TSTP Solution File: CSR059+2 by Twee---2.4.2

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Twee---2.4.2
% Problem  : CSR059+2 : TPTP v8.1.2. Released v3.4.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : parallel-twee %s --tstp --conditional-encoding if --smaller --drop-non-horn --give-up-on-saturation --explain-encoding --formal-proof

% Computer : n011.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Wed Aug 30 21:41:32 EDT 2023

% Result   : Theorem 32.38s 4.55s
% Output   : Proof 32.38s
% Verified : 
% SZS Type : -

% Comments : 
%------------------------------------------------------------------------------
%----WARNING: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.07/0.12  % Problem  : CSR059+2 : TPTP v8.1.2. Released v3.4.0.
% 0.07/0.13  % Command  : parallel-twee %s --tstp --conditional-encoding if --smaller --drop-non-horn --give-up-on-saturation --explain-encoding --formal-proof
% 0.12/0.34  % Computer : n011.cluster.edu
% 0.12/0.34  % Model    : x86_64 x86_64
% 0.12/0.34  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.12/0.34  % Memory   : 8042.1875MB
% 0.12/0.34  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.12/0.34  % CPULimit : 300
% 0.12/0.34  % WCLimit  : 300
% 0.12/0.34  % DateTime : Mon Aug 28 14:22:55 EDT 2023
% 0.12/0.34  % CPUTime  : 
% 32.38/4.55  Command-line arguments: --kbo-weight0 --lhs-weight 5 --flip-ordering --normalise-queue-percent 10 --cp-renormalise-threshold 10 --goal-heuristic
% 32.38/4.55  
% 32.38/4.55  % SZS status Theorem
% 32.38/4.55  
% 32.38/4.55  % SZS output start Proof
% 32.38/4.55  Take the following subset of the input axioms:
% 32.38/4.55    fof(ax1_104, axiom, mtvisible(c_tptpgeo_member5_mt) => borderson(c_georegion_l4_x56_y47, c_georegion_l4_x57_y47)).
% 32.38/4.55    fof(ax1_1123, axiom, ![SPECMT, GENLMT]: ((mtvisible(SPECMT) & genlmt(SPECMT, GENLMT)) => mtvisible(GENLMT))).
% 32.38/4.55    fof(ax1_407, axiom, genlmt(c_tptpgeo_spindlecollectormt, c_tptpgeo_member5_mt)).
% 32.38/4.55    fof(ax1_900, axiom, ![X, Y]: (borderson(X, Y) => borderson(Y, X))).
% 32.38/4.55    fof(query109, conjecture, mtvisible(c_tptpgeo_spindlecollectormt) => borderson(c_georegion_l4_x57_y47, c_georegion_l4_x56_y47)).
% 32.38/4.55  
% 32.38/4.55  Now clausify the problem and encode Horn clauses using encoding 3 of
% 32.38/4.55  http://www.cse.chalmers.se/~nicsma/papers/horn.pdf.
% 32.38/4.55  We repeatedly replace C & s=t => u=v by the two clauses:
% 32.38/4.55    fresh(y, y, x1...xn) = u
% 32.38/4.55    C => fresh(s, t, x1...xn) = v
% 32.38/4.55  where fresh is a fresh function symbol and x1..xn are the free
% 32.38/4.55  variables of u and v.
% 32.38/4.55  A predicate p(X) is encoded as p(X)=true (this is sound, because the
% 32.38/4.55  input problem has no model of domain size 1).
% 32.38/4.55  
