__SymbolicString(moscow),
    i_0_172 ).

cnf(c_0_310,plain,
    s__SymbolicString(ru),
    i_0_173 ).

cnf(c_0_311,plain,
    ( ~ latlong(s__Copenhagen,'55.67631',X1,X2,X3)
    | ~ int(X4)
    | ~ real(X1)
    | ~ s__SymbolicString(X2)
    | ~ s__SymbolicString(X3) ),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_306,c_0_307]),c_0_308]),c_0_309]),c_0_310])]) ).

cnf(c_0_312,plain,
    latlong(s__Copenhagen,'55.67631','12.569355',copenhagen,dk),
    i_0_154 ).

cnf(c_0_313,plain,
    real('12.569355'),
    i_0_151 ).

cnf(c_0_314,plain,
    s__SymbolicString(copenhagen),
    i_0_152 ).

cnf(c_0_315,plain,
    s__SymbolicString(dk),
    i_0_153 ).

cnf(c_0_316,plain,
    int('60'),
    i_0_239 ).

cnf(c_0_317,plain,
    ~ int(X1),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_311,c_0_312]),c_0_313]),c_0_314]),c_0_315])]) ).

cnf(c_0_318,plain,
    $false,
    inference(sr,[status(thm)],[c_0_316,c_0_317]),
    [proof] ).

%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.07/0.12  % Problem  : CSR117+1 : TPTP v8.1.0. Released v4.1.0.
% 0.07/0.13  % Command  : enigmatic-eprover.py %s %d 1
% 0.13/0.34  % Computer : n019.cluster.edu
% 0.13/0.34  % Model    : x86_64 x86_64
% 0.13/0.34  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.13/0.34  % Memory   : 8042.1875MB
% 0.13/0.34  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.13/0.34  % CPULimit : 300
% 0.13/0.34  % WCLimit  : 600
% 0.13/0.34  % DateTime : Sat Jun 11 18:16:41 EDT 2022
% 0.13/0.35  % CPUTime  : 
% 0.19/0.46  # ENIGMATIC: Selected complete mode:
% 7.45/2.47  # ENIGMATIC: Solved by autoschedule-lgb:
% 7.45/2.47  # No SInE strategy applied
% 7.45/2.47  # Trying AutoSched0 for 150 seconds
% 7.45/2.47  # AutoSched0-Mode selected heuristic H_____011_C18_F1_PI_SE_SP_S2S
% 7.45/2.47  # and selection function SelectNewComplexAHP.
% 7.45/2.47  #
% 7.45/2.47  # Preprocessing time       : 0.016 s
% 7.45/2.47  
% 7.45/2.47  # Proof found!
% 7.45/2.47  # SZS status Theorem
% 7.45/2.47  # SZS output start CNFRefutation
% See solution above
% 7.45/2.47  # Training examples: 0 positive, 0 negative
% 7.45/2.47  
% 7.45/2.47  # -------------------------------------------------
% 7.45/2.47  # User time                : 0.029 s
% 7.45/2.47  # System time              : 0.008 s
% 7.45/2.47  # Total time               : 0.037 s
% 7.45/2.47  # Maximum resident set size: 7124 pages
% 7.45/2.47  
%------------------------------------------------------------------------------