TSTP Solution File: COL075-1 by Twee---2.4.2

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Twee---2.4.2
% Problem  : COL075-1 : TPTP v8.1.2. Released v1.2.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : parallel-twee %s --tstp --conditional-encoding if --smaller --drop-non-horn --give-up-on-saturation --explain-encoding --formal-proof

% Computer : n012.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Wed Aug 30 18:32:00 EDT 2023

% Result   : Unsatisfiable 2.16s 0.85s
% Output   : Proof 2.16s
% Verified : 
% SZS Type : -

% Comments : 
%------------------------------------------------------------------------------
%----WARNING: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.00/0.12  % Problem  : COL075-1 : TPTP v8.1.2. Released v1.2.0.
% 0.00/0.13  % Command  : parallel-twee %s --tstp --conditional-encoding if --smaller --drop-non-horn --give-up-on-saturation --explain-encoding --formal-proof
% 0.13/0.34  % Computer : n012.cluster.edu
% 0.13/0.34  % Model    : x86_64 x86_64
% 0.13/0.34  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.13/0.34  % Memory   : 8042.1875MB
% 0.13/0.34  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.13/0.34  % CPULimit : 300
% 0.13/0.34  % WCLimit  : 300
% 0.13/0.34  % DateTime : Sun Aug 27 04:49:40 EDT 2023
% 0.13/0.34  % CPUTime  : 
% 2.16/0.85  Command-line arguments: --lhs-weight 1 --flip-ordering --normalise-queue-percent 10 --cp-renormalise-threshold 10
% 2.16/0.85  
% 2.16/0.85  % SZS status Unsatisfiable
% 2.16/0.85  
% 2.16/0.86  % SZS output start Proof
% 2.16/0.86  Take the following subset of the input axioms:
% 2.16/0.86    fof(abstraction, axiom, ![X, Y, Z]: apply(apply(apply(abstraction, X), Y), Z)=apply(apply(X, apply(k, Z)), apply(Y, Z))).
% 2.16/0.86    fof(k_definition, axiom, ![Y2, X2]: apply(apply(k, X2), Y2)=X2).
% 2.16/0.86    fof(prove_diagonal_combinator, negated_conjecture, ![Y2]: apply(apply(Y2, b(Y2)), c(Y2))!=apply(b(Y2), b(Y2))).
% 2.16/0.86  
% 2.16/0.86  Now clausify the problem and encode Horn clauses using encoding 3 of
% 2.16/0.86  http://www.cse.chalmers.se/~nicsma/papers/horn.pdf.
% 2.16/0.86  We repeatedly replace C & s=t => u=v by the two clauses:
% 2.16/0.86    fresh(y, y, x1...xn) = u
% 2.16/0.86    C => fresh(s, t, x1...xn) = v
% 2.16/0.86  where fresh is a fresh function symbol and x1..xn are the free
% 2.16/0.86  variables of u and v.
% 2.16/0.86  A predicate p(X) is encoded as p(X)=true (this is sound, because the
% 2.16/0.86  input problem has no model of domain size 1).
% 2.16/0.86  
% 2.16/0.86  The encoding turns the above axioms into the following unit equations and goals:
% 2.16/0.86  
% 2.16/0.86  Axiom 1 (k_definition): apply(apply(k, X), Y) = X.
% 2.16/0.86  Axiom 2 (abstraction): apply(apply(apply(abstraction, X), Y), Z) = apply(apply(X, apply(k, Z)), apply(Y, Z)).
% 2.16/0.86  
% 2.16/0.86  Goal 1 (prove_diagonal_combinator): apply(apply(X, b(X)), c(X)) = apply(b(X), b(X)).
% 2.16/0.86  The goal is true when:
% 2.16/0.86    X = apply(apply(abstraction, abstraction), k)
% 2.16/0.86  
% 2.16/0.86  Proof:
% 2.16/0.86    apply(apply(apply(apply(abstraction, abstraction), k), b(apply(apply(abstraction, abstraction), k))), c(apply(apply(abstraction, abstraction), k)))
% 2.16/0.86  = { by axiom 2 (abstraction) }
% 2.16/0.86    apply(apply(apply(abstraction, apply(k, b(apply(apply(abstraction, abstraction), k)))), apply(k, b(apply(apply(abstraction, abstraction), k)))), c(apply(apply(abstraction, abstraction), k)))
% 2.16/0.86  = { by axiom 2 (abstraction) }
% 2.16/0.86    apply(apply(apply(k, b(apply(apply(abstraction, abstraction), k))), apply(k, c(apply(apply(abstraction, abstraction), k)))), apply(apply(k, b(apply(apply(abstraction, abstraction), k))), c(apply(apply(abstraction, abstraction), k))))
% 2.16/0.86  = { by axiom 1 (k_definition) }
% 2.16/0.86    apply(apply(apply(k, b(apply(apply(abstraction, abstraction), k))), apply(k, c(apply(apply(abstraction, abstraction), k)))), b(apply(apply(abstraction, abstraction), k)))
% 2.16/0.86  = { by axiom 1 (k_definition) }
% 2.16/0.86    apply(b(apply(apply(abstraction, abstraction), k)), b(apply(apply(abstraction, abstraction), k)))
% 2.16/0.86  % SZS output end Proof
% 2.16/0.86  
% 2.16/0.86  RESULT: Unsatisfiable (the axioms are contradictory).
%------------------------------------------------------------------------------