TSTP Solution File: COL059-1 by Otter---3.3

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Otter---3.3
% Problem  : COL059-1 : TPTP v8.1.0. Released v1.0.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : otter-tptp-script %s

% Computer : n020.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Wed Jul 27 12:48:06 EDT 2022

% Result   : Unsatisfiable 1.99s 2.13s
% Output   : Refutation 1.99s
% Verified : 
% SZS Type : Refutation
%            Derivation depth      :   17
%            Number of leaves      :    9
% Syntax   : Number of clauses     :   38 (  38 unt;   0 nHn;  14 RR)
%            Number of literals    :   38 (  37 equ;   3 neg)
%            Maximal clause size   :    1 (   1 avg)
%            Maximal term depth    :    5 (   2 avg)
%            Number of predicates  :    2 (   0 usr;   1 prp; 0-2 aty)
%            Number of functors    :    6 (   6 usr;   5 con; 0-2 aty)
%            Number of variables   :   34 (  11 sgn)

% Comments : 
%------------------------------------------------------------------------------
cnf(1,axiom,
    response(l2,l2) != l2,
    file('COL059-1.p',unknown),
    [] ).

cnf(2,axiom,
    A = A,
    file('COL059-1.p',unknown),
    [] ).

cnf(3,axiom,
    response(response(kestrel,A),B) = A,
    file('COL059-1.p',unknown),
    [] ).

cnf(5,axiom,
    response(response(lark,A),B) = response(A,response(B,B)),
    file('COL059-1.p',unknown),
    [] ).

cnf(6,axiom,
    response(response(response(lark,lark),A),B) = response(response(A,A),response(B,B)),
    file('COL059-1.p',unknown),
    [] ).

cnf(7,axiom,
    response(response(response(response(lark,lark),lark),A),B) = response(response(response(A,A),response(A,A)),response(x2,x2)),
    file('COL059-1.p',unknown),
    [] ).

cnf(9,axiom,
    response(lark,lark) = l2,
    file('COL059-1.p',unknown),
    [] ).

cnf(11,axiom,
    response(l2,lark) = l3,
    file('COL059-1.p',unknown),
    [] ).

cnf(13,axiom,
    response(l3,l3) = l3,
    file('COL059-1.p',unknown),
    [] ).

cnf(15,plain,
    response(response(A,A),response(B,B)) = response(response(l2,A),B),
    inference(demod,[status(thm),theory(equality)],[inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[6])]),9]),
    [iquote('copy,6,flip.1,demod,9')] ).

cnf(16,plain,
    response(response(response(A,A),response(A,A)),response(x2,x2)) = response(response(l3,A),B),
    inference(demod,[status(thm),theory(equality)],[inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[7])]),9,11]),
    [iquote('copy,7,flip.1,demod,9,11')] ).

cnf(19,plain,
    response(lark,response(A,A)) = response(l2,A),
    inference(flip,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[5,9])]),
    [iquote('para_into,5.1.1.1,8.1.1,flip.1')] ).

cnf(28,plain,
    response(lark,A) = response(l2,response(kestrel,A)),
    inference(para_into,[status(thm),theory(equality)],[19,3]),
    [iquote('para_into,19.1.1.2,3.1.1')] ).

cnf(39,plain,
    response(l2,response(kestrel,lark)) = l2,
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[9]),28]),
    [iquote('back_demod,8,demod,28')] ).

cnf(41,plain,
    response(l2,response(A,A)) = response(l3,A),
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[15,28]),39,11]),
    [iquote('para_into,15.1.1.1,27.1.1,demod,39,11')] ).

cnf(44,plain,
    response(l3,response(A,A)) = response(response(l2,l3),A),
    inference(para_into,[status(thm),theory(equality)],[15,13]),
    [iquote('para_into,15.1.1.1,12.1.1')] ).

cnf(45,plain,
    response(response(A,A),l2) = response(response(l2,A),lark),
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[15,28]),39]),
    [iquote('para_into,15.1.1.2,27.1.1,demod,39')] ).

cnf(48,plain,
    response(response(A,A),B) = response(response(l2,A),response(kestrel,B)),
    inference(para_into,[status(thm),theory(equality)],[15,3]),
    [iquote('para_into,15.1.1.2,3.1.1')] ).

cnf(49,plain,
    response(response(l2,kestrel),A) = kestrel,
    inference(flip,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[15,3])]),
    [iquote('para_into,15.1.1,3.1.1,flip.1')] ).

