TSTP Solution File: CSR059+1 by Twee---2.4.2

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Twee---2.4.2
% Problem  : CSR059+1 : TPTP v8.1.2. Released v3.4.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : parallel-twee %s --tstp --conditional-encoding if --smaller --drop-non-horn --give-up-on-saturation --explain-encoding --formal-proof

% Computer : n018.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Wed Aug 30 21:41:32 EDT 2023

% Result   : Theorem 0.19s 0.43s
% Output   : Proof 0.19s
% Verified : 
% SZS Type : -

% Comments : 
%------------------------------------------------------------------------------
%----WARNING: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.00/0.12  % Problem  : CSR059+1 : TPTP v8.1.2. Released v3.4.0.
% 0.00/0.13  % Command  : parallel-twee %s --tstp --conditional-encoding if --smaller --drop-non-horn --give-up-on-saturation --explain-encoding --formal-proof
% 0.13/0.34  % Computer : n018.cluster.edu
% 0.13/0.34  % Model    : x86_64 x86_64
% 0.13/0.34  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.13/0.34  % Memory   : 8042.1875MB
% 0.13/0.34  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.13/0.34  % CPULimit : 300
% 0.13/0.34  % WCLimit  : 300
% 0.13/0.34  % DateTime : Mon Aug 28 08:10:32 EDT 2023
% 0.13/0.34  % CPUTime  : 
% 0.19/0.43  Command-line arguments: --kbo-weight0 --lhs-weight 5 --flip-ordering --normalise-queue-percent 10 --cp-renormalise-threshold 10 --goal-heuristic
% 0.19/0.43  
% 0.19/0.43  % SZS status Theorem
% 0.19/0.43  
% 0.19/0.43  % SZS output start Proof
% 0.19/0.43  Take the following subset of the input axioms:
% 0.19/0.43    fof(just1, axiom, genlmt(c_tptpgeo_spindlecollectormt, c_tptpgeo_member5_mt)).
% 0.19/0.43    fof(just2, axiom, mtvisible(c_tptpgeo_member5_mt) => borderson(c_georegion_l4_x56_y47, c_georegion_l4_x57_y47)).
% 0.19/0.43    fof(just29, axiom, ![X, Y]: (borderson(X, Y) => borderson(Y, X))).
% 0.19/0.43    fof(just31, axiom, ![SPECMT, GENLMT]: ((mtvisible(SPECMT) & genlmt(SPECMT, GENLMT)) => mtvisible(GENLMT))).
% 0.19/0.43    fof(query59, conjecture, mtvisible(c_tptpgeo_spindlecollectormt) => borderson(c_georegion_l4_x57_y47, c_georegion_l4_x56_y47)).
% 0.19/0.43  
% 0.19/0.43  Now clausify the problem and encode Horn clauses using encoding 3 of
% 0.19/0.43  http://www.cse.chalmers.se/~nicsma/papers/horn.pdf.
% 0.19/0.43  We repeatedly replace C & s=t => u=v by the two clauses:
% 0.19/0.43    fresh(y, y, x1...xn) = u
% 0.19/0.43    C => fresh(s, t, x1...xn) = v
% 0.19/0.43  where fresh is a fresh function symbol and x1..xn are the free
% 0.19/0.43  variables of u and v.
% 0.19/0.43  A predicate p(X) is encoded as p(X)=true (this is sound, because the
% 0.19/0.43  input problem has no model of domain size 1).
% 0.19/0.43  
% 0.19/0.43  The encoding turns the above axioms into the following unit equations and goals:
% 0.19/0.43  
% 0.19/0.43  Axiom 1 (just1): genlmt(c_tptpgeo_spindlecollectormt, c_tptpgeo_member5_mt) = true2.
% 0.19/0.43  Axiom 2 (query59): mtvisible(c_tptpgeo_spindlecollectormt) = true2.
% 0.19/0.43  Axiom 3 (just2): fresh30(X, X) = true2.
% 0.19/0.43  Axiom 4 (just2): fresh30(mtvisible(c_tptpgeo_member5_mt), true2) = borderson(c_georegion_l4_x56_y47, c_georegion_l4_x57_y47).
% 0.19/0.43  Axiom 5 (just31): fresh17(X, X, Y) = true2.
% 0.19/0.43  Axiom 6 (just29): fresh19(X, X, Y, Z) = true2.
% 0.19/0.43  Axiom 7 (just31): fresh18(X, X, Y, Z) = mtvisible(Z).
% 0.19/0.43  Axiom 8 (just29): fresh19(borderson(X, Y), true2, X, Y) = borderson(Y, X).
% 0.19/0.43  Axiom 9 (just31): fresh18(mtvisible(X), true2, X, Y) = fresh17(genlmt(X, Y), true2, Y).
% 0.19/0.43  
% 0.19/0.43  Goal 1 (query59_1): borderson(c_georegion_l4_x57_y47, c_georegion_l4_x56_y47) = true2.
% 0.19/0.43  Proof:
% 0.19/0.43    borderson(c_georegion_l4_x57_y47, c_georegion_l4_x56_y47)
% 0.19/0.43  = { by axiom 8 (just29) R->L }
% 0.19/0.43    fresh19(borderson(c_georegion_l4_x56_y47, c_georegion_l4_x57_y47), true2, c_georegion_l4_x56_y47, c_georegion_l4_x57_y47)
% 0.19/0.43  = { by axiom 4 (just2) R->L }
% 0.19/0.43    fresh19(fresh30(mtvisible(c_tptpgeo_member5_mt), true2), true2, c_georegion_l4_x56_y47, c_georegion_l4_x57_y47)
% 0.19/0.43  = { by axiom 7 (just31) R->L }
% 0.19/0.43    fresh19(fresh30(fresh18(true2, true2, c_tptpgeo_spindlecollectormt, c_tptpgeo_member5_mt), true2), true2, c_georegion_l4_x56_y47, c_georegion_l4_x57_y47)
% 0.19/0.43  = { by axiom 2 (query59) R->L }
% 0.19/0.43    fresh19(fresh30(fresh18(mtvisible(c_tptpgeo_spindlecollectormt), true2, c_tptpgeo_spindlecollectormt, c_tptpgeo_member5_mt), true2), true2, c_georegion_l4_x56_y47, c_georegion_l4_x57_y47)
% 0.19/0.43  = { by axiom 9 (just31) }
% 0.19/0.43    fresh19(fresh30(fresh17(genlmt(c_tptpgeo_spindlecollectormt, c_tptpgeo_member5_mt), true2, c_tptpgeo_member5_mt), true2), true2, c_georegion_l4_x56_y47, c_georegion_l4_x57_y47)
% 0.19/0.43  = { by axiom 1 (just1) }
% 0.19/0.43    fresh19(fresh30(fresh17(true2, true2, c_tptpgeo_member5_mt), true2), true2, c_georegion_l4_x56_y47, c_georegion_l4_x57_y47)
% 0.19/0.43  = { by axiom 5 (just31) }
% 0.19/0.43    fresh19(fresh30(true2, true2), true2, c_georegion_l4_x56_y47, c_georegion_l4_x57_y47)
% 0.19/0.43  = { by axiom 3 (just2) }
% 0.19/0.43    fresh19(true2, true2, c_georegion_l4_x56_y47, c_georegion_l4_x57_y47)
% 0.19/0.43  = { by axiom 6 (just29) }
% 0.19/0.43    true2
% 0.19/0.43  % SZS output end Proof
% 0.19/0.43  
% 0.19/0.43  RESULT: Theorem (the conjecture is true).
%------------------------------------------------------------------------------