% 32.38/4.55  The encoding turns the above axioms into the following unit equations and goals:
% 32.38/4.55  
% 32.38/4.55  Axiom 1 (ax1_407): genlmt(c_tptpgeo_spindlecollectormt, c_tptpgeo_member5_mt) = true2.
% 32.38/4.55  Axiom 2 (query109): mtvisible(c_tptpgeo_spindlecollectormt) = true2.
% 32.38/4.55  Axiom 3 (ax1_104): fresh778(X, X) = true2.
% 32.38/4.55  Axiom 4 (ax1_104): fresh778(mtvisible(c_tptpgeo_member5_mt), true2) = borderson(c_georegion_l4_x56_y47, c_georegion_l4_x57_y47).
% 32.38/4.55  Axiom 5 (ax1_1123): fresh680(X, X, Y) = true2.
% 32.38/4.55  Axiom 6 (ax1_1123): fresh681(X, X, Y, Z) = mtvisible(Z).
% 32.38/4.55  Axiom 7 (ax1_900): fresh93(X, X, Y, Z) = true2.
% 32.38/4.55  Axiom 8 (ax1_1123): fresh681(mtvisible(X), true2, X, Y) = fresh680(genlmt(X, Y), true2, Y).
% 32.38/4.55  Axiom 9 (ax1_900): fresh93(borderson(X, Y), true2, X, Y) = borderson(Y, X).
% 32.38/4.55  
% 32.38/4.55  Goal 1 (query109_1): borderson(c_georegion_l4_x57_y47, c_georegion_l4_x56_y47) = true2.
% 32.38/4.55  Proof:
% 32.38/4.55    borderson(c_georegion_l4_x57_y47, c_georegion_l4_x56_y47)
% 32.38/4.55  = { by axiom 9 (ax1_900) R->L }
% 32.38/4.55    fresh93(borderson(c_georegion_l4_x56_y47, c_georegion_l4_x57_y47), true2, c_georegion_l4_x56_y47, c_georegion_l4_x57_y47)
% 32.38/4.55  = { by axiom 4 (ax1_104) R->L }
% 32.38/4.55    fresh93(fresh778(mtvisible(c_tptpgeo_member5_mt), true2), true2, c_georegion_l4_x56_y47, c_georegion_l4_x57_y47)
% 32.38/4.55  = { by axiom 6 (ax1_1123) R->L }
% 32.38/4.55    fresh93(fresh778(fresh681(true2, true2, c_tptpgeo_spindlecollectormt, c_tptpgeo_member5_mt), true2), true2, c_georegion_l4_x56_y47, c_georegion_l4_x57_y47)
% 32.38/4.55  = { by axiom 2 (query109) R->L }
% 32.38/4.55    fresh93(fresh778(fresh681(mtvisible(c_tptpgeo_spindlecollectormt), true2, c_tptpgeo_spindlecollectormt, c_tptpgeo_member5_mt), true2), true2, c_georegion_l4_x56_y47, c_georegion_l4_x57_y47)
% 32.38/4.55  = { by axiom 8 (ax1_1123) }
% 32.38/4.55    fresh93(fresh778(fresh680(genlmt(c_tptpgeo_spindlecollectormt, c_tptpgeo_member5_mt), true2, c_tptpgeo_member5_mt), true2), true2, c_georegion_l4_x56_y47, c_georegion_l4_x57_y47)
% 32.38/4.55  = { by axiom 1 (ax1_407) }
% 32.38/4.55    fresh93(fresh778(fresh680(true2, true2, c_tptpgeo_member5_mt), true2), true2, c_georegion_l4_x56_y47, c_georegion_l4_x57_y47)
% 32.38/4.55  = { by axiom 5 (ax1_1123) }
% 32.38/4.55    fresh93(fresh778(true2, true2), true2, c_georegion_l4_x56_y47, c_georegion_l4_x57_y47)
% 32.38/4.55  = { by axiom 3 (ax1_104) }
% 32.38/4.55    fresh93(true2, true2, c_georegion_l4_x56_y47, c_georegion_l4_x57_y47)
% 32.38/4.55  = { by axiom 7 (ax1_900) }
% 32.38/4.55    true2
% 32.38/4.55  % SZS output end Proof
% 32.38/4.55  
% 32.38/4.55  RESULT: Theorem (the conjecture is true).
%------------------------------------------------------------------------------