cnf(52,plain,
    response(response(l2,l3),A) = response(l3,response(A,A)),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[44])]),
    [iquote('copy,44,flip.1')] ).

cnf(56,plain,
    response(response(l2,A),response(kestrel,B)) = response(response(A,A),B),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[48])]),
    [iquote('copy,48,flip.1')] ).

cnf(63,plain,
    response(l3,lark) = response(l2,l2),
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[41,28]),39])]),
    [iquote('para_into,41.1.1.2,27.1.1,demod,39,flip.1')] ).

cnf(68,plain,
    response(l2,l3) = l3,
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[41,13]),13]),
    [iquote('para_into,41.1.1.2,12.1.1,demod,13')] ).

cnf(69,plain,
    response(l3,response(kestrel,A)) = response(l2,A),
    inference(flip,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[41,3])]),
    [iquote('para_into,41.1.1.2,3.1.1,flip.1')] ).

cnf(72,plain,
    response(l3,response(A,A)) = response(l3,A),
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[52]),68])]),
    [iquote('back_demod,52,demod,68,flip.1')] ).

cnf(79,plain,
    response(l3,x2) = response(l3,A),
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[16,13]),13,13,72,13]),
    [iquote('para_into,16.1.1.1.1,12.1.1,demod,13,13,72,13')] ).

cnf(92,plain,
    response(l3,A) = response(l3,B),
    inference(para_into,[status(thm),theory(equality)],[79,79]),
    [iquote('para_into,79.1.1,79.1.1')] ).

cnf(94,plain,
    response(l3,A) = response(l2,l2),
    inference(flip,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[92,63])]),
    [iquote('para_into,92.1.1,63.1.1,flip.1')] ).

cnf(96,plain,
    response(l2,l2) = l3,
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[92,13]),94])]),
    [iquote('para_into,92.1.1,12.1.1,demod,94,flip.1')] ).

cnf(106,plain,
    response(l2,A) = l3,
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[69]),94,96])]),
    [iquote('back_demod,69,demod,94,96,flip.1')] ).

cnf(110,plain,
    response(l3,A) = l3,
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[94]),106]),
    [iquote('back_demod,93,demod,106')] ).

cnf(111,plain,
    l3 != l2,
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[1]),106]),
    [iquote('back_demod,1,demod,106')] ).

cnf(121,plain,
    response(response(A,A),B) = l3,
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[56]),106,110])]),
    [iquote('back_demod,56,demod,106,110,flip.1')] ).

cnf(123,plain,
    l3 = kestrel,
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[49]),106,110]),
    [iquote('back_demod,49,demod,106,110')] ).

cnf(129,plain,
    response(kestrel,lark) = kestrel,
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[45]),121,123,106,123])]),
    [iquote('back_demod,45,demod,121,123,106,123,flip.1')] ).

cnf(133,plain,
    l2 = kestrel,
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[39]),129,106,123])]),
    [iquote('back_demod,38,demod,129,106,123,flip.1')] ).

cnf(140,plain,
    kestrel != kestrel,
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[111]),123,133]),
    [iquote('back_demod,111,demod,123,133')] ).

cnf(141,plain,
    $false,
    inference(binary,[status(thm)],[140,2]),
    [iquote('binary,140.1,2.1')] ).

%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.10/0.12  % Problem  : COL059-1 : TPTP v8.1.0. Released v1.0.0.
% 0.10/0.13  % Command  : otter-tptp-script %s
% 0.14/0.34  % Computer : n020.cluster.edu
% 0.14/0.34  % Model    : x86_64 x86_64
% 0.14/0.34  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.14/0.34  % Memory   : 8042.1875MB
% 0.14/0.34  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.14/0.34  % CPULimit : 300
% 0.14/0.34  % WCLimit  : 300
% 0.14/0.34  % DateTime : Wed Jul 27 02:28:08 EDT 2022
% 0.14/0.34  % CPUTime  : 
% 1.99/2.12  ----- Otter 3.3f, August 2004 -----
% 1.99/2.12  The process was started by sandbox on n020.cluster.edu,
% 1.99/2.12  Wed Jul 27 02:28:08 2022
% 1.99/2.12  The command was "./otter".  The process ID is 21113.
% 1.99/2.12  
% 1.99/2.12  set(prolog_style_variables).
% 1.99/2.12  set(auto).
% 1.99/2.12     dependent: set(auto1).
% 1.99/2.12     dependent: set(process_input).
% 1.99/2.12     dependent: clear(print_kept).
% 1.99/2.12     dependent: clear(print_new_demod).
% 1.99/2.12     dependent: clear(print_back_demod).
% 1.99/2.12     dependent: clear(print_back_sub).
% 1.99/2.12     dependent: set(control_memory).
% 1.99/2.12     dependent: assign(max_mem, 12000).
% 1.99/2.12     dependent: assign(pick_given_ratio, 4).
% 1.99/2.12     dependent: assign(stats_level, 1).
% 1.99/2.12     dependent: assign(max_seconds, 10800).
% 1.99/2.12  clear(print_given).
% 1.99/2.12  
% 1.99/2.12  list(usable).
% 1.99/2.12  0 [] A=A.
% 1.99/2.12  0 [] response(response(kestrel,X1),X2)=X1.
% 1.99/2.12  0 [] response(response(lark,X1),X2)=response(X1,response(X2,X2)).
% 1.99/2.12  0 [] response(response(response(lark,lark),X1),X2)=response(response(X1,X1),response(X2,X2)).
% 1.99/2.12  0 [] response(response(response(response(lark,lark),lark),X1),X2)=response(response(response(X1,X1),response(X1,X1)),response(x2,x2)).
% 1.99/2.12  0 [] response(l2,l2)!=l2.
% 1.99/2.12  0 [] response(lark,lark)=l2.
% 1.99/2.13  0 [] response(l2,lark)=l3.
% 1.99/2.13  0 [] response(l3,l3)=l3.
% 1.99/2.13  end_of_list.
% 1.99/2.13  
% 1.99/2.13  SCAN INPUT: prop=0, horn=1, equality=1, symmetry=0, max_lits=1.
% 1.99/2.13  
% 1.99/2.13  All clauses are units, and equality is present; the
% 1.99/2.13  strategy will be Knuth-Bendix with positive clauses in sos.
% 1.99/2.13  
% 1.99/2.13     dependent: set(knuth_bendix).
% 1.99/2.13     dependent: set(anl_eq).
% 1.99/2.13     dependent: set(para_from).
% 1.99/2.13     dependent: set(para_into).
% 1.99/2.13     dependent: clear(para_from_right).
% 1.99/2.13     dependent: clear(para_into_right).
% 1.99/2.13     dependent: set(para_from_vars).
% 1.99/2.13     dependent: set(eq_units_both_ways).
% 1.99/2.13     dependent: set(dynamic_demod_all).
% 1.99/2.13     dependent: set(dynamic_demod).
% 1.99/2.13     dependent: set(order_eq).
% 1.99/2.13     dependent: set(back_demod).
% 1.99/2.13     dependent: set(lrpo).
% 1.99/2.13  
% 1.99/2.13  ------------> process usable:
% 1.99/2.13  ** KEPT (pick-wt=5): 1 [] response(l2,l2)!=l2.
% 1.99/2.13  
% 1.99/2.13  ------------> process sos:
% 1.99/2.13  ** KEPT (pick-wt=3): 2 [] A=A.
% 1.99/2.13  ** KEPT (pick-wt=7): 3 [] response(response(kestrel,A),B)=A.
% 1.99/2.13  ---> New Demodulator: 4 [new_demod,3] response(response(kestrel,A),B)=A.
% 1.99/2.13  ** KEPT (pick-wt=11): 5 [] response(response(lark,A),B)=response(A,response(B,B)).
% 1.99/2.13  ** KEPT (pick-wt=15): 6 [] response(response(response(lark,lark),A),B)=response(response(A,A),response(B,B)).
% 1.99/2.13  ** KEPT (pick-wt=21): 7 [] response(response(response(response(lark,lark),lark),A),B)=response(response(response(A,A),response(A,A)),response(x2,x2)).
% 1.99/2.13  ** KEPT (pick-wt=5): 8 [] response(lark,lark)=l2.
% 1.99/2.13  ---> New Demodulator: 9 [new_demod,8] response(lark,lark)=l2.
% 1.99/2.13  ** KEPT (pick-wt=5): 10 [] response(l2,lark)=l3.
% 1.99/2.13  ---> New Demodulator: 11 [new_demod,10] response(l2,lark)=l3.
% 1.99/2.13  ** KEPT (pick-wt=5): 12 [] response(l3,l3)=l3.
% 1.99/2.13  ---> New Demodulator: 13 [new_demod,12] response(l3,l3)=l3.
% 1.99/2.13    Following clause subsumed by 2 during input processing: 0 [copy,2,flip.1] A=A.
% 1.99/2.13  >>>> Starting back demodulation with 4.
% 1.99/2.13  ** KEPT (pick-wt=11): 14 [copy,5,flip.1] response(A,response(B,B))=response(response(lark,A),B).
% 1.99/2.13  ** KEPT (pick-wt=13): 15 [copy,6,flip.1,demod,9] response(response(A,A),response(B,B))=response(response(l2,A),B).
% 1.99/2.13  ** KEPT (pick-wt=17): 16 [copy,7,flip.1,demod,9,11] response(response(response(A,A),response(A,A)),response(x2,x2))=response(response(l3,A),B).
% 1.99/2.13  >>>> Starting back demodulation with 9.
% 1.99/2.13      >> back demodulating 7 with 9.
% 1.99/2.13      >> back demodulating 6 with 9.
% 1.99/2.13  >>>> Starting back demodulation with 11.
% 1.99/2.13  >>>> Starting back demodulation with 13.
% 1.99/2.13    Following clause subsumed by 5 during input processing: 0 [copy,14,flip.1] response(response(lark,A),B)=response(A,response(B,B)).
% 1.99/2.13    Following clause subsumed by 18 during input processing: 0 [copy,15,flip.1] response(response(l2,A),B)=response(response(A,A),response(B,B)).
% 1.99/2.13    Following clause subsumed by 17 during input processing: 0 [copy,16,flip.1] response(response(l3,A),B)=response(response(response(A,A),response(A,A)),response(x2,x2)).
% 1.99/2.13    Following clause subsumed by 16 during input processing: 0 [copy,17,flip.1] response(response(response(A,A),response(A,A)),response(x2,x2))=response(response(l3,A),B).
% 1.99/2.13    Following clause subsumed by 15 during input processing: 0 [copy,18,flip.1] response(response(A,A),response(B,B))=response(response(l2,A),B).
% 1.99/2.13  
% 1.99/2.13  ======= end of input processing =======
% 1.99/2.13  
% 1.99/2.13  =========== start of search ===========
% 1.99/2.13  
% 1.99/2.13  -------- PROOF -------- 
% 1.99/2.13  
% 1.99/2.13  ----> UNIT CONFLICT at   0.00 sec ----> 141 [binary,140.1,2.1] $F.
% 1.99/2.13  
% 1.99/2.13  Length of proof is 28.  Level of proof is 16.
% 1.99/2.13  
% 1.99/2.13  ---------------- PROOF ----------------
% 1.99/2.13  % SZS status Unsatisfiable
% 1.99/2.13  % SZS output start Refutation
% See solution above
% 1.99/2.13  ------------ end of proof -------------
% 1.99/2.13  
% 1.99/2.13  
% 1.99/2.13  Search stopped by max_proofs option.
% 1.99/2.13  
% 1.99/2.13  
% 1.99/2.13  Search stopped by max_proofs option.
% 1.99/2.13  
% 1.99/2.13  ============ end of search ============
% 1.99/2.13  
% 1.99/2.13  -------------- statistics -------------
% 1.99/2.13  clauses given                 20
% 1.99/2.13  clauses generated             75
% 1.99/2.13  clauses kept                  93
% 1.99/2.13  clauses forward subsumed     105
% 1.99/2.13  clauses back subsumed          5
% 1.99/2.13  Kbytes malloced              976
% 1.99/2.13  
% 1.99/2.13  ----------- times (seconds) -----------
% 1.99/2.13  user CPU time          0.00          (0 hr, 0 min, 0 sec)
% 1.99/2.13  system CPU time        0.00          (0 hr, 0 min, 0 sec)
% 1.99/2.13  wall-clock time        2             (0 hr, 0 min, 2 sec)
% 1.99/2.13  
% 1.99/2.13  That finishes the proof of the theorem.
% 1.99/2.13  
% 1.99/2.13  Process 21113 finished Wed Jul 27 02:28:10 2022
% 1.99/2.13  Otter interrupted
% 1.99/2.13  PROOF FOUND
%------------------------------------------------------------------